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1 Introduction

The notion of the renormalization group has dominated our thinking about quantum field

theories and statistical systems since its elaboration by K. Wilson. It has been a paradigm-

changing idea, providing a unified and systematic picture to understand the dynamics of

systems with many degrees of freedoms. Quantum field theories are now not seen as isolated

items, but as classes connected by the RG flow. The method is very powerful, however

in practice one can usually only determine the structure of the flow in a perturbative

expansion around a fixed point that is weakly coupled. Luckily there are many interesting

theories for which the program can be implemented, including of course Yang-Mills and

QCD that are asymptotically free, the Wilson-Fisher fixed point of λφ4 in dimension 4− ε,
etc., but strongly-coupled examples are few.

The holographic correspondence gives a description of a class of strongly-coupled field

theories in terms of a dual weakly-coupled gravitational description. The RG flow in this

description is geometrized, and corresponds to a gravitational solution with particular

asymptotic properties; the holographic direction corresponds to the energy scale, and so

the Hamiltonian evolution in this direction can be put in correspondence with the evolution

of the system under the change of the RG scale [1]. These solutions are often described as

“domain wall” solutions, as they interpolate between two asymptotic regions, each of them

being a solution on its own and corresponding to a given theory [2]–[4].

This aspect of the holographic correspondence has been intensely explored, but some

issues have so far eluded a complete resolution; for instance, the precise relation between

the holographic and the Wilsonian scheme [5, 6], and the fact that Einstein equations are

second order while RG equations are first-order; even though the equations can be cast in

first-order form using the Hamilton-Jacobi formalism, there seems still to be a mismatch

in that the couplings of the field theory are promoted to fluctuating fields in the gravity

description; recently an attempt to solve this problem has been made [7] with the notion of

a “quantum RG flow”, that arises from the classical one after integrating out the double-

trace operators. This flow may be more complex than the one typically arising in QFT,

and these possibilities have only been considered in the last few years [8].

The matching of RG equations with the gravity equations has been precisely formulated

only for the solutions that have the Poincaré invariance at the boundary, and correspond

to the vacuum of the dual field theory. In these cases, one can show that the equations of

motion can be expressed in terms of a superpotential, which is determined by the scalar

potential (up to the choice of some integration constants), and is in one-to-one correspon-

dence with the beta function of the dual theory. But it is not yet known how to extend

this procedure to non-Poincaré invariant states, in particular finite temperature/density.

In this paper we will not be concerned with these conceptual issues. Rather, in the

spirit of “bottom-up” holography, we remark that there are some relatively simple models

of gravity coupled to a scalar field, that allow for interesting examples of RG flows that

can be found analytically. This is due to the fact that the Einstein equations, with the

Ansatz that corresponds to domain-walls solutions, reduce to dynamical equations that

are completely integrable (they can be reduced to the equations of a Toda chain). It is
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remarkable that such analytic domain-wall solutions can be found not only for the vacuum

but also at finite temperature. The Toda equations arise when the potential is a sum of

exponentials, when the coefficients in the exponent satisfy certain relations. The case of a

single exponential term had been solved in [9]. The Chamblin-Reall black brane solution

has found applications to the study of the dynamics of a non-conformal strongly coupled

plasma in the hydro regime and beyond [10, 11]. However the single exponential case has

some limitations: the potential is monotonous, so it does not have a minimum but only

run-away solutions; the RG flow in this case does not start from a UV fixed point, and in

fact the dual theory is not well-behaved in the UV. Moreover, the single exponential has a

definite sign. This precludes the possibility of studying cases in which the potential changes

sign along the solution. The general analysis of RG flow with a single scalar, performed

in [8], only deals with potentials that are definite negative; the general case of a potential

with zeros is less explored.

In this paper we consider the next simplest case, with a sum of two exponentials.

Integrability leaves one of the two exponents unfixed, so we have one free parameter, like

in the case of a single exponential. This case already allows to overcome the limitations

just mentioned. We will leave the consideration of more complicated potentials for future

investigations. Qualitatively, the properties of the potential is that it has a minimum with

Vmin < 0, it goes from being negative and vanishing at φ→ −∞ to positive and diverging

at φ→ +∞.

It turns out that for our choice of the potential, the integrable Toda chain is associated

to the Lie algebra is A1 × A1 [12, 13], so it is a particularly simple case and the solutions

can be given explicitly in terms of elementary functions.

The solutions we find depend on a certain number of parameters. One parameter dis-

tinguishes between vacuum and nonvacuum solutions. The vacuum solutions are Poincaré

invariant. Turning on the parameter gives a deformation to non-vacuum solutions, in which

Poincaré symmetry is broken, and horizons can be formed. One more constant is the “en-

ergy” of the solutions (more exactly the energy in the associated Toda chain description)

and determines the type of solutions; there are four general classes of solutions — depend-

ing on the type of functions that appear, we will call them the sinh-class, sin-class, linear

class and cosh-class of solutions (see eqs. (2.33)). We will consider mainly the sinh-class.

Two other parameters determine the position of singularities, whose presence requires to

split the domain on the radial variable in three regions; correspondingly we have “left”,

“middle” and “right” solutions. In the left and middle solutions the dilaton interpolates

between +∞ and −∞, whereas the right solution is bouncing: the dilaton starts at −∞,

goes to a maximal value and then goes back to −∞. It should be noted that the singular-

ities are not just coordinate singularities; the scalar curvature usually diverges at the end

points of the branches, except for the right end of the middle branch.

Coming to the domain wall coordinates we explore the solutions in the holographic

framework. We define the energy scale A= eA, where A is the scale factor of the domain

wall metric and the running coupling as λ = eφ through the dilaton φ. It is interesting that,

in spite of the fact that the dilaton has a similar behaviour in the left and middle solutions,

the scale factor A has rather different behaviour on these solutions, namely, on the left

– 3 –
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solution when the dilaton varies from −∞ to a special value φs, the energy scale increases,

but after the dilaton passes the special value φs, the scale factor starts to decrease down.

This non-monotonic behavior of A precludes the possibility of a holographic interpretation

of this branch of solutions. For the middle solution, when the dilaton increases from −∞
to ∞, the scale factor decreases from large positive values to large negative values. This

behaviour corresponds to the running coupling in an asymptotically UV free theory, so it

is of interest from the point of view of possible applications in QCD. In the right solution

the scale factor is increasing from minus infinity to plus infinity, but the dilaton bounces

back after reaching a maximal value φmax, as already mentioned. These behaviours are

illustrated in figure 8.

There is also a special case when the points of singularities coincide. In this case the

singularities are cancelled and the solution has a smooth AdS boundary in the UV limit and

a hyperscaling violating boundary in the IR region. The dilaton supporting this geometry

runs from a constant value in the UV to −∞ in the IR.

As we mentioned before there are other solutions, in particular this one from the linear

class describes the opposite flow, from hyperscaling-violating in the UV to AdS in the IR.

When we turn to non-vacuum solutions, the deformation can give solutions with a

horizon or without. For the cases having horizons, the parameter characterizing the de-

formation is related to the temperature. It happens that the black brane solutions can

be constructed only from those vacuum solutions which are defined for u → ±∞. For

these solutions the dilaton potential evaluated on-shell is bounded from above and there-

fore the solutions obey Gubser’s criterion [22]. In particular, for the solutions defined for

u→ +∞ we change the scaling properties of these solutions in the IR regime varying the

temperature, meanwhile the UV behavior does not change.

In accordance with Gubser’s criterion, we find finite temperature solutions only for the

“regular” vacuum flow. In particular, we do not have any black brane solution with AdS

UV asymptotics, as this is a singular flow. The finite temperature generalization of the

vacuum solution with coinciding singularities yields to be just a AdS-Schwarzschild black

brane, i.e. it does not flow anymore.

The interpretation of the solutions in terms of RG flows is clarified by using the first

order variables X,Y [14] that have a direct relation to the superpotential and the beta

function, when a dual theory interpretation is possible. We discuss how our solutions

describe flows between different attractor points in the phase space, i.e. the (φ,X) plane,

but in order to recover all possible flows we also have to include other classes of solutions,

namely the linear and cosh-solutions. This is illustrated in figures 9 and 10. In figure 16

we show possible flows at non-zero temperature.

The paper is organized as follows. In section 2 we describe the holographic gravity

model, the ansatz for the metric and the dilaton that leads to a special mechanical model,

that can be explicitly integrated. Here (section 2.5) we also introduce some general relations

for the holographic RG flow. In section 3 we describe in details the vacuum solutions and

give their interpretation in terms of the holographic RG flow. In section 4 we study non-

vacuum solutions, derive a black brane and study the black brane solution as a holographic

RG flow at finite temperature. In the appendix, we collect information about curvature

– 4 –
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Figure 1. The behaviour of the potential V (φ) for C1 < 0, C2 > 0.

invariants for our background in section A, some formula about the dilaton field in section B

and details about the superpotential for vacuum case in section C.

2 The setup

We consider a holographic model with gravity coupled to a dilaton field, and the dilaton

potential is taken as a sum of two exponential functions. As explained in the introduc-

tion, the choice of the dilaton potential is motivated by studies of models with only one

exponential function in the potential [10, 14].

2.1 The holographic gravity model

The holographic model is governed by an action of the form

S =
1

16πG5

∫
d5x
√
|g|
(
R− 4

3
(∂φ)2 − V (φ)

)
+G.H., (2.1)

with the dilaton potential

V (φ) = C1e
2k1φ + C2e

2k2φ, (2.2)

where Ci, ki with i = 1, 2 are constants. We choose the constants C1 and C2 as follows

C1 < 0, C2 > 0. (2.3)

In this case the potential has a minimum and regions of positive and negative sign, as

shown in figure 1.

The model (2.1)–(2.2) is defined on a 5-dim manifold M equipped with the metric

ds2 = −e2A(u)dt2 + e2B(u)
3∑
i=1

dy2
i + e2C(u)du2, (2.4)

where A = A(u), B = B(u) and C = C(u) are some smooth functions. We make an ansatz

in which these functions, as well as the dilaton, depend only on the u-coordinate.

The equations of motion which follow from the action (2.1) read

RMN −
1

2
gMNR =

4

3

(
∂Mφ∂Nφ−

1

2
gMN∂kφ∂

kφ

)
− 1

2
gMNV (φ). (2.5)
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The equation for the scalar field is

�φ =
3

8

∂V

∂φ
. (2.6)

Taking into account the relations (A.2)–(A.6), (B.1), the Lagrangian can be reduced

to the following form, up to total derivative terms:

L =
1

2

[
−eA+3B−C(6ȦḂ + 6Ḃ2) +

4

3
φ̇2eA+3B−C + eA+3B+CV (φ)

]
, (2.7)

where we denote ˙≡ d
du . For convenience we redefine the functions as

A(u) = x1(u), B(u) = x2(u), φ(u) = x3(u), C(u) = x(u), (2.8)

introduce a new variable x0

x0 = x1 + 3x2 (2.9)

and the so-called lapse function

N = ex−x0 . (2.10)

In what follows we use the harmonic gauge, i.e.

N = 1, or x = x0. (2.11)

The explicit form of E.O.M. is presented in appendix A.1 in the harmonic gauge

C = A+ 3B.

2.2 Mechanical model

The Lagrangian (2.7) with the help of (2.8)–(2.11) can be taken to the following form

(see [21] and refs. therein)

L =
1

2
Gij ẋ

iẋj − V (x), (2.12)

V = −1

2

2∑
s=1

Cse
2(x1+3x2+ksx3), (2.13)

where the minisupermetric Gij on the target space M reads

(Gij) =


0 −3 0

−3 −6 0

0 0 4
3

 ,
(
Gij
)

=


2
3 −

1
3 0

−1
3 0 0

0 0 3
4

, i, j = 1, 2, 3. (2.14)

The corresponding energy constraint is given by

E =
1

2
Gij ẋ

iẋj + V = 0. (2.15)

However, the system (2.12)–(2.15) is still difficult to work with, because of the degrees

of freedom are coupled in the potential. The idea of the next section is to separate the

equations of motion rotating the system [18, 19].

– 6 –
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2.3 Integration of the mechanical model

To perform the following calculations it is useful to present the mechanical Lagrangi-

an (2.12) in the form

L =
1

2
〈ẋ, ẋ〉+

C1

2
e〈V,x〉 +

C2

2
e〈W,x〉, (2.16)

where V and W are some vectors on the target space (we suppose that the original ba-

sis is (e1, e2, e3)), the brackets denote a scalar product on the target space M with the

metric (2.14).

Then the components of V and W are defined by

V 1 = −2

3
, V 2 = −2

3
, V 3 =

3

2
k1, (2.17)

W 1 = −2

3
, W 2 = −2

3
, W 3 =

3

2
k2. (2.18)

The method we will use applies generally to systems with interactions of the

form (2.16), with arbitrarily many exponentials [18–20]. It turns out that the system

is integrable if the vectors V and W can be identified with the root vectors of a Lie algebra

(for more details see [12, 13, 18, 19]). Then the system becomes a Toda chain. In our case,

we can see that the scalar products of the vectors are:

〈V, V 〉 = 3

(
k2

1 −
16

9

)
, 〈W,W 〉 = 3

(
k2

2 −
16

9

)
, 〈V,W 〉 = 3

(
k1k2 −

16

9

)
. (2.19)

These correspond to the roots of a Lie algebra only if V and W are orthogonal, in which

case we have the A1×A1 Toda model. The integrability requirement puts a restriction on

the dilaton couplings:

〈V,W 〉 = 0, k1k2 =
16

9
. (2.20)

We also suppose that V is a timelike vector and W is a spacelike one (notice that the

symmetry between k1 and k2 is broken by the choice of the signs of the coefficients in the

potential). We rename

k1 = k, k2 =
16

9k
, (2.21)

and we have the condition

0 < k < 4/3. (2.22)

We can find a basis of orthonormal vectors with respect to the metric Gij :〈
e
′
i, e
′
j

〉
= ηij , with (ηij) = diag (−1, 1, 1) , i, j = 1, 2, 3; (2.23)

one can choose the new basis vectors as follows

e
′
1 =

V

||V ||
, e

′
2 =

W

||W ||
. (2.24)

– 7 –
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The new basis is related to the old one by a Lorentz transformation:

e
′
j =

3∑
i=1

Sijei,
3∑

k,l=1

GklS
k
i S

l
j = ηij , (2.25)

and the coordinates transform as

xi =
3∑
j=1

SijX
j , X i = ηii

〈
e
′
i, x
〉
. (2.26)

The Lagrangian and the energy constraint (2.12)–(2.15) in the new basis take the form

L =
1

2

3∑
i,j=1

ηijẊ
iẊj +

C1

2
exp

[
η11|〈V, V 〉|1/2X1

]
+
C2

2
exp

[
η22|〈W,W 〉|1/2X2

]
, (2.27)

E0 =
1

2

3∑
i,j=1

ηijẊ
iẊj − C1

2
exp

[
η11|〈V, V 〉|1/2X1

]
− C2

2
exp

[
η22|〈W,W 〉|1/2X2

]
. (2.28)

From (2.27)–(2.28) we see that mechanical variables are decoupled, so the equations

of motion following from the Lagrangian (2.27) are

Ẍs = |〈Rs, Rs〉|1/2
Cs
2

exp
[
ηss|〈Rs, Rs〉|1/2Xs

]
, (2.29)

Ẍ3 = 0, (2.30)

where s = 1, 2 and we introduce a notation for the scalar product

〈R1, R1〉 = 〈V, V 〉 , 〈R2, R2〉 = 〈W,W 〉 . (2.31)

The eqs. (2.29) with s = 1, 2 are two decoupled Liouville equations. The solution can

be given explicitly:

Xs = −ηss|〈Rs, Rs〉|−1/2 ln
(
F 2
s (u− u0s)

)
, (2.32)

with the functions

Fs(u− u0s) =



√
|Cs|
2|Es|

sinh

[√
|Es 〈Rs, Rs〉|

2
(u− u0s)

]
, if ηssCs > 0, ηssEs > 0,

√
|Cs|
2|Es|

sin

[√
|Es 〈Rs, Rs〉|

2
(u− u0s)

]
, if ηssCs > 0, ηssEs < 0,

√
|〈Rs, Rs〉Cs|

4
(u− u0s), if ηssCs > 0, Es = 0,√

|Cs|
2|Es|

cosh

[√
|Es 〈Rs, Rs〉|

2
(u− u0s)

]
, if ηssCs < 0, ηssEs > 0,

(2.33)
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where u0s, Es are constants of integration, s = 1, 2. The Es are the conserved energies

of the two decoupled Liouville modes. In our case, with C1 < 0 and C2 > 0, we have

ηssCs > 0, so the relevant solutions are given by the first three lines. We will analyze in

detail the sinh-solutions, which are the most interesting from the RG point of view.

The solutions to eq. (2.30) is

X3 = p3u+ q3, (2.34)

with constants of integration p3, q3.

Having solved the system, we can go back to the original variables applying the trans-

formations (2.26) with components

Si1 =
V i

|〈V, V 〉|1/2
, Si2 =

W i

〈W,W 〉1/2
, (2.35)

and obtain

expx1 = [F1(u− u01)]
− 2V 1

〈V,V 〉 [F2(u− u02)]
− 2W1

〈W,W 〉 eα
1u+β1

, (2.36)

expx2 = [F1(u− u01)]
− 2V 2

〈V,V 〉 [F2(u− u02)]
− 2W2

〈W,W 〉 eα
2u+β2

, (2.37)

expx3 = [F1(u− u01)]
− 2V 3

〈V,V 〉 [F2(u− u02)]
− 2W3

〈W,W 〉 eα
3u+β3

, (2.38)

with the parameters αi, βi defined using (2.25)

αi = Si3p
3, βi = Si3q

3. (2.39)

The parameters αi satisfy the following conditions

〈α, V 〉 = 0, 〈α,W 〉 = 0, (2.40)

which imply

α3 = 0, α1 = −3α2 . (2.41)

The constants E1, E2 and αi are related by the constraint (2.28) which reads

E1 + E2 +
1

2
〈α, α〉 = E0 . (2.42)

2.4 The exact solutions in the harmonic gauge

Keeping in mind that the variables xi with (2.36)–(2.38), (2.41) are redefined metric func-

tions A, B and the dilaton φ (2.8)–(2.9), and taking the gauge condition C = A+3B (2.11)

into account, we can write down the metric coefficients of (2.4)

eA = F
4

9k2−16

1 F
9k2

4(16−9k2)

2 eα
1u, (2.43)

eB = F
4

9k2−16

1 F
9k2

4(16−9k2)

2 e−
α1

3
u, (2.44)

eC = F
16

9k2−16

1 F
9k2

16−9k2

2 , (2.45)

– 9 –
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where for simplicity we put βi, i = 1, 2, 3, to zero (without loss of generality, as this

corresponds to a rescaling of the coordinates). For the dilaton we have

φ = − 9k

9k2 − 16
logF1 +

9k

9k2 − 16
logF2, (2.46)

moreover the dilaton equation (2.6) requires to take E0 = 0 in (2.42), i.e.

E1 + E2 +
2(α1)2

3
= 0, (2.47)

with E1 < 0, E2 > 0 and the value of E1 is bounded as |E1| = E2 + 2(α1)2

3 .

Then the functions F1 and F2 in (2.43)–(2.46) are given by

F1 =

√∣∣∣∣ C1

2E1

∣∣∣∣ sinh(µ1 |u− u01|), µ1 =

√∣∣∣∣3E1

2

(
k2 − 16

9

)∣∣∣∣, (2.48)

F2 =

√∣∣∣∣ C2

2E2

∣∣∣∣ sinh(µ2 |u− u02|), µ2 =

√√√√∣∣∣∣∣3E2

2

((
16

9

)2 1

k2
− 16

9

)∣∣∣∣∣, (2.49)

where 0 < k < 4/3, C1 and C2 are given by (2.2)–(2.3). The generic form of the metric

that solves EOM following from (2.1) reads

ds2 = F
8

9k2−16

1 F
9k2

2(16−9k2)

2

(
−e2α1udt2 + e−

2α1

3
ud~y 2

)
+ F

32
9k2−16

1 F
18k2

16−9k2

2 du2,

(2.50)

where ~y = (y1, y2, y3).

The dilaton potential evaluated on the solution becomes

V = C1e
2kφ + C2e

32φ/(9k) = C1

(
F2

F1

) 18k2

9k216

+ C2

(
F2

F1

) 32
9k2−16

. (2.51)

We note that we have two more solutions for our choice of the potential (2.2) with C1 < 0

and C2 > 0 governed by F1 and F2 from the second and third branches of (2.33). The

solutions differ by the range of integrating constants, i.e. for E1 > 0 and E2 < 0 (opposite

signes to (2.48)–(2.49)), we have

F1 =

√∣∣∣∣ C1

2E1

∣∣∣∣ sin(µ1 |u− u01|), µ1 =

√∣∣∣∣3E1

2
(k2 − 16

9
)

∣∣∣∣, (2.52)

F2 =

√∣∣∣∣ C2

2E2

∣∣∣∣ sin(µ2 |u− u02|), µ2 =

√√√√∣∣∣∣∣3E2

2

((
16

9

)2 1

k2
− 16

9

)∣∣∣∣∣, (2.53)

while taking E1 = E2 = 0 one has

F1 =

√
3

4

(
k2 − 16

9

)
C1(u− u01), F2 =

√√√√3

4

((
16

9k

)2

− 16

9

)
C2(u− u02). (2.54)
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In the forth line of (2.33) we observe cosh-solutions for the functions F1 and F2

F1 =

√∣∣∣∣ C1

2E1

∣∣∣∣ cosh(µ1 |u− u01|), µ1 =

√∣∣∣∣3E1

2
(k2 − 16

9
)

∣∣∣∣, (2.55)

F2 =

√∣∣∣∣ C2

2E2

∣∣∣∣ cosh(µ2 |u− u02|), µ2 =

√√√√∣∣∣∣∣3E2

2

((
16

9

)2 1

k2
− 16

9

)∣∣∣∣∣, (2.56)

that corresponds to the dilaton potential with C1 > 0, C2 < 0 and integration constants

E1 < 0, E2 > 0.

2.5 Solutions as RG flows

Let’s briefly discuss the gravity solutions as holographic RG flows. It is useful to come to

so-called domain wall coordinates. In this coordinates a general form of the non-vacuum

solutions is

ds2 =
dw2

f(w)
+ e2A(w)

(
−f(w)dt2 + δijdx

idxj
)
, (2.57)

which covers the vacuum case with f(w) = 1. Both temperature and vacuum solutions

are characterized by the scale factor eA(w), that measures the field theory energy scale, the

blackening function f(w) and by a scalar field profile φ(w)

λ = eφ, (2.58)

which is interpreted as the running coupling.

If we define

X =
1

3λ

dλ

dA
(2.59)

Y (φ) =
1

4

g′

A′
, g = log f, (2.60)

we get the system of first order differential equations

dX

dφ
= −4

3

(
1−X2 + Y

)(
1 +

3

8X

d log V

dφ

)
, (2.61)

dY

dφ
= −4

3

(
1−X2 + Y

) Y
X
. (2.62)

For the vacuum case we get

dX

dφ
= −4

3

(
1−X2

)(
1 +

3

8X

d log V

dφ

)
. (2.63)
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3 Vacuum solutions

3.1 The metric and the dilaton for vacuum exact solutions

The vacuum solutions are those that preserve the Poincaré invariance at the boundary. As

can be seen from (2.50), this requires that α1 = α2 = 0, so in this case the two Liouville

energies have to be:

|E1| = |E2|, (3.1)

with the opposite signs E1 < 0, E2 > 0.

Owing to (3.1) the metric (2.50) takes the form

ds2 = F
8

9k2−16

1 F
9k2

2(16−9k2)

2 (−dt2 + d~y 2) + F
32

9k2−16

1 F
18k2

16−9k2

2 du2 , (3.2)

and the dilaton is given by

φ =
9k

9k2 − 16
log

(√
C2

|C1|
sinh(µ2 |u− u02|)
sinh(µ1 |u− u01|)

)
. (3.3)

In the vacuum case, due to (3.1) the following relation holds:

µ2

µ1
=

4

3k
> 1 . (3.4)

From the form of the functions F1 and F2 given by (2.48)–(2.49) we can see that the

solution will have coordinate singularities at the points u01, u02. We have to consider three

coordinate charts. Let us take u02 < u01. Then the charts are

3-branch solution

left: u < u02 (3.5)

middle: u02 < u < u01 (3.6)

right: u > u01 (3.7)

The degenerate case with u01 = u02 = u0 requires only two charts:

2-branch solution

left: u < u0 (3.8)

right: u > u0. (3.9)

In figure 2 we plot the solutions for the dilaton φ (3.3) for each choice of the coordi-

nates (3.5)–(3.7).

From figure 2 we see that for u→ u01±ε the dilaton tends to −∞, while for u→ u02±ε
the dilaton asymptotes to +∞. It can be verified by direct calculations.

– 12 –
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ϕ
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ϕ
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ϕ, k=0.4

ϕ, k=1

ϕ, k=1.2

Figure 2. The dilaton solutions (3.3) as functions of u, separately for each type of the solutions:

A) the dilaton for u < u02, u02 = 0, B) the dilaton for u02 < u < u01, u01 = 1, u02 = 0, C) the

dilaton for u > u01, u01 = 1. For all E1 = E2 = −1, C1 = −C2 = −1, k = 0.4, 1, 1.2.

3.2 Asymptotics of the metric and the dilaton

We present here the asymptotics of the dilaton (3.3) and the metric (3.2) with (3.5)–(3.7)

near the boundaries.

• The left solution with u < u02

– at u→ −∞:

ds2 ∼ z2/3
(
−dt2 + dy2

1 + dy2
2 + dy2

3 + dz2
)
, (3.10)

φ ∼ 9k

16− 9k2
(µ2 − µ1)u ∼ log z → −∞, (3.11)

where we use a new coordinate z ∼ 4+3k
3µ1

e
3µ1u
4+3k . In appendix A.2 the scalar

curvature of the left solution for both limits is presented. For u → −∞ the

scalar curvature of the left solution (A.19) tends to +∞.

– at u→ u02 − ε:

ds2 ∼ z
18k2

64−9k2
(
−dt2 + dy2

1 + dy2
2 + dy2

3 + dz2
)
, (3.12)

φ ∼ − 36k

64− 9k2
log z → +∞ , (3.13)

with the radial coordinate defined by

z ∼ 64− 9k2

4(16− 9k2)
(u− u02)

64−9k2

4(16−9k2) . (3.14)

From the relation for the scalar curvature (A.21) with u → u02 − ε it can be

seen that the solution has a non-removable singularity at the point u02.

• The middle solution with u02 < u < u01

– at u → u02 + ε the asymptotics of the dilaton and the metric are the same as

in (3.12)–(3.13). As in the case of the left solution, one can see from the scalar

curvature (A.21) that the middle solution has also a singularity at the point u02;

– 13 –
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– at u→ u01 − ε:

ds2 ∼ z
8

9k2−4
(
−dt2 + dy2

1 + dy2
2 + dy2

3 + dz2
)
, (3.15)

φ ∼ 9k

4− 9k2
log z → −∞, (3.16)

where the conformal coordinate is

z ∼ 16− 9k2

9k2 − 4
(u− u01)

4−9k2

16−9k2 . (3.17)

Notice that as u → u01, the conformal coordinate z → 0 if 0 < k < 2/3 and

z → ∞ if 2/3 < k < 4/3. These asymptotics are the same as for the solutions

in a single exponential potential [9]. It is worth nothing the scalar curvature of

the middle solution (A.23) has a regular behaviour at u01.

• The right solution with u > u01

– at u→ u01 + ε the asymptotics are as in (3.15)–(3.16).

– at u→ +∞:

ds2 ∼ z2/3
(
−dt2 + dy2

1 + dy2
2 + dy2

3 + dz2
)
, (3.18)

φ ∼ log z → −∞, (3.19)

where z is defined by z ∼ −4+3k
3µ1

e−
3µ1u
4+3k . The asymptotics are the same as

in (3.10)–(3.11). Even though the dilaton goes to −∞, these are different than

the asymptotics for a single exponential. The scalar curvature (A.25) goes to

+∞ with u→ +∞.

Now let us turn the discussion to the dilaton potential, that can be written on solu-

tions as

V = C1

(
F2

F1

) 18k2

9k2−16

+ C2

(
F2

F1

) 32
9k2−16

. (3.20)

In figure 3 we plot the dilaton potential on the solutions for φ. From figure 3C one

can see that for the solutions defined for u > u01 there is a turning point Vs = V (φ) with

φ = φs, where the potential stops and goes back to zero.

One can find the stop points of the potentials analytically. The stop point us can be

calculated as follows. The dilaton should obey

φ′ = 0, (3.21)

this gives rise to

F ′1
F1

=
F ′2
F2

(3.22)

– 14 –
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Figure 3. The dilaton potential plotted on solutions for φ. A) The potential in the left-solution

varies from V (φ1) = 0 at φ1 = −∞, reaches its minimum and then goes to V (φ2) = +∞ at

φ2(u02 − ε) = +∞ (thick lines). B) The potential on the middle solution varies from V (φ2) = +∞
at φ2 = φ(u02 + ε) = +∞ then reaches the minimal value Vmin < 0 and goes to V (φ1) = 0

at φ1 = φ(u01 − ε) = −∞. C) The potential of the right solution varies from V (φ1) = 0 with

φ1 = φ(u01 + ε) = −∞ to Vs < 0, Vs = V (φ) at the point φ = φs. When φs goes back to −∞ the

potential goes from Vs = V (φs) back to zero.

and we get
tanh |µ1(us − u01)|
tanh |µ2(us − u02)|

=
µ1

µ2
. (3.23)

Note, that the value of the potential at the turning point Vs = V (φs) (where φs =

φ(us)) doesn’t coincide with the extremal point of the potential. The extremal point of

V (φ) can also be computed analytically. Using

V ′φ = 2k1C1e
2k1φ + 2k2C2e

2k2φ, (3.24)

and taking into account that C1C2 < 0, we can find

φc =
9k

(16− 9k2)
log

3k

4
+

9k

2(16− 9k2)
log

∣∣∣∣C1

C2

∣∣∣∣ . (3.25)

We show the behaviour of the potential as a function of φ and the dilaton as a function of

u on the same plot in figure 4. In this picture we draw the dependences for all solutions.

3.2.1 Special case u01 = u02, solutions with AdS boundary

Let us see the features of the solution given by (3.2)–(3.3) with (3.9) and u01 = u02 = u0.

In figure 5 the behavior of the dilaton (3.3) with u01 = u02 = u0 is shown. From this

picture one can see that the dilaton tends to −∞ as u→ ±∞.

As for the previous solutions we present the asymptotics in the conformal coordinates.

• In the limit with u→ ±∞

ds2 ∼ z2/3(−dt2 + dy2
1 + dy2

2 + dy2
3 + dz2), (3.26)

φ ∼ 9k

9k2 − 16
(µ2 − µ1)u ∼ log z → −∞, (3.27)
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Figure 4. The dilaton potential V = V (φ) on the vacuum solutions φ = φ(u) with (3.5)–(3.7) and

plots that indicate which values of u correspond to given φ, i.e. u = u(φ). The function u(φ) differs

for each branch of the solutions, and moreover this function is double-valued at the right branch.

The different values of u corresponding to the same φ are indicated by points at the vertical lines.

-6 -4 -2 2 4 6 u

-2.0

-1.5

-1.0

-0.5

ϕ

ϕ, k=0.4

ϕasymp, k=0.4

ϕ, k=1

ϕasymp, k=1

ϕ, k=1.2

ϕasymp, k=1.2

(A)
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-0.2

-0.1

0.1

V (ϕ)

(B)

Figure 5. A) The behaviour of the dilaton (solid lines) and its asymptotics at infinity (dashed

lines) for u01 = u02 = 0, C1 = −C2 = −1, E1 = −E2 = −1 and different values of k. From bottom

to top k = 0.4, 1, 1.2. B) The dilaton potential as a function of φ for u > 0.
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where the conformal radial coordinate is given by z ∼ ∓4+3k
3µ1

e∓
3µ1u
4+3k . So we come to

the same asymptotics as for the left (3.10) and right (3.18) solutions with u → ±∞
for the 3-branch case. The scalar curvature has also a common behaviour with the

right and left solutions, namely it goes to infinity (A.29) with u→ +∞.

• For u→ u0 one gets has the following form of the metric (3.2)

ds2 ∼ 1

z2
(−dt2 + dy2

1 + dy2
2 + dy2

3 + dz2), (3.28)

where the conformal “radial” coordinate is defined as z = 4(u − u0)1/4 and z → 0

as u → u0. In (3.28) one can easily recognize the 5d AdS metric supported by the

constant dilaton

φ|u→u0 ∼
9k

(16− 9k2)
log

3k

4
+

9k

2(16− 9k2)
log

∣∣∣∣C1

C2

∣∣∣∣ , (3.29)

which coincides with the minimum of the potential (3.25). As expected the scalar

curvature of this solution with u→ u0 has a constant value (A.28).

We note that the figure 5 is an agreement with the calculations of the asymptotics

for the dilaton. The potential of the dilaton as a function of φ with u01 = u02 = u0 is

presented in figure 5B. From this plot we observe the existence of the turning point of the

two-branch solution. The equation for the stop point (3.23) in this case becomes

tanh(µ1 (us − u0))

tanh(µ2 (us − u0))
=
µ1

µ2
, (3.30)

and has a solution

us = u0. (3.31)

As already observed, in this case we find that the stop point coincides with the extremal

point of the potential, φs = φc = φ(u0).

3.3 RG flow for vacuum solutions

3.3.1 Details of RG flow for vacuum solutions

The domain wall form (2.57) of the vacuum solutions looks

ds2 = e2A
[
− dt2 + dy2

1 + dy2
2 + dy2

3

]
+ dw2. (3.32)

To come to (3.32) we use the change of variables for (3.2)–(3.3)

dw = F
16

9k2−16

1 F
9k2

16−9k2

2 du. (3.33)

We can represent the scale factor of the domain wall (3.32) as follows

A =
4

9k2 − 16
logF1 +

9k2

4(16− 9k2)
logF2, (3.34)
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Figure 6. The behaviour of the X-function with the dependence on the dilaton plotted using the

solutions for A and φ: A) the left branch with u02 > u, B) the middle branch u02 < u < u01; C)

the right branch u > u01. For all plots u01 = 0, u02 = −1, k = 1, C1 = −2, C2 = 2, different curves

on the same plot correspond to the different values of |E1| = |E2|, labeled as E on the legends.

so the energy scale A is

A ≡ eA = F
4

9k2−16

1 F
9k2

4(16−9k2)

2 . (3.35)

The running coupling is defined through the dilaton (3.3) reads

λ =

(
F2

F1

) 9k
9k2−16

. (3.36)

The function X (2.59) is represented as follows

X =
1

3

(
F2

F1

) 9k
16−9k2 λ′

A′
, (3.37)

with λ given by (3.36), A — by (3.34). It is useful to explore the evolution of the rescaled

β-function X (3.37) as a function of log of the running coupling (3.36), which is the dilaton

φ. In figure 6 we present the parametric plots of the behaviour of X (3.37) using solutions

for φ (2.46) and A (3.34) with the dependence on the parameter u (3.5)–(3.7). In these

plots we fix the shape of the potential putting C1 = −C2 = −2 and k = 1 while we vary

the constants |E1| = |E2| (labeled as E in figure 6). From picture 6A and 6C we see that

the holographic β-functions at zero temperature constructed on the left u < u02 and right

solutions u > u01 can take both negative and positive values. As for the case 6B, which

corresponds to the middle solution, X is always negative.

It is also of our interest to see the function X(φ) plotted on the solutions with u01 =

u02 = u0, particularly for u0 = 0. In figure 7 we show the function X(φ) on the dilaton

solution (3.3) with u01 = u02. We see that the behaviour of the function X(φ) is the same

for all values of E2. From figures 6–7 we see that X are regular except those plotted on

the left solutions on figure 6A at some points φs where X(φs) takes an infinite value. From
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Figure 7. The X(φ) function for the dilaton solution with u01 = u02 = 0, the potential fixed as

C1 = −2, C2 = 2, k = 1. For all range of values of |E1| = |E2|, labeled as E on the legend, the

curves of X coincide.

eq. (3.37) with α1 = 0 one can see that X is infinite with A′ = 0, i.e.

9k2F
′
2

F2
− 16

F ′1
F1

= 0. (3.38)

Eq. (3.38) defines the singular point us, which is related to φs. The singular point φs
coincides with the point where A′ = 0, and its position depends on E, k, u01 and u02, see

figure 8A. From this picture we see that for the left solution the dilaton varies from −∞
to a special value φs, the scale factor is non-monotonic function increases, but after the

dilaton passes this special value φs, the scale factor starts to decrease. From figure 8B

we observe that the scale factor A has a monotonic behaviour, decreasing with respect to

dilaton running from −∞ to +∞. Figure 8C it is demonstrated by orange curves that the

scale factor of the right solution decreases from +∞ to −∞ for all values of the dilaton,

which runs from −∞ to some constant value and then goes back to −∞. We also present

that the behavior of the scale factor A on φ for the solution with u01 = u02 = 0 by the

brown curve in figure 8C. We see that the scale factor for this solution starts to decrease

from +∞ with some constant value of the dilaton, then, passing some value of A, both the

scale factor and the dilaton tend to −∞.

In the section 2.5 it was already said that the system (2.61)–(2.62) on the vacuum

solutions reduces to eq. (2.63), which is quite simple and one can treat it in the general

form. We remind that the dilaton potential is given by (2.2) and in the cases presented at

the plots below

V = −2e2kφ + 2e
32
9k
φ, (3.39)

with k = k1 and k2 = 16
9k1

(a constraint from the solution) and C1 = −2, C2 = 2. The

values of the dilaton coupling constant have the following restriction 0 < k < 4/3.

Taking into account (3.39) we have

d log V

dφ
=
−2ke2kφ + 32

9ke
32
9k
φ

−e2kφ + e
32
9k
φ

. (3.40)

The solution to (2.63) with (3.39)–(3.40) is represented in figure 9 using StreamPlot. On

this figure we observe all possible solutions for X (blue curves) to our model with the
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Figure 8. The behaviour of A as a function of φ for the vacuum solutions, we fix values of u01 = 0

and u02 = −1 and varying |E1| = |E2|, denoted as E: A) the left solutions, B) the middle solutions,

C) the right solutions by orange curves; the solution with u01 = u02 and E = 0.01 by the brown

curve.

potential (3.39). We also impose figures 6 and 7 on figure 9A and see that they can

partially cover the plot. In figure 9A the red lines correspond to the left solution, see

figure 6A, the green lines are those from the middle solution, see figure 6B, the orange ones

correspond to the right solution, see figure 6C. In figure 9A we observe that the function

X corresponding to the right solution (the orange curves) interpolates between Xc2 and

1. The X for the middle solution (the green curves) interpolates between Xc1 and Xc2

in figure 9. The dark red curves start at 1 and go to +∞ as φ → φs − 0, some of these

lines have local minimum and are located very close to the brown curve corresponding to

the vacuum flow for the two branch solution u01 = u02. The flow with local maximum

in figure 9A corresponds to our solutions with small difference between u01 and u02. The

darker red lines in the right bottom part of 9A start at Xc1 and go to −∞ when φ→ φs+0.

For the fixed form of the potential the point φs is defined by values of |E1| = |E2| = E,

u01, u02, i.e. φs = φs(E, u01, u02).

We see that in figure 9A some parts of the RG flow (the stream at the left bottom

part as well as the stream at the right upper part that interpolates between −1 and 1) are

not covered by our vacuum solutions (2.48), (2.49). However, it was already pointed in

section 2.3 that analytic solutions for A and φ can be governed by F1 and F2 that are sin- or

linear functions, namely (2.52)–(2.53) and (2.54). Since the equation (2.63) doesn’t know

about our choice of the solutions and we see on the plot all possible solutions, and the curves

of the dependence X(φ) on φ built on (2.52)–(2.54) should appear on the plot. In figure 9B

we present the stream of (2.63) by blue lines, X(φ) on φ plotted using (2.52)–(2.53) by grey

lines and X(φ) related to (2.54) by the dark red dashed lines, correspondingly. We see that

these lines partially fit the solutions to equation (2.63). We show separately the behaviour

of X(φ) with (2.54) in figure 9C. From figures 9A and 9B we see that X(φ) corresponding to

the linear solutions can be considered as a boundary between X(φ) corresponding to “sin”-

solutions and X(φ) goverened by the left sinh-solutions (i.e. sinh-solutions with u < u02).

However, we still observe in figures 9B and 9C that some regions of the figure are not

covered. If we look at the equation (2.63) it is evidently that it is invariant under the
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Figure 9. The plots show how the solutions X to (2.63) obtained numerically as stream plots can

be recovered by the explicit solutions given by eqs. (2.48), (2.49), (2.52), (2.53) and (2.55). In all

plots, the blue lines represent the stream lines of the solutions of (2.63) for C1 = −C2 = −2 and

k = 1. The explicit solutions are represented by the colored lines. A) The orange, green and dark

red curves show X = X(φ) on the right, middle and the left solutions, respectively, of (2.48), (2.49).

We see that solutions on left solutions have jumps at some values of u indicated by the black dashed

lines. B) The grey curves show X = X(φ) built on the analytic solutions with sin-formula (2.52)–

(2.53), the red dashed lines show X = X(φ), given by the “linear”-formula (2.54). C) Separately,

the dark red dashed lines show X = X(φ) governed by “linear”-functions (2.54). D) The cyan

lines present the behaviour of X(φ) governed by cosh-functions (2.55)–(2.56). For all plots different

thickness of curves corresponds to different values of |E1| = |E2|.
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Figure 10. The behaviour of X(φ) near the point P plotted using exact vacuum solutions and the

stream of eq. (2.63) (blue lines). The legends are the same as in figure 9.

change of the sign of the potential (3.39), i.e. V → −V . So the stream of eq. (2.63) should

include also solutions to equations of motions with −V . In section 2.3 we see that, indeed,

these are solutions with F1 and F2 governed by cosh-functions (2.55)–(2.56).

In figure 9D we draw X(φ) as a solution to (2.63) (blue lines) and with the help of

the analytical solution related to (2.55)–(2.56) (the curves of other colors), that perfectly

complete the necessary part of the stream.

Let’s look at figures 9A and 9B more closely. On these pictures we see a special point

P , which is a stationary point of our potential V ′(φ) = 0. We zoom the scale near the

point P in figure 10 to see the behaviour of the vacuum X(φ) functions near P in details.

As in the previous figures we show the stream of eq. (2.63) by blue curves and by the other

color curves the functions X(φ) plotted using analytic solutions for A and φ.

It worth to be noted that in figures 9 and 10 the arrows always show the direction of

decreasing scale factor A, see figure 8, that corresponds to the flow from UV fixed point

to IR.

3.3.2 The running coupling λ = eφ on the energy scale

It is important to know the behaviour of the running coupling λ = eφ on the energy scale

A= expA. One can trace this using the analytic solutions for φ and A. For the vacuum

case both of them depend on the constant of integration E1, E2, u01, u02 and on the shape

of the potential, which is defined by C1, C2 and k.

Let us see how the energy scale A depends on u. In in figure 11A we observe that A is

non-monotonic function for the left solutions. First it increases, but near u02 it decreases

that can be clearly seen in the zoomed picture figure 11B. This non-monotonic behaviour is

also read from figure 8 for the behaviour of the energy A on the dilaton for the left branch.

In figure 12 the dependence of the coupling constant λ = expφ on the scale A is

presented for the zero-temperature solutions with (3.5)–(3.7) and figure 12C with (3.9).
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Figure 11. The behaviour of the energy scale A at all 3 branches (the darker red curves for the

left solution, the green ones for the middle and the orange ones for the right solution) and its zoom

near u02 = 0. For all plots k = 1, C1 = −2, C2 = 2, different curves on the same plot correspond

to the different values of |E1| = |E2|, labeled as E, different u01 and u02.

We recall that on the left and middle solutions the dilaton interpolates between ±∞
and for the right solution it starts at −∞ goes to the maximal value φmax and then goes

back to −∞ (we have observed this behaviour already in the previous sections). In spite

of that the dilaton has the similar behaviour on the left and middle solutions, the scale

factor has rather different behaviour on these solutions, namely, on the middle solution

the scale factor monotonically decreases from large positive values to zero as the dilaton

runs from +∞ to −∞. The right solution is a bouncing solution with the decreasing scale

factor. These behaviours of the scale factors and the dilaton are reflected in the plots for

the dependence of the running coupling on the energy scale.

We can summarize the results for the running coupling in the following form

• as expected for solutions with u < u02, see figure 12A, where the dilaton tends to

−∞ in the IR region and we have IR-free theory, while in the UV region the effective

coupling λ→ +∞.

• In figure 12B we see that the dependence of λ on A plotted on the middle solutions

with u02 < u < u01 mimics the QCD behavior.

• The running coupling plotted as a function of the energy scale at figure 12C for the

solutions with (3.7) shows that it is UV free as well as IR free theory, i.e. the running

coupling has the form of the hill.
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Figure 12. The dependence of the coupling constant on the energy A on the dilaton plotted using

the solutions for A and φ: A) the left branch with u02 > u, B) the middle branch u02 < u < u01;

C) the right branch u > u01. For all plots k = 1, C1 = −2, C2 = 2, different curves on the same

plot corresponds to the different values of |E1| = |E2|, labeled as E on the legends and different

u01 and u01 also indicated on the legends.

4 Non-vacuum solutions

4.1 The metric and the dilaton

The metric and the dilaton solutions to the model (2.1) in the non-vacuum case are

ds2 = F
8

9k2−16

1 F
9k2

2(16−9k2)

2

(
−e2α1udt2 + e−

2α1

3
ud~y 2

)
+ F

32
9k2−16

1 F
18k2

16−9k2

2 du2, (4.1)

φ = − 9k

9k2 − 16
logF1 +

9k

9k2 − 16
logF2, (4.2)

where the functions F1 and F2 are given by (2.48)–(2.49) as before.

Just as in the vacuum case, we need to separate the solutions in the branches (3.5)–(3.9)

with respect to values of u01 and u02. We note that the factors of α1 in the metric (4.1) break

the Poincaré symmetry. However, below we will see that the presence of this parameter

allows us to define a horizon and to construct black branes. We also recall that E1 and E2

must obey the constraint

E1 + E2 +
2

3
(α1)2 = 0. (4.3)

The condition (4.3) allows to tune parameters thus we have two additional regimes

1) µ1 = µ2, 2) µ1 > µ2, (4.4)

with

1) E2 =
6k2(α1)2

16− 9k2
, 2) E2 <

6k2(α1)2

16− 9k2
, (4.5)

respectively.

This leads to new dynamics of the dilaton (4.2). Particularly, the dilaton can be

constant, that is inapplicable for the vacuum case where it always holds µ2 = 4
3kµ1.
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Figure 13. The dilaton for the 3-branch solutions with u01 = 1, u02 = 0 and C1 = −1, C2 = 1

in the non-vacuum case: A) α1 = −0.1, E2 = 1, and different k; B) E2 = 0.0007 for k = 0.4,

E2 = 0.009 for k = 1, E2 = 0.028 for k = 1.2; α1 = −0.1 for all; C) solid lines correspond to

α1 = −1 and dashed lines to α1 = 1, k = 0.4, 1, 1.2, E2 = 1 for all. The dashed and solid lines

coincide.
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Figure 14. The dilaton for the 2-branch solutions C1 = −1, C2 = 1 and u01 = u02 = 0 in the

non-vacuum case: A) α1 = −0.1, E2 = 1 and different k, B) E2 = 0.0007 for k = 0.4, E2 = 0.009

for k = 1, E2 = 0.028 for k = 1.2; α1 = −0.1 for all; C) solid lines correspond to α1 = −1 and

dashed lines to α1 = 1, k = 0.4, 1, 1.2, E2 = 1 for all. The dashed and solid lines coincide.

We illustrate the behaviour of the dilaton solution for the non-vacuum case in figure 13

for branches (3.5)–(3.7) with u01 6= u02. As it was expected the condition (4.3) changes

the behaviour of the dilaton. In figure 13B we plot the dilaton keeping the same shape of

the potential and the value of α1 as for figure 13A, but the values of the parameter E2

are changed with respect to (4.5). In figure 13C we again save the form of the potential,

use the same value of E2 as in 13A, take bigger α1 and show that the opposite sign of this

parameter doesn’t change the asymptotics of the dilaton. From figure 13C one observes

that for u → ±∞ φ can tend to +∞, while for the vacuum case φ → −∞ as u → ±∞.

In figure 13C we also see the behaviour of the dilaton doesn’t depend on the sign of the

parameter α.

In figure 14 we plot the dependences of the dilaton solution with u01 = u02 = u0 on

u (3.9). As for the 3-branch solutions from figure 14B we see that the dilaton can be

constant with the appropriate choice of parameters agreed with (4.3) and can change its

asymptotics from −∞ to +∞ at u→ ±∞, see figure 14C.

In figure 15 we draw the potential V as a function of φ and the dependence u on

φ. The functions u(φ) are different on the different branches. The different values of u

corresponding to the same φ are indicated by points at the vertical lines. We see that
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Figure 15. The dilaton potential V = V (φ) on non-vacuum solutions φ = φ(u) with (3.5)–(3.7)

and plots that indicate which values of u correspond to given φ, i.e. u = u(φ).

the function u(φ) for |α1| < α1
cr is double-valued on the right branch, and for |α1| > α1

cr

it is double-valued on the left branch, and for |α1| = α1
cr the both functions one-to-one

functions for all branches, and φ < φ′0 for the right branch and φ > φ′′0 at the left branch.

The dilaton potential which is plotted in figure 15 on the right solutions for the dilaton

is bounded above like for the vacuum right solutions.

4.2 The black brane solutions

Now we are going to find a black brane representation of the solution (4.1)–(4.2) defined

for (3.7) with u01 6= u02. The metric (4.1) can be rewritten in the following form

ds2 = C X (u)eκu−
2
3
α1u
(
−e

8
3
α1udt2 + d~y2 + X (u)3C3e(3κ+ 2

3
α1)udu2

)
, (4.6)

with the constant C given by

C ≡

(
1

2

√∣∣∣∣ C1

2E1

∣∣∣∣e−µ1u01

) 8
9k2−16

(
1

2

√∣∣∣∣ C2

2E2

∣∣∣∣e−µ2u02

) 9k2

2(16−9k2)

, (4.7)

the function X (u) written as

X (u) = (1− e−2µ1(u−u01))
− 8

16−9k2 (1− e−2µ2(u−u02))
9k2

2(16−9k2) (4.8)

and the exponent κ given by

κ ≡ 8√
6 (16− 9k2)

(
−
√
E2 +

2

3
(α1)2 +

3

4
k
√
E2

)
, (4.9)
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where we took into account the relations for µ1 and µ2 (2.48)–(2.49). We see that for

0 < k < 4/3 one has κ < 0.

To have the black brane solutions we need to remove a conical singularity in the

metric (4.6) (since with α1 < 0 we get zero in front of dt2). Taking

e
4
3
α1u = ρ, t = iτ, (4.10)

so the metric reads

ds2 ∼
u→∞

C4(
4
3α

1
)2X eκu− 2

3
α1u

(
1

C3

(
4

3
α1

)2

ρ2dτ2 +
1

C3

(
4

3
α1

)2

d~y2 + X 3e3(κ− 2
3
α1)udρ2

)
,

(4.11)

where X (u)→ 1 for ρ→ 0 as u→∞.

Therefore, there is no conic singularity if the following constraint is satisfied

κ− 2

3
α1 = 0. (4.12)

We also fix the periodicity

4

3C3/2
α1β = 2π. (4.13)

Plugging (4.9) in (4.12) we come to the condition to the parameters

E1 = − 32(α1)2

3(16− 9k2)
, E2 =

6k2(α1)2

16− 9k2
, (4.14)

that corresponds to µ1 = µ2 = µ with

µ = −4

3
α1. (4.15)

Therefore, we get the black brane, if (4.12) is satisfied, and the temperature is

1

β
= T =

2

3π

|α1|
C3/2

. (4.16)

Here C is taken with the constraint (4.15), see (4.19) below.

Under the condition (4.12) the black brane metric has the form

ds2 = C X
(
− e−2µudt2 + d~y2

)
+ C4X 4e−2µudu2, (4.17)

where C and X are given by

X = (1− e−2µu)
− 8

16−9k2 (1− e−2µ(u−u02))
9k2

2(16−9k2) , (4.18)

C ≡ 2
16

(16−9k2) (3µ)
1
2 |C1|

8
2(9k2−16)

(
C2

k
e−2µu02

) 9k2

4(16−9k2)

(16− 9k2)−
1
4 (4.19)
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with the horizon located at u = +∞ and the near-horizon expansion of X (u) is

X ≈ 1 + e−2µu

(
16− 9k2e2µu02

2(16− 9k2)

)
. (4.20)

We note that the boundary is at u01 and we fixed u01 = 0 to have f = 1 at this boundary.

One can check that null geodesics we have the correct behaviour. Null geodesics imply

ds2 = 0, (4.21)

i.e. for the light moving in the radial direction

dt

du
= ±e3A+ 3

4
µ, (4.22)

or

t− t0 ∼
∫ u

u0

dūe(
3
2
κ+ 3µ

4 )ūC3/2

(
1 +

3
(
16− 9k2e2µu02

)
4(16− 9k2)

e−2µū

)

=

∫ u

u0

dūC3/2 (1 + . . .) →
u→∞

∞. (4.23)

This calculation confirms that we have the horizon at u = +∞.

The scalar curvature and the Kretschmann scalar near horizon u→ +∞ are

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2
(

3(16µ1 − 9k2µ2)2

4(16− 9k2)2
− 4

3

(
α1
)2)

e
2(16µ1−9k2µ2)

16−9k2 u
, (4.24)

K =

(
4α1(9k2 − 16) + 27k2µ2 − 48µ1

)2
864(16− 9k2)4

(
C1

2E1

) 32
16−9k2

(
C2

2E2

) 18k2

9k2−16

e
4(16µ1−9k2µ2)

16−9k2 u

·
(
304(α1)2(16− 9k2)2 + 168α1(9k2 − 16)(16µ1 − 9k2µ2) + 63(16µ1 − 9k2µ2)2

)
.

(4.25)

We note that with respect to the constraint to absence of the conic singularity (4.11) both

the scalar curvature (4.24) and Kretschmann scalar (4.25) tend to zero with u→ +∞.

4.2.1 The Gubser bound

The dilaton supporting the geometry (4.17) reads

φ =
9k

9k2 − 16
log

[
4

3k

√∣∣∣∣C2

C1

∣∣∣∣sinh(µ(u− u02))

sinh(µu)

]
(4.26)

and takes the constant value near horizon

lim
u→+∞

φ =
9k

9k2 − 16

(
log

(
4

3k

√∣∣∣∣C2

C1

∣∣∣∣
)
− µu02

)
. (4.27)

Now one can check if the Gubser’s bound [22] for asymptotically non-AdS solutions holds

V (φ(uh)) < 0, (4.28)
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where in our case uh = ∞. Plugging the solutions for the dilaton at the horizon (4.27)

in (2.2) the inequality (4.28) takes the form

E2

|E1|
− 1 < 0, (4.29)

that is valid for our solution due to the constraint (4.3). The improved Gubser’s

bound (4.28) reads

V (φ(uh)) ≤ VUV, (4.30)

where VUV is the value of V (φ) at ultraviolet fixed point. Since VUV = 0 with the dilaton

φ→ −∞ at the UV point the constraint (4.30) comes to be (4.28).

In the UV limit, i.e. near u01 = 0, the solutions turns to have the asymptotics as the

Chamblin-Reall solution governed by the single exponential potential

ds2 ∼ z
8

9k2−4
(
−dt2 + d~y2 + dz2

)
, (4.31)

with the dilaton

limφu→u01+ε = − 9k

16− 9k2
log

[
4

3k

√
C2

|C1|
sinh(−µu02)

µ ε

]
. (4.32)

We note that we can construct a black brane background for the left solutions (3.5)

with u01 6= u02 assuming that the horizon is located at u = −∞, and the parameter α1 is

positive.

4.2.2 Special case u01 = u02, AdS black brane

Now we turn to the special case of the non-vacuum solutions with u01 = u02 = 0 with u > 0.

The construction of a black brane metric is the same as presented before for solutions with

u01 6= u02 with the horizon located at u = +∞. The metric (4.17) has the form

ds2 = C
(
1− e−2µu

)− 1
2
(
−e−2µudt2 + d~y 2

)
+ C4

(
1− e−2µu

)−2
e−2µudu2, (4.33)

where we took into account µ = −4
3α

1 and the constant C reads

C ≡ 2
16

(16−9k2) (3µ)
1
2

(
|C1|

) 8
2(9k2−16)

(
C2

k

) 9k2

4(16−9k2)

(16− 9k2)−
1
4 . (4.34)

Due to the constraint µ1 = µ2 and u01 = u02 the dilaton (4.2) becomes constant

φ =
9k

9k2 − 16
log

[
4

3k

√∣∣∣∣C2

C1

∣∣∣∣
]
. (4.35)

The curvature of the metric (4.33) is negative and reads

R = −5µ2

C4
. (4.36)
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Doing the change of coordinates

z = zh
(
1− e−2µu

) 1
4 , C = z−2

h , (4.37)

one gets the usual form for the 5d AdS black brane

ds2 =
1

z2

(
−f(z)dt2 + d~y 2 +

dz2

f(z)

)
, (4.38)

with

f = 1−
(
z

zh

)4

. (4.39)

For the dilaton potential we have the saturation of the Gubser’s bound (4.30)

V (φ(uh)) = VUV, (4.40)

that is in agreement with the suggestion from [22], since the solution (4.33)–(4.35) is anti-

de Sitter black brane.

One can summarize our studies on non-vacuum solutions as follows. For u→ ±∞ the

scalar curvature and the dilaton for the right and left solutions can be constant for arbitrary

value of the temperature which at the same time defines the constant E2 (4.5). However,

the left solutions have a special point u02 at which the scalar curvature has a non-removable

singularity, while the scalar curvature of the right solutions is regular at its special point

u01. Finally, from (4.29) and (4.40) we see that the dilaton potential calculated on-shell is

bounded only for the right solutions and special solutions with u01 = u02. Therefore, these

solutions can satisfy Gubser’s criterion [22].

4.3 RG flow for non-vacuum solutions

4.3.1 Details of RG flow for vacuum solutions

In section 4 we showed that non-zero temperature solutions are characterized by the pa-

rameter α1 6= 0. The scale factor of the domain wall for the finite temperature case (2.57) is

A =
1

2
log(C) +

1

2
log(X ) (4.41)

and the energy scale A reads

A ≡ eA = C
1
2X

1
2 , (4.42)

we note that to come to the domain wall form we use the change of the coordinate

dw = C2X (u)2e
8
3
α1udu. (4.43)

The finite temperature case is described by the additional variable Y defined through the

blackening function (2.60). Here we deal with the system (2.61)–(2.62), which seems to be

rather complicated comparing to the zero-T case and one has to apply analytic solutions

for φ and A with the coordinate u > u01 to show the RG flow.
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To see the behaviour of the RG flow at finite temperature it is useful to plot X and Y

as functions of φ for the analytical solution. We remind the horizon of the black brane at

u→ +∞ in this case is defined for α1 < 0. In figure 16 we draw X and Y as functions of φ

for different values of the negative α1. From figure 16A we see that the behaviour of X is

changed by α1, so X becomes to be negative in the finite-T case. As for the Y function one

can see from figure 16B that it is positive. In figure 16A we observe that the X function

has stop points at some values of φ. These values of φ correspond to the asymptotics of

the dilaton at the horizon φh (4.27). One can show that X given by

X =
1

3

φ′

A′
(4.44)

takes a constant value at the horizon with u → ∞ as well and this can be observed as a

stop point. For this let us trace the dependence of φ and A on u with u→ +∞

lim
u→+∞

φ =
9k

9k2 − 16

(
e−2µu − e−2µ(u−u02)

)
, (4.45)

then we have

lim
u→+∞

φ′ =
−18kµ

9k2 − 16
e−2µu

(
1− e2µu02

)
. (4.46)

The scale factor for the black brane is given by (4.41) and have the following asymptotics

at the horizon

lim
u→+∞

A =
1

2
e−2µu

(
16− 9k2e2µu02

2(16− 9k2)

)
+

1

2
log(C), (4.47)

so we have

lim
u→+∞

A ′ = −µ
(

16− 9k2e2µu02

2(16− 9k2)

)
e−2µu. (4.48)

Then the value of X at the horizon is

lim
u→+∞

X = −12k
e−2µu02 − 1

16e−2µu02 − 9k2
. (4.49)

We see that

X → 0, (4.50)

as µ→ 0.

As for the Y -function (2.60), it takes infinite values at the horizon that can be read

from figure 16B.

In figure 17 we present the dependences of X and Y on the energy scale A. In figure 17A

we again observe stop points of X at some A (4.47) with u→ +∞.
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Figure 16. A) The dependence of the scalar function X on φ. B) The dependence of the scalar

function Y on φ. For both plots α1 < 0, u > u01, C1 = −C2 = −2, k = 1, u01 = 0, u02 = −1.
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Figure 17. The RG flows for the right solution with α1 < 0. A) The flow in the (A,X) plane. B)

The flow in the (A,Y) plane. For all C1 = −C2 = −2, k = 1, u01 = 0, u02 = −1.

4.3.2 The running coupling λ = eφ on the energy scale for T 6= 0 flow

Now let us look what happens with the behaviour of the running coupling on the energy

scale at finite temperature. As for the vacuum case we have the parametric dependence on

E1, E2, α1, the position of poles u01 and u02. We note that E1, E2 and k are not indepen-

dent. We have also seen before the temperature is related to the parameter α1 (4.12). As

in the previous section, section 3.3.2, to have an insight to possible behavior of the running

coupling on the constructed solutions, we start with presenting the behavior of the energy

scale A as a function of the coordinate u with (3.5)–(3.7) and then incorporated found in

section 4, see figure 13, the behavior of the dilaton as a function of u.

In figure 18 we see that A tends to some constant value at u→∞ that can be supported

by (4.47).

In figure 19 we present the parametric dependence of the running coupling λ as a

function of the energy scale A for the black brane solutions with u01 = 0, u02 = −1 and
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Figure 18. The plots show A for u01 = 0 and u02 = −1, C1 = −2, C2 = 2, k = 1 and negative α1.

The plot in the right panel zooms the area closed to zero of the left panel plot.
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Figure 19. A) The dependence of λ on the energy scale A= eA. In all cases constants that the

potential is fixed with k = 1, C1 = −2, C2 = 2 and we vary α1, u01 = 0 and u02 = −1. B) A

zoomed region of A).

different values of the parameter α1. We see that the IR dynamics is changed by α1. This

comes from the fact the dilaton can change the asymptotics from −∞ to some constant

value with (4.15) as has been explained in section 4. So we observe the increasing coupling

constant in the IR regions. For A→ +∞ the running coupling λ goes to 0 for all chosen

parameters providing the UV freedom. Or in others words, we can mimic the QCD RG

flow for negative α1.

4.4 Free energy

The free energy corresponding to the black brane solution is given by the renormalized

on-shell action. This can be computed directly, but the computation is simplified by the
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following observations. We use the domain wall coordinates here. First, the trace of the

Einstein equations gives

R =
5

3
V +

4

3
(∂φ)2, (4.51)

so that the bulk Lagrangian on-shell is

√
g

(
R− 4

3
(∂φ)2 − V

)
=

2

3
e4AV . (4.52)

The finite temperature potential equations imply that

V = −(12A′2 + 3A′′)f − 3A′f ′ , (4.53)

and from this relation one can see that the bulk term is a total derivative

Lbulk = −2
d

dw
(e4AA′f) . (4.54)

The normal vector to the cutoff surface w = ε is nw =
√
f, ni = 0. The extrinsic curvature

reads

K =
1

2
habnw∂whab =

√
f

2

(
8A′ + f ′

f

)
. (4.55)

The on-shell Einstein action with regularization

IεE = −2V3

∫ β

0
dt

∫ wh

ε
dw

d

dw
(e4AA′f)

= −2V3β(e4A(wh)A′(wh)f(wh)− e4A(ε)A′(ε)f(ε))

= 2V3βe
4A(ε)A′(ε)f(ε), (4.56)

while the Gibbons-Hawking term with regularization reads

IεGH = V3

∫ β

0
dt
fe4A

2

[
8A′ + f ′

f

]
ε

= V3βe
4A(ε)(8A′(ε)f(ε) + f ′(ε)), (4.57)

so we get
Ireg

βV3
= −e4A(6A′f + f ′)|w=ε . (4.58)

We need to evaluate it on the regular black brane solutions given by eqs. (4.17)–

(4.19), and (4.26). Taking into account the change of coordinates dw = e4Afdu, the action

becomes
Ireg

βV3
= −

(
6A′(u) +

f ′(u)

f(u)

)∣∣∣∣
u=ε

. (4.59)

The expansion of the scale factor A near u ∼ 0 reads

A ∼ − 4
16−9k2 log u+A0 +A1u+ . . . , (4.60)

with

A0 =
1

2
log C − 4

16− 9k2
log(2µ) +

9k2

4(16− 9k2)
log(1− e2µu02), (4.61)

A1 =
4µ

16− 9k2
+

9k2

2(16− 9k2)

µ

e−2µu02 − 1
. (4.62)
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Plugging (4.60) in (4.59) we obtain the regularised on-shell action

Ireg

βV3
=

24

16− 9k2

1

ε
− 6A1 + 2µ

=
1

16− 9k2

(
24

ε
+ µ

(
8− 18k2 − 27k2

e−2µu02 − 1

))
. (4.63)

The regularized on-shell is divergent and one needs to add the counterterms before removing

the cut-off.

The counterterms for the general dilaton-gravity system have been derived in [23]. For

our homogeneous solutions the only relevant term is

Ict = −8

3

∫
d4x
√
hU(φ), (4.64)

where U is any function that satisfies the equation of the zero-temperature superpotential.

We use then the superpotential appropriate for the regular solution, i.e. (see appendix C)

Ict = −8γ

3

∫
d4x
√
hekφ . (4.65)

The asymptotics of the dilaton is given by

φ ∼ 9k

16− 9k2
log u+ φ0 + φ1u+ . . . (4.66)

with

φ0 = − 9k

16− 9k2
log

(
4

3k

√
C2

C1

sinh(−µu02)

µ

)
, (4.67)

φ1 = − 9k

16− 9k2
µ coth(−µu02) . (4.68)

Using the asymptotics (4.60)–(4.62) and (4.66)–(4.68) we find

Lct = − 24

16− 9k2

(
1

ε
+ 4A1 + kφ1

)
(1− µε) = − 24

16− 9k2

1

ε
+ o(ε) . (4.69)

The renormalized action is then

Iren

βV3
=
Ireg + Ict

βV3
=

µ

16− 9k2

(
8− 18k2 − 27k2

e−2µu02 − 1

)
=

=
1

2

(
µ− 27k2

16− 9k2

√
Λ2 + µ2

)
, (4.70)

where we defined the UV scale in terms of the scale factor at the boundary, i.e. by setting

µ

Λ
= sinh(−µu02) . (4.71)
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The free energy can be computed through the renormalized on-shell action (4.70); the

difference between the free energy of the black brane solution and the free energy of the

vacuum, obtained at µ = 0, is

F ∼ −1

2

(
µ− 27k2

16− 9k2
(
√

Λ2 + µ2 − Λ)

)
. (4.72)

On the other hand one can calculate the free energy using black brane thermodynam-

ics, that involves the following relation for the free energy, the entropy density and the

temperature of the black brane

dF = −sdT. (4.73)

At the same time the black brane entropy density reads

s =
1

4

∫ √
hind dy1dy2dy3

∣∣∣
u→∞

, (4.74)

since X → 1 at the horizon we have

s =
V3

4
C

3
2 . (4.75)

Comparing (4.75) with (4.16) and taking into account the relation

µ = −4α1

3
, (4.76)

we get

s T =
V3

2π
µ. (4.77)

Integrating (4.73) we get the expression for the free energy

F = −
∫
s dT = −V3

2π

∫ µ

0

µ′

T

dT

dµ′
dµ′. (4.78)

The temperature as function of µ is

T =
2

3πQ3/2

∣∣∣∣34µ
∣∣∣∣1/4 e 27k2

4(16−9k2)
u02 µ

, (4.79)

but we have to express u02 in terms of the scale Λ, using (4.71); we get

T =

√
2

33/4πQ3/2
µ1/4e

− 27k2

4(16−9k2)
arcsinh( µΛ)

. (4.80)

Performing integration in (4.78) with T given by (4.80) we obtain for the free energy

F = −V3

8π

(
µ− 27k2

16− 9k2
(
√

Λ2 + µ2 − Λ)

)
, (4.81)

in agreement with the result from the renormalized action.

– 36 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
7

The temperature and the free energy exhibit a qualitatively different behavior depend-

ing on the value of k. In the case 0 < k < 2
3 , both are monotonic functions, so the black

brane solution exists for any temperature, and there is no phase transition, so the black

brane is thermodynamically favored over the thermal gas solution.

In the other case, for 2
3 < k < 4

3 , the temperature increases as function of µ up to a

maximum value and then decreases back to zero. The maximum is attained at

µmax

Λ
=

16− 9k2√
8(9k2 − 4)(9k2 + 8)

. (4.82)

The free energy is initally negative, but changes sign at

µcr
Λ

=
54k2(16− 9k2)

8(9k2 − 4)(9k2 + 8)
>
µmax

Λ
. (4.83)

We notice that considering u02 → 0, we get Λ→ 0 and the free energy comes to

F = −V3

8π
µ (4.84)

the dependence on the scale disappears, consistently with the fact that the solution becomes

the AdS black brane, with the constant dilaton, and there is no phase transition.

In figure 20 we present the behaviour of the free energy on the temperature for different

values of k. As we discussed above for 0 < k < 2
3 the free energy is monotonic, while for

2
3 < k < 4

3 the free energy decreases up to Tmax and then starts to increase, while the

temperature is decreasing. This phase diagram cannot be complete, as the free energy

would be discontinuous at Tmax. We do not know whether this means that the dual theory

does not make sense for this range of k, or there is some other solution that connects to

the ones that we know and restores the continuity. It is worth to notice that a similar

behaviour of the free energy was observed in [24] for black hole solutions which are the

finite temperature generalizations of the bouncing vacuum solutions.

5 Conclusion and discussion

We have presented some analytic solutions of Einstein equations coupled to a dilaton

field, at zero and non-zero temperatures, that correspond to holographic RG flows between

different fixed points. The non-trivial form of the potential allows for a rich variety of

different behaviours for the dilaton and the scale factor, corresponding to a coupling that

can run to zero or to infinity in the UV and in the IR. We mainly considered solutions

which are governed by sinh-functions. However we have two more classes of solutions for

our choice of the potential, namely the sin-class and linear class. All solutions depend on

two parameters, u01 and u02, splitting the solutions into three branches: “left”, “middle”

and “right”. Moreover, a special solution appears when u01 = u02. In the zero-temperature

case the dilaton flows from +∞ to −∞ both for the left and middle solutions. However,

the scale factor of the left solution is non-monotonic function while the scale factor of

the middle solution monotonically decreases. Correspondingly, the left vacuum solution
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Figure 20. The dependence of the free energy F on the temperature T for the different shapes of

the potential (different k, C1 = −2, C2 = 2).

does not have a holographic interpretation and the middle one is supposed to describe a

holographic RG flow that mimics QCD behaviour. The right solution at T = 0 has a

bouncing dilaton and a scale factor, that monotonically decreases, i.e. it has both IR and

UV free limits. We note that the left, middle and right solutions interpolate between the

hyperscaling violating boundaries. A special family of solutions with u01 = u02 interpolates

between an AdS boundary in the UV limit given by (3.28) and the hyperscaling violating

boundary in the IR limit. Another solution with an AdS boundary but in the IR limit (and

the hyperscaling violating boundary in the UV limit) is the one from the linear class. For

the right vacuum solution we could find its black brane analogue, which again interpolates

between the hyperscaling violating boundaries with a constant dilaton at the horizon. The

special solution with coinciding point turns to be AdS-Schwarzschild black hole with the

corresponding constant dilaton. We also showed that the finite temperature solutions can

behave very differently from the corresponding zero-temperature ones.

The next step in our program is to understand better these solutions from the point

of view of the putative dual field theory. From the phenomenological perspective, we

would like to be able to apply our model to real QCD (or Yang-Mills, since we do not

introduce quarks). As mentioned in the introduction, the model with a single exponential

has undesirable features in this respect. It corresponds to a dual theory with a beta function

that is linear in the coupling. The model studied in this paper is an improvement in this

direction, since some of the flows describe a theory that is asymptotically free in the UV,

with a scale Λ, determined by the boundary conditions of the fields, that can be thought

of as ΛQCD, and the coupling grows large in the IR.

It would be interesting to determine the spectrum of fluctuations around these so-

lutions, in particular the quasi-normal modes of the black brane solutions, and also to

extend our ansatz in order to look for analytic time dependent solutions that describe

out-of-equilibrium dynamics.

It would also be worthwile to understand if the method we used, that reduces the

Einstein equations to an integrable Toda chain, could be used for other case. In the
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model of two-exponential potentials that we used, there is a constraint (2.21)–(2.22) on

the exponents of the potential; this restricts considerably the space of parameters that we

can explore. We plan to consider extensions of the present work to different forms of the

potential. For instance, [25] considers a potential with three exponential functions, that

can appear after a reduction in the bosonic sector of gauged supergravity (a study of black

holes for a particular case of such a potential was done in [26]). Having more terms in the

potential allows us to have a richer landscape of critical points, including also de Sitter

solutions in addition to AdS and hyperscaling geometries. In general, we would like to have

a classification of all cases that can be solved with the techniques used here. One way to

approach this problem could be to reverse-engineer the dilaton potential and understand

if it can come from some dimensional reduction.

It would also be interesting to consider the coupling of a Maxwell field in the bulk and

find charged black hole solutions.
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A The curvature invariants of the background

The ansatz for the metric is given by

ds2 = −e2A(u)dt2 + e2B(u)
3∑
i=1

dy2
i + e2C(u)du2. (A.1)

The non-zero components of the Ricci tensor are

R00 = e2(A−C)
(

(Ȧ)2 + 3ȦḂ − ȦĊ + Ä
)
, (A.2)

R11 = R22 = R33 = −e2(B−C)
(
ȦḂ + 3Ḃ2 − ḂĊ + Ḃ

)
, (A.3)

R44 = −Ȧ2 − 3Ḃ2 +
(
Ȧ+ 3Ḃ

)
Ċ − Ä− 3B̈. (A.4)

The scalar curvature reads

R = −2e−2C
[
Ȧ2 + 3ȦḂ + 6(Ḃ)2 − ȦĊ − 3ḂĊ + Ä+ 3B̈

]
.

(A.5)

Thus, we have√
|g|R = −eA+3B−C

[
2(Ȧ)2 + 6ȦḂ + 12(Ḃ)2 − 2ȦĊ − 6ḂĊ + 2Ä+ 6B̈

]
. (A.6)
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To find the solutions to the model we use the gauge C = A+3B for (A.1). The generic

form of the obtained solutions is

eA = eA1eα
1u, eB = eB1e−

1
3
α1u, (A.7)

where the functions A1 = B1 and α1 is a constant, which is equal to zero for the vacuum

case. Now the scalar curvature (A.5) reads

R = −4

3

(
(α1)2 − 9Ȧ2

1 + 6Ä1

)
e−8A1 , (A.8)

that covers the vacuum case with α1 = 0

R =
(

12Ȧ2
1 − 8Ä1

)
e−8A1 . (A.9)

The Kretschmann scalar is defined as follows

K = RabcdR
abcd. (A.10)

Pluggin the metric (A.1) we have

K = 4(Ȧ4 + 3Ȧ2Ḃ2 + 6Ḃ4 + 2Ȧ2Ä+ 6Ḃ2B̈ + (Ȧ2 + 3Ḃ2)Ċ2 + Ä2 + 3B̈2

−2(Ȧ3 + 3Ḃ3 + ȦÄ+ 3ḂB̈)Ċ)e−4C . (A.11)

One can write down the Kretschmann scalar of the non-vacuum solution (α1 6= 0)

K =
8

27

(
(α1 − 3Ȧ1)2(19α1 + 42α1Ȧ1 + 63Ȧ2

1) + 36(α1 − 9Ȧ2
1)Ä1 + 54Ä2

1

)
e−16A1 .

(A.12)

Taking into account that C = 4A1 and α1 = 0 for the vacuum solution one obtains

K = 8(21Ȧ4
1 − 12Ȧ2

1Ä1 + 2Ä2
1)e−16A1 . (A.13)

A.1 The equations of motion in the harmonic gauge

The Einstein equations of motion which follow from the action with the harmonic gauge

A+ 3B = C are

e−6B
[
3B′2 + 3A′B′ − 3B′′

]
=

2

3
φ′2e−6B +

1

2
e2AV, (A.14)

e−2A−4B

[
−3B′2 − 3A′B′ +

∂2A

∂u2
+ 2B′′

]
= −2

3
φ′2e−2A−4B − 1

2
e2BV, (A.15)

3B′2 + 3B′A′ =
2

3
φ′2 − 1

2
e2A+6BV (A.16)

and the dilaton equation of motion reads

8

3
e−2A−6Bφ′′ − V ′φ = 0. (A.17)
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A.2 The scalar curvature of the vacuum solutions

Using the expression for the scalar curvature (A.9) and taking into account (2.43) and

(2.48)–(2.49) one can write

R =
(C1/2E1)

16
16−9k2 (C2/2E2)

−9k2

16−9k2

4(16−9k2)2

(
8(16−9k2)(16µ2

1−9k2µ2
2)

+128(9k2−10)µ2
1 coth(µ1(u−u01))2

−864k2µ1µ2 coth(µ1(u−u01)) coth(µ2(u−u02))

+9k2(128−45k2)µ2
2 coth(µ2(u−u02))2

)
sinh(µ1(u−u01))

32
16−9k2 sinh(µ2(u−u02))

−18k2

16−9k2 .

(A.18)

It is exemplarily to look how the scalar curvature behaves for each branch of the

solution.

• For the left solution which is defined for u < u02 we have the following limits

– u→ −∞, so (A.18) can be rewritten as

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2 3(16µ1 − 9k2µ2)2

4(16− 9k2)2
e
− 2(16µ1−9k2µ2)

16−9k2 u
. (A.19)

The quantity (16µ1−9k2µ2), with µ1=
√∣∣3E1

2

(
k2−16

9

)∣∣, µ2=

√∣∣∣3E2
2

((
16
9

)2 1
k2−16

9

)∣∣∣,
|E1| = |E2|, 0 < k < 4/3 is always positive and the scalar curvature grows as

u→ −∞.

The scalar curvature in the conformal coordinates with z → 0

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2 3(16µ1 − 9k2µ2)2

4(16− 9k2)2

(
3µ1

4 + 3k
z

)− 8
3

. (A.20)

– u→ u02 − ε, then the scalar curvature (A.18) takes the form

R =
(C1/2E1)

16
16−9k2 (C2/2E2)

−9k2

16−9k2

4(16−9k2)2

(
8(16−9k2)(16µ2

1−9k2µ2
2)

+128(9k2−10)µ2
1 coth(µ1(u02−u01))2−864k2µ1 coth(µ1(u02−u01))(u−u02)−1

+9k2(128−45k2)(u−u02)−2
)

sinh(µ1(u02−u01))
32

16−9k2 (µ2(u−u02))
−18k2

16−9k2 ,

(A.21)

where one can see that the scalar curvature (A.21) has divergencies. In the

conformal coordinates the scalar curvature at u→ u02 − ε is

R =
(C1/2E1)

16
16−9k2 (C2/2E2)

−9k2

16−9k2

4(16− 9k2)2

8(16− 9k2)(16µ2
1 − 9k2µ2

2)

+128(9k2 − 10)µ2
1 coth(µ1(u02 − u01))2

– 41 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
7

−864k2µ1 coth(µ1(u02 − u01))

(
4(16− 9k2)

64− 9k2
z

) 4(16−9k2)

9k2−64

+9k2(128− 45k2)

(
4(16− 9k2)

64− 9k2
z

) 8(16−9k2)

9k2−64


· sinh(µ1(u02 − u01))

32
16−9k2

(
µ2

4(16− 9k2)

64− 9k2
z

) 72k2

9k2−64

.

(A.22)

• The middle solution with u ∈ (u01;u02) can be characterized by the following limits

– for u→ u02 + ε the scalar curvature is the same as for the left solution (A.21)–

(A.22), so divergencies as (A.21) for the left solution.

– u→ u01 − ε, so (A.18) reads as

R =
(C1/2E1)

16
16−9k2 (

√
C2/2E2 sinh(µ2(u01−u02)))

−18k2

16−9k2

4(16−9k2)2

(
8(16−9k2)(16µ2

1−9k2µ2
2)

+128(9k2−10)(|u−u01|)−2−864k2µ2(|u−u01|)−1 coth(µ2(u01−u02))

+9k2(128−45k2)µ2
2 coth(µ2(u01−u02))2

)
(µ1(u01−u))

32
16−9k2 ,

(A.23)

that is regular. As for the scalar curvature written in the conformal coordinates

R =
(C1/2E1)

16
16−9k2 (

√
C2/2E2 sinh(µ2(u01−u02)))

−18k2

16−9k2

4(16−9k2)2

128(9k2−10)

(
9k2−4

16−9k2
z

) 2(16−9k2)

9k2−4

−864k2µ2

(
9k2−4

16−9k2
z

) 16−9k2

9k2−4

coth(µ2(u01−u02))

+9k2(128−45k2)µ2
2 coth(µ2(u01−u02))2

(µ1
9k2−4

16−9k2
z

) 32
4−9k2

,

(A.24)

where z is given by (3.17).

• For the right solution one has

– u → u01 + ε The scalar curvature matches with that one (A.23)–(A.24) for the

middle solution near the point u01.

– u→ +∞

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2 3(16µ1 − 9k2µ2)2

4(16− 9k2)2
e

2(16µ1−9k2µ2)

16−9k2 u
. (A.25)
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As for the left solution the scalar curvature (A.25) grows due to (16µ1−9k2µ2) >

0 as for (A.19) with u→ −∞. In the conformal coordinates (A.25) is

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2 3(16µ1 − 9k2µ2)2

4(16− 9k2)2

(
3µ1

4 + 3k
z

)− 8
3

, (A.26)

with z → 0.

• Let’s find the scalar curvature for the special case of the solution with u01 = u02 = u0.

The general formula for the scalar curvature with u01 = u02 = u0 reads

R =

(√
C1
2E1

sinh(µ1(u−u01))
) 32

16−9k2
(√

C2
2E2

sinh(µ2(u−u01))
) 18k2

−16+9k2

4(16−9k2)2
·
(

8(9k2−16)(9k2µ2
2−16µ2

1)

+128(−10+9k2)µ2
1 coth2(µ1u)−864k2µ1µ2 coth(µ1u) coth(µ2u)

+9k2(128−45k2)µ2
2 coth2(µ2u)

)
.

(A.27)

Here one has to study the behaviour of the scalar curvature in the limits of small u

and u→ +∞.

For u→ u0 one has

R = −5

4

(√
C1

2E1
µ1

) 32
16−9k2

(√
C2

2E2
µ2

) 18k2

9k2−16

. (A.28)

So, one comes to a background with the constant negative curvature in the case of

small values of u.

For u→ +∞ we onbtain

R =
3

4

(16µ1 − 9k2µ2)2

(16− 9k2)2

(
C1

2E1

) 32
16−9k2

(
C2

2E2

) 18k2

−16+9k2

e
2(16µ1−9k2µ2)

16−9k2 u
, (A.29)

that is an agreement with (A.25). The corresponding expression in the scalar coor-

dinates matches with (A.26).

A.3 The scalar curvature of the non-vacuum solutions

Now we turn to the non-vacuum background (4.1) with (4.2)–(4.3), which is characterized

by a non-zero parameter α1. The scalar curvature for the non-vacuum case reads

R = −
(

8(9k2−16)

(
2

3
(α1)2(9k2−16)+16µ2

1−9k2µ2
2

)
+128(10−9k2)µ2

1 coth(µ1(u−u01))2

−864k2µ1µ2 coth(µ1(u−u01)) coth(µ2(u−u02))+9k2(−128+45k2)µ2
2 coth2(µ2(u−u02))

)

·

(√
C1

2E1
sinh(µ1(u−u01))

) 32
16−9k2

(√
C2

2E2
sinh(µ2(u−u02))

) 18k2

9k2−16

4(16−9k2)2
. (A.30)

As for the vacuum solution it is instructive to see the scalar curvature for each of the

branches with certain limits.
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• The left solution with u < u02 has the following scalar curvature

– u→ −∞ one has

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2
(

3(16µ1−9k2µ2)2

4(16−9k2)2
−4

3

(
α1
)2)

e
− 2(16µ1−9k2µ2)

16−9k2
u
.

(A.31)

– For the limit u→ u02 − ε

R = −
(

8(9k2−16)

(
2

3
(α1)2(9k2−16)+16µ2

1−9k2µ2
2

)
+128(10−9k2)µ2

1 coth(µ1(u01−u02))2

−864k2µ1 coth(µ1(u01−u02))(u−u02)−1+9k2(−128+45k2)(u−u02)−2

)

·

(√
C1
2E1

sinh(µ1(u01−u02))
) 32

16−9k2
(√

C2
2E2

µ2(u−u02)
) 18k2

9k2−16

4(16−9k2)2
,

(A.32)

as for the vacuum case (A.21) the scalar curvature is divergent at u02.

In the conformal coordinates (A.32) reads

R = −

8(9k2 − 16)

(
2

3
(α1)2(9k2 − 16) + 16µ2

1 − 9k2µ2
2

)
+ 128(10− 9k2)µ2

1 coth(µ1(u01 − u02))2

− 864k2µ1 coth(µ1(u01 − u02))

(
4(16− 9k2)

64− 9k2
z

) 4(16−9k2)

9k2−64

+9k2(−128 + 45k2)

(
4(16− 9k2)

64− 9k2
z

) 8(16−9k2)

9k2−64



·

(√
C1
2E1

sinh(µ1(u01 − u02))
) 32

16−9k2
(√

C2
2E2

µ2
4(16−9k2)

64−9k2 z
) 72k2

9k2−64

4(16− 9k2)2
. (A.33)

• The middle solution defined for u ∈ (u01;u02).

– For u→ u02+ε the scalar curvature matches with the curvature given by (A.32).

As well as in the conformal coordinates it is the same as (A.33).

One can seem that scalar curvature of the middle solution in the non-

vacuum case has also a singularity at u01.
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– u→ u01 − ε

R = −
(

8(9k2−16)

(
2

3
(α1)2(9k2−16)+16µ2

1−9k2µ2
2

)
+128(10−9k2)(u−u01)−2

−864k2µ2(u−u01)−1 coth(µ2(u01−u02))

+9k2(−128+45k2)µ2
2 coth2(µ2(u01−u02))

)

·

(√
C1
2E1

µ1(u−u01)
) 32

16−9k2
(√

C2
2E2

sinh(µ2(u01−u02))
) 18k2

9k2−16

4(16−9k2)2
, (A.34)

or in the conformal coordinates with z given by (3.17)

R = −
(

8(9k2−16)

(
2

3
(α1)2(9k2−16)+16µ2

1−9k2µ2
2

)

+128(10−9k2)

(
9k2−4

16−9k2
z

) 2(16−9k2)

9k2−4

−864k2µ2

(
9k2−4

16−9k2
z

) 16−9k2

9k2−4

coth(µ2(u01−u02))

+9k2(−128+45k2)µ2
2 coth2(µ2(u01−u02))

)

·

(√
C1

2E1
µ1

) 32
16−9k2

(
9k2−4
16−9k2 z

) 32
4−9k2

(√
C2

2E2
sinh(µ2(u01−u02))

) 18k2

9k2−16

4(16−9k2)2
. (A.35)

• The right solution with u > u01

– u→ u01 + ε the scalar curvature coincides with (A.34)–(A.35).

– u→ +∞

R =

(
C1

2E1

) 16
16−9k2

(
C2

2E2

)− 9k2

16−9k2
(

3(16µ1 − 9k2µ2)2

4(16− 9k2)2
− 4

3

(
α1
)2)

e
2(16µ1−9k2µ2)

16−9k2 u
.

(A.36)

It should be noted that the scalar curvatures given by (A.31) and (A.26) can be equal

to zero if the parameter α1 is taken as

α1 = ±
√

(16− 9k2)E2

6k2
. (A.37)

A.4 The Kretschmann scalar for the solution with u > u01

For the vacuum solution defined for u > u01 (the right solution) with u→ u01 + ε one has

K ∼ k0(u− u01)
64

16−9k2

4∑
i=0

ci(u− u01)−i, (A.38)

where k0 and ci i = 0, . . . , 4 are some constants.

– 45 –



J
H
E
P
0
5
(
2
0
1
9
)
1
1
7

As for u→ +∞ the Kretschmann scalar for the right solution with (2.48)–(2.49) takes

the form

K =
21(16µ1 − 9k2µ2)4

32(16− 9k2)4

(
C1

2E1

) 32
16−9k2

(
C2

2E2

) 18k2

9k2−16

e
4(16µ1−9k2µ2)

16−9k2 u
. (A.39)

For the non-vacuum solutions (4.1) with (4.2)–(4.3) with (3.7) the Kretschmann scalar

with reads u→ u01 + ε

K ∼ k0(u− u01)
64

16−9k2

4∑
i=0

ci(#(α1)i)(u− u01)−i, (A.40)

while with u→ +∞ is

K =

(
4α1(9k2 − 16) + 27k2µ2 − 48µ1

)2
864(16− 9k2)4

(
C1

2E1

) 32
16−9k2

(
C2

2E2

) 18k2

9k2−16

e
4(16µ1−9k2µ2)

16−9k2 u

·
(
304(α1)2(16− 9k2)2 + 168α1(9k2 − 16)(16µ1 − 9k2µ2) + 63(16µ1 − 9k2µ2)2

)
.

(A.41)

B The scalar field

We have the following relation for the scalar field

(∂φ)2 = e−2C

(
∂φ

∂u

)2

. (B.1)

The dilaton solution defined for u > u01 reads

φ =
9k

9k2 − 16
log

(√
C2

C1

sinh(µ2(u− u02))

sinh(µ1(u− u01))

)
. (B.2)

The derivative of the dilaton with respect to u-variable is

∂φ

∂u
=

9k

9k2 − 16

(
−µ1

cosh(µ1(u− u01))

sinh(µ1(u− u01))
+ µ2

cosh(µ2(u− u02))

sinh(µ2(u− u02))

)
, (B.3)(

∂φ

∂u

)2

=
81k2

(16− 9k2)2
(µ1 coth(µ1(u− u01))− µ2 coth(µ2(u− u02)))2. (B.4)

For the vacuum case one has

e−2C =

(√
C1

2E1
sinh(µ1(u− u01))

) 32
16−9k2

(√
C2

2E2
sinh(µ2(u− u02))

) 18k2

9k2−16

. (B.5)

The dilaton for u→ u01 + ε reads

(∂φ)2 =
81k2

(16− 9k2)2
((u− u01)−1 − µ2 coth(µ2(u01 − u02)))2

·

(√
C1

2E1
µ1(u− u01)

) 32
16−9k2

(√
C2

2E2
sinh(µ2(u01 − u02))

) 18k2

9k2−16

. (B.6)

Since 0 < k < 4/3 the quantity (∂ϕ)2 has a good behaviour.
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In the limit u→ +∞ the dilaton behaves as

(∂φ)2 =
81k2

(16− 9k2)2
(µ1 − µ2)2

(
C1

2E1

) 16
16−9k2

(
C2

2E2

) 9k2

9k2−16

e
2(16µ1−9k2µ2)

16−9k2 u
. (B.7)

The divergence disappears for µ1 = µ2 in the non-vacuum case.

C The superpotential in the UV

In this section, following the analysis of [14], we look at the superpotential in the neigh-

borhood of the maximum of the potential, which is at φ→ −∞. Their analysis was done

assuming that V < 0 so that the vacuum is asymptotically AdS, but we will show that

their conclusions remain valid also in our case when V → 0.

The equation that determines the superpotential in the vacuum is, in the domain wall

coordinates,

V =
4

3

(
dW

dφ

)2

− 64

27
W 2 , (C.1)

A′(w) = −4

9
W , φ′(w) =

dW

dφ
. (C.2)

These equations imply that φ′

A′ = −9
4
W ′

W . We want to solve it asymptotically in the UV,

where V = −|C1|e2kφ. There are two solutions: if one makes the ansatz that W = γekφ,

substituting in the equation gives

γ2 =
27|C1|

4(16− 9k2)
, (C.3)

so the solution is uniquely determined. This is the “regular” solution in the terminology

of [14], and on this solution X = φ′

3A′ → −
3k
4 .

Another solution is obtained by assuming that the superpotential terms are dominant

in (C.2), so one can set V = 0 and finds W = ce−4φ/3. Since k < 4/3, W 2 � V so the

assumption is self-consistent. In this case c is arbitrary, so there is a 1-parameter family of

solutions for which X → 1. These are singular solutions.

The plots in figure 9 show that these two cases correspond to the asymptotics of the

right solutions, in the UV and IR respectively. We can check this explicitly by computing

the superpotential from the asymptotics of the solution given in (3.2)–(3.3). In these

formulas the coordinate u is not the domain wall coordinate, which is obtained by dw =

e4Adu. The superpotential is then W = −9
4e
−4AA′(u). For convenience we set u01 = 0.

The UV asymptotics, for u ∼ 0, are

A ∼ − 4

16− 9k2
log u+A0 , (C.4)

φ ∼ 9k

16− 9k2
log u+ φ0 , (C.5)
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where

A0 = − 4

16− 9k2
log

(√
|C1|
2|E|

µ1

)
+

9k2

4(16− 9k2)
log

(√
|C2|
2|E|

sinh(−µ2u02)

)
, (C.6)

φ0 =
9k

16− 9k2
log

(√
|C1|
|C2|

µ1

sinh(−µ2u02)

)
. (C.7)

Then

W = −9

4
e−4AA′ =

9

16− 9k2
e−4A0e

9k2

16−9k2 log u
=

9

16− 9k2
e−4A0−kφ0ekφ (C.8)

and a rather tedious computation shows that the coefficient is equal to γ in (C.3), so the

dependence on all the parameters of the solution cancels out.

At u→∞ we have the asymptotics

A ∼ − µ1

4 + 3k
u+A∞ , (C.9)

φ ∼ − 3µ1

4 + 3k
u+ φ∞ , (C.10)

where

A∞ = − 4

16− 9k2
log

√
|C1|
8|E|

+
9k2

4(16− 9k2)

(
−µ2u02 + log

√
|C2|
8|E|

)
, (C.11)

φ0 =
9k

16− 9k2

(
µ2u02 + log

√
|C1|
|C2|

)
. (C.12)

Then

W =
9µ1

4(4 + 3k)
e−4A∞e

4µ1
4+3k

u =
9µ1

4(4 + 3k)
e−4A∞+ 4

3
φ∞e−

4
3
φ . (C.13)

In this case there is no cancellation and the coefficient depends on the parameters of the

solution, as expected.

The analysis of [14] then leads to the conclusion that all the flows that end in the

singular IR solution are not acceptable because they cannot be regularized by a small

horizon. Indeed we see that when we turn on the temperature, we have no regular flow

that ends in the vicinity of X = 1. The only regular vacuum flow is the one that ends at

X = 0, shown in figure 9C, which ends at a different extremum of the potential; we do not

need to analyse it in detail since the asymptotics are those of AdS.
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[25] H. Lü, C.N. Pope, E. Sezgin and K.S. Stelle, Dilatonic p-brane solitons, Phys. Lett. B 371

(1996) 46 [hep-th/9511203] [INSPIRE].

[26] S.H. Hendi, A. Sheykhi and M.H. Dehghani, Thermodynamics of higher dimensional

topological charged AdS black branes in dilaton gravity, Eur. Phys. J. C 70 (2010) 703

[arXiv:1002.0202] [INSPIRE].

– 50 –

https://doi.org/10.1088/0264-9381/12/5/007
https://doi.org/10.1088/0264-9381/12/5/007
https://arxiv.org/abs/hep-th/9407019
https://inspirehep.net/search?p=find+EPRINT+hep-th/9407019
https://doi.org/10.1088/1126-6708/2003/09/059
https://arxiv.org/abs/hep-th/0308113
https://inspirehep.net/search?p=find+EPRINT+hep-th/0308113
https://doi.org/10.1007/s10714-012-1415-7
https://doi.org/10.1007/s10714-012-1415-7
https://arxiv.org/abs/1204.0091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0091
https://doi.org/10.4310/ATMP.2000.v4.n3.a6
https://doi.org/10.4310/ATMP.2000.v4.n3.a6
https://arxiv.org/abs/hep-th/0002160
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002160
https://doi.org/10.1007/JHEP08(2011)119
https://doi.org/10.1007/JHEP08(2011)119
https://arxiv.org/abs/1106.4826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4826
https://doi.org/10.1007/JHEP10(2018)173
https://arxiv.org/abs/1805.01769
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.01769
https://doi.org/10.1016/0370-2693(95)01595-7
https://doi.org/10.1016/0370-2693(95)01595-7
https://arxiv.org/abs/hep-th/9511203
https://inspirehep.net/search?p=find+EPRINT+hep-th/9511203
https://doi.org/10.1140/epjc/s10052-010-1483-3
https://arxiv.org/abs/1002.0202
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.0202

	Introduction
	The setup
	The holographic gravity model
	Mechanical model
	Integration of the mechanical model
	The exact solutions in the harmonic gauge
	Solutions as RG flows

	Vacuum solutions
	The metric and the dilaton for vacuum exact solutions
	Asymptotics of the metric and the dilaton
	Special case u(01) =u(02), solutions with AdS boundary

	RG flow for vacuum solutions
	Details of RG flow for vacuum solutions
	The running coupling lambda=e**(phi) on the energy scale


	Non-vacuum solutions
	The metric and the dilaton
	The black brane solutions
	The Gubser bound
	Special case u(01) = u(02), AdS black brane

	RG flow for non-vacuum solutions
	Details of RG flow for vacuum solutions
	The running coupling lambda = e**(phi) on the energy scale for T != 0 flow

	Free energy

	Conclusion and discussion
	The curvature invariants of the background
	The equations of motion in the harmonic gauge
	The scalar curvature of the vacuum solutions
	The scalar curvature of the non-vacuum solutions
	The Kretschmann scalar for the solution with u>u(01)

	The scalar field
	The superpotential in the UV

