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Potential Vorticity diagnostics based on balances between1

volume integral and boundary conditions2

Yves Morel1,∗, Jonathan Gula2,∗, Aurélien Ponte2,∗3

Abstract4

Taking advantage of alternative expressions for potential vorticity (PV) in5

divergence forms, we derive balances between volume integral of PV and6

boundary conditions, that are then applied to practical computations of PV:7

8

• we propose a new method for diagnosing the Ertel potential vorticity9

from model output, that preserves the balances;10

• we show how the expression of PV can be derived in general coordi-11

nate systems. This is here emphasised with isopycnic coordinates by12

generalising the PV expression to the general Navier-Stokes equations;13

• we propose a generalised derivation for the Haynes-McIntyre imper-14

meability theorem, which highlights the role of the bottom boundary15

condition choice (e.g. no-slip vs free-slip) and mixing near the bottom16

boundary for the volume integral of PV.17

The implications of balances between volume integral of PV and boundary18

conditions are then analysed for specific processes at various scales:19

• at large scale, we show how an integral involving surface observations20

(derived from satellite observations) is linked to the integral of PV21
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(Aurélien Ponte)
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within a layer (between two isopycnals). This surface integral can be22

calculated for models and observations and can be used for validation;23

• at mesoscale or sub-mesoscale, we analyse the relationship between net24

PV anomalies and net surface density anomalies for idealised vortices25

and 2D fronts. This can help determining vortex or jet structures for26

idealised studies or empirical methodologies;27

• we also confirm and integrate previous results on the modification of28

PV within a bottom boundary layer into a single diagnostic taking29

into account the effect of density and velocity modifications by dia-30

batic processes along the topography and diapycnal mixing within the31

boundary layer.32

Keywords: Potential vorticity, boundary conditions, general circulation,33

vortex, fronts, boundary layers.34

1. Introduction35

It is well known that Ertel’s Potential Vorticity (PV, see Ertel, 1942)36

is an important quantity when studying the circulation at all scales in geo-37

physical fluids: the conservation property of PV -in adiabatic evolution- and38

the inversion principle (the geostrophic velocity field can be inferred from39

the PV field and boundary conditions) are key principles to interpret the40

ocean dynamics (see Hoskins et al., 1985; McWilliams, 2006, and section 241

for more details). Conservation and inversion of PV are the basis of the42

quasigeostrophic (QG) model (Pedlosky, 1987) that has been successfully43

used in pioneering studies aiming at understanding and modelling the ocean44

circulation from basin gyres (Rhines and Young, 1982a,b; Luyten et al.,45
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1983; Holland et al., 1984; Rhines, 1986; Talley, 1988; Marshall and Nurser,46

1992) to current instabilities (Charney and Stern, 1962), geophysical turbu-47

lence (McWilliams, 1984) and mesoscale dynamics (McWilliams and Flierl,48

1979; Sutyrin and Flierl, 1994).49

In the QG framework, PV is related to the streamfunction by a linear50

elliptic differential operator (Pedlosky, 1987; Cushman-Roisin and Beckers,51

2011), which has several important consequences. First, boundary condi-52

tions impose important dynamical constraints too. In a QG framework53

Bretherton (1966) has shown that surface or bottom outcropping of isopyc-54

nic surfaces is dynamically similar to a shallow layer of high PV anomaly (in55

practice a Dirac delta sheet), whose strength can be related to the density56

anomaly. This has led to the generalised surface quasigeostrophic (SQG)57

model (Held et al., 1995; Lapeyre, 2017). Lateral boundaries can be impor-58

tant too for the inversion of PV. In the QG or SQG framework, it has been59

shown that the velocity field away from a region of PV anomalies decreases60

slowly -as the inverse of the distance from the region- unless PV and surface61

density satisfy an integral constraint (Morel and McWilliams, 1997; Assassi62

et al., 2016). In models, practical inversion of PV, with given surface and63

bottom density fields, is often done considering biperiodic domains (Lapeyre64

et al., 2006; Wang et al., 2013), which can lead to discrepancies if the latter65

constraint is not satisfied.66

Second, since the relationship between PV and the circulation is linear67

at first order (QG and SQG), the balance between smoothed/averaged fields68

is preserved, provided averaging is done using a linear convolution.69

Moreover, PV concept is also useful for forced dissipative dynamics.70

For instance, diapycnal mixing does not change the volume integral of PV71

within a layer bounded by isopycnic surfaces, which shows that PV can72
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only be diluted or concentrated when the layer respectively gains or looses73

mass (Haynes and McIntyre, 1987, 1990). The influence of viscous surface74

or bottom stress on the PV evolution has also been analysed theoretically75

(Thomas, 2005; Taylor and Ferrari, 2010; Benthuysen and Thomas, 2012,76

2013). Thus, the consequences of diabatic effects on the ocean dynamics77

can again be analysed and interpreted in terms of PV modification from78

basin scales (see for instance Hallberg and Rhines, 1996, 2000; Czaja and79

Hausmann, 2009) to meso and submesoscales (see for instance Morel and80

McWilliams, 2001; Morel et al., 2006; Morel and Thomas, 2009; Rossi et al.,81

2010; Meunier et al., 2010; Thomas et al., 2013; Molemaker et al., 2015;82

Gula et al., 2015, 2016, 2019; Vic et al., 2015; Giordani et al., 2017).83

To conclude, the ocean circulation and PV are linked and calculating PV84

at all scales under adiabatic or diabatic conditions is thus of considerable in-85

terest for geophysical fluid dynamics. In QG or SQG models, it is possible to86

ensure consistent balances between circulation, PV and surface, bottom and87

lateral boundary conditions, from local to averaged fields. In more complex88

models, PV calculation involves many velocity and density derivatives, in89

particular in non-isopycnic models, and keeping the link between averaged90

PV and averaged circulation implies to find a consistent calculation of PV.91

If several studies have used diagnostics involving PV, they remain rare and92

none have discussed the PV calculations in details, in particular to evaluate93

if the relationships between PV and boundary conditions are maintained94

and if averaging can be done consistently.95

The Bretherton principle (Bretherton, 1966) has been recently revisited96

and extended by Schneider et al. (2003) who generalised the concept of PV97

to take into account the dynamical effect of outcropping for the general98

Navier Stokes equations. To do so, they used the alternative divergence99
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form for the expression of PV (Vallis, 2006). In this paper, we show how100

this divergence form of PV naturally leads to general constraints on volume101

balances of PV and boundary conditions (section 3). These follow from the102

definition of PV and are independent of the dynamics (adiabatic or diabatic)103

of the flow. In section 4 we show that the divergence form also makes PV104

computations easier and consistent, in the sense that balances are automati-105

cally preserved when integrating PV (a consequence of the divergence form).106

We then propose several frameworks, involving dynamics at different scales,107

to discuss the generalised constraints between PV and surface, bottom or108

lateral boundary conditions (section 5). We summarise and discuss our re-109

sults in the concluding section. Section 2 summarises basic definitions and110

properties of PV which are not new and can be skipped by readers familiar111

with PV.112

2. Reminders on potential vorticity113

2.1. Definition of Ertel potential vorticity114

Ertel (1942) defined Potential Vorticity as:115

PVErtel ≡ −(~∇× ~U + ~f).
~Oρ
ρ

= −(~∇× ~Ua).
~Oρ
ρ

(1)

where ~U is the fluid velocity field in the reference frame of the rotating Earth,116

ρ is the potential density (in the ocean and entropy in the atmosphere),117

~Ua = ~U + ~Ω × ~r is the absolute velocity, where ~Ω = (0,Ωy,Ωz) is the118

rotation vector of the Earth, ~r is the position relative to the Earth center119

and ~f = (0, fy, fz) = ~∇ × (~Ω × ~r) = 2 ~Ω (see Fig. 1). Note that ~f is120
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fixed but its components in some coordinate system (spherical coordinates121

for instance) can vary with position. The minus sign on the left-hand side of122

(1) is so that PV is generally positive for gravitationally stable - low Rossby123

number flows in the northern hemisphere.124

Figure 1: General Earth referential.

In the ocean, the Boussinesq approximation is typically valid and ~Oρ/ρ125

can be replaced by ~Oρ/ρ0, where ρ0 is a mean oceanic density. ρ0 can then126

be omitted from the definition of PV and we can use:127

PVErtel = −(~∇× ~U + ~f). ~Oρ

= −(~∇× ~Ua). ~Oρ (2)

We retain this definition for PV as it leads to clearer expressions for the128

calculations we present and the formulas we obtain. This approximation is129
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however not necessary and all the following results are valid provided ρ is130

replaced by G(ρ) = log(ρ) (see Appendix B).131

2.2. Properties132

2.2.1. Conservation133

The non-hydrostatic Navier-Stokes equations (with Boussinesq approxi-134

mation) are:135

d

dt
~U + ~f × ~U = −

~∇P
ρ0
− ~g ρ

ρ0
+ ~F

div(~U) = 0

d

dt
ρ = ρ̇ (3)

where ~U = (u, v, w) is the velocity field, d
dtφ = ∂tφ+

(
~U.~∇

)
φ, ~f = (0, fy, fz)136

is the Coriolis vector, P is the pressure, ρ is the potential density and137

~F = (Fx, Fy, Fz) and ρ̇ are terms associated with diabatic processes for138

momentum and density fields.139

The Lagrangian evolution of Ertel PV can be derived from Eq. 3:140

d

dt
PVErtel = −(~∇× ~F ).~Oρ− (~∇× ~U + ~f).~Oρ̇ (4)

As shown by Ertel (1942), PVErtel is thus conserved in regions where diabatic141

processes are negligible.142

The evolution/conservation of PV following fluid particles is a major143

constraint for geophysical fluid dynamics (Hoskins et al., 1985). To study144

geophysical fluids, simplified forms of Eq. 3 are sought which conserve a sim-145

plified expression for PV (White et al., 2005). This is the case for instance for146
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quasigeostrophic or primitive equations (Pedlosky, 1987; Cushman-Roisin147

and Beckers, 2011; McWilliams, 2006). For the primitive equations, the hy-148

drostatic approximation is assumed and fy is neglected, PV can be written149

(White et al., 2005):150

PVPE = −(∂xv − ∂yu+ fz) ∂zρ+ ∂zv ∂xρ− ∂zu ∂yρ (5)

where fz is the (local) vertical component of the Coriolis vector and is called151

Coriolis parameter.152

The Lagrangian conservation of PVPE is more conveniently derived, and153

achieved in numerical models, using density ρ instead of the geopotential154

vertical coordinate z. This has been one of the motivation for the develop-155

ment of isopycnic coordinate ocean models (see for instance Bleck et al.,156

1992; Hallberg, 1997). Using isopycnic coordinate, PVPE can be written157

(Cushman-Roisin and Beckers, 2011):158

PVPE =
ζ + fz
h

(6)

where ζ = (∂xv − ∂yu) |ρ is the relative vorticity, now calculated using159

horizontal velocity components along isopycnic surfaces and h = −∂ρz is a160

measure of the local stratification. We will see below how the expression of161

PV can be easily derived in isopycnic coordinates for the full Navier-Stokes162

equations (including terms coming from all components of the Coriolis vector163

and non-hydrostatic effects).164

2.2.2. Inversion165

If (cyclo)geostrophy is assumed, the velocity field and stratification can166

be calculated from the PV and are associated with the balanced dynamics167
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(Hoskins et al., 1985; Davis and Emanuel, 1991; McIntyre and Norton, 2000;168

Morel and McWilliams, 2001; Herbette et al., 2003, 2005). The PV of a fluid169

at rest and with a horizontally homogeneous stratification is not null. The170

potential vorticity anomaly (PVA) is defined as the difference between total171

PV and a reference PV associated with a state of rest of the entire fluid:172

PV A = PV − PV rest
(7)

PV A is the part of the PV that is linked to the balanced dynamics and, at173

first order, it corresponds to the quasigeostrophic PV (Davis and Emanuel,174

1991; McIntyre and Norton, 2000; Herbette et al., 2003).175

The PV of the state at rest is given by the stratification at rest:176

PV
rest

= −~f.~Oρ |ρ= −fz ∂zρ |ρ= −
fz

∂ρz(ρ)
=
fz

h
(8)

An important point is that in Eq. 7 PVA has to be calculated along surfaces177

of constant density. This is underlined by the |ρ symbol in Eq. 8, which is178

valid for both non-hydrostatic and primitive equations. The stratification at179

rest ρ is associated with the adiabatic rearrangement of the density to get a180

horizontally uniform field (Holliday and Mcintyre, 1981; Kang and Fringer,181

2010) and it is generally not easy to determine. PVA is thus often used in182

idealised configurations where the fluid is at rest in some area (generally at183

the edge of the domain see sections 5.2 and 5.3 below). Alternatively, PVA184

can be associated with small scale processes, superposed on a larger scale185

circulation. The reference state can then be approximately determined as186

a spatial average (over a distance that is much larger than the processes187

scales).188
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3. Alternative expressions for PV189

3.1. Divergence form190

In the following, the calculations rely on general mathematical properties191

relating divergence, curl and gradient of 3D fields and integral properties of192

these operators, whose general forms are recalled in Appendix A.193

Previous studies have shown that Ertel PV, as defined in Eq. 2, can194

be expressed in divergence form (see Schneider et al., 2003; Vallis, 2006).195

Trivial manipulations (explained in Appendix A, see Eq. A.1) lead to the196

following equivalent expressions for the PV in divergence form (remember197

~Ua = ~U + ~Ω× ~r is the absolute velocity, see Fig. 1):198

PVErtel = −div(~Ua × ~Oρ) (9a)

= −div(ρ (~∇× ~Ua)) (9b)

= −div(~U × ~Oρ)− div(ρ ~f). (9c)

Notice that these expressions are exact, whatever the evolution (diabatic or199

adiabatic) of PV and have been reported and/or used before, in particular200

in atmospheric sciences (see Haynes and McIntyre, 1987; Bretherton and201

Schar, 1993; Schneider et al., 2003; Vallis, 2006). Here we demonstrate that202

they also lead to consistent and convenient practical approach to calculating203

and analysing PV in ocean modelling.204

3.2. Implication for the integral of PV205

Using Ostrogradsky-Stokes theorem (see Appendix A), the previous di-206

vergence form of the PV simplifies the calculation of the integral of PVErtel207
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over a volume V . It can be calculated from the knowledge of the den-208

sity, velocity or relative vorticity fields around the surface ∂V containing V .209

Equations 9 give the exact expressions:210

∫ ∫ ∫
V
PVErtel dV = −

∫ ∫
∂V
ρ (~∇× ~Ua).d~S (10a)

= −
∫ ∫

∂V
(~Ua × ~Oρ).d~S (10b)

= −
∫ ∫

∂V
ρ ~f.d~S −

∫ ∫
∂V

(~U × ~Oρ).d~S. (10c)

The previous expressions follow from the definition of PV and do not depend211

on equations governing its evolution. They represent exact instantaneous212

diagnostics of net PV within a volume and should not be confused with213

the general flux form of the PV evolution equation (Haynes and McIntyre,214

1987).215

4. Applications to the calculation of PV216

In this section, we discuss how the divergence formulation, and its asso-217

ciated integral constraints Eq. 10, yield an easier way to diagnose PV and218

maintain balances between volume integral of PV and boundary conditions219

(Eq. 10).220

4.1. PV diagnostics for numerical models221

The diagnosis of PV from numerical model outputs is generally cum-222

bersome if the literal form (Eq. 2 or 5) is chosen as it implies numerous223

gradients calculated at different grid points, which then have to be aver-224

aged. The use of the divergence form simplifies the PV calculation and also225

preserves Eq. 10.226
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As they are used in the majority of ocean circulation models, we consider227

a 3D C-grid, which are 3D extensions of the horizontal Arakawa C-grid (see228

Fig. 2 and Arakawa and Lamb, 1977). Using Cartesian coordinates, we229

start from the divergence form of PV (9b) rewritten as:230

PVErtel = −div(ρ (~ζ + ~f))

= −∂x(ρ(ζx + fx))− ∂y(ρ(ζy + fy))− ∂z(ρ(ζz + fz)) (11)

where ~ζ = ~∇× ~U and:231

ζx = ∂yw − ∂zv

ζy = −∂xw + ∂zu

ζz = ∂xv − ∂yu. (12)

The elementary cell for which PV is calculated has the density values232

at its corners (see Fig. 2). As is clear from Fig. 2, ζz values need to233

be calculated at the center of lower and upper sides of the cell. It can be234

calculated using the circulation along edges of the cell lower and upper sides.235

An interesting property of 3D C-grid is that this is straightforward, thanks236

to the position of the velocity points (located at the middle of edges parallel237

to the velocity component). Density is averaged over the 4 density points238

located at the side corners. The same calculation is also valid for the other239

sides of the cell.240

As a result, the PV of the cell can easily be calculated from physical241

fields within this single cell. We get:242
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Figure 2: Elementary cell, for a 3D C-grid, used for the calculation of PV. We consider

Cartesian coordinates (x, y, z) associated with indices (i, j, k).
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ζxi,j,k =
wi,j,k − wi,j−1,k

∆y
−
vi,j,k − vi,j,k−1

∆z

ζyi,j,k = −
wi,j,k − wi−1,j,k

∆y
+
ui,j,k − ui,j,k−1

∆z

ζzi,j,k =
vi,j,k − vi−1,j,k

∆x
−
ui,j,k − ui,j−1,k

∆y
, (13)

and finally243

PVi,j,k = −
ρxi,j,k(ζ

x
i,j,k + fxi,j,k)− ρxi−1,j,k(ζxi−1,j,k + fxi−1,j,k)

∆x

−
ρyi,j,k(ζ

y
i,j,k + fyi,j,k)− ρyi,j−1,k(ζ

y
i,j−1,k + fyi,j−1,k)

∆y

−
ρzi,j,k(ζ

z
i,j,k + fzi,j,k)− ρzi,j,k−1(ζzi,j,k−1 + fzi,j,k−1)

∆z
, (14)

where244

ρxi,j,k = 1/4(ρi,j,k + ρi,j,k−1 + ρi,j−1,k + ρi,j−1,k−1) (15)

is the density calculated at the position of ζxi,j,k (see Fig. 2), and so forth for245

the other components. The Coriolis components f
x/y/z
i,j,k are calculated at the246

location of the ζ
x/y/z
i,j,k points. Note that for the specific discretization of the247

3D C-grid (see Fig. 2), the divergence form leads to a compact expression248

of PV : in Eq. 14 PV is calculated using density and velocity values from a249

single grid cell.250

Equation 14 has a flux form, which ensures that, given a volume V ,251

the integral of PV calculated over V using the accumulation of individual252

cells or using Eq. 10 exactly match, thus preserving the general balances253

between integral of PV and boundary conditions for any volume. Flux form254
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PV expressions can be derived for B-grids or other grids, with a similar255

property.256

4.2. General PV expression in isopycnal coordinates257

The integral constraints 10 may be used for an easier derivation of the258

expression of PV in any coordinate systems and for the full Navier-Stokes259

equations. As an example, we calculate PV using the isopycnic coordinate260

ρ instead of the geopotential coordinate z (see section 4a of Schneider et al.,261

2003). This is of interest as the interpretation of the PV evolution, in262

particular the PV anomaly, has to be made along isopycnic surfaces (Hoskins263

et al., 1985).264

For the sake of simplicity, we just replace the vertical Cartesian coordi-265

nate z by ρ and we keep the Cartesian (x, y) coordinates in the horizontal266

(see Fig. 3). Other systems (for instance spherical) can be used without267

much more complications. We also keep the orthogonal Cartesian elemen-268

tary vectors (~i,~j,~k) associated with axis (Ox,Oy,Oz) (see Fig. 3) to express269

all vectors.270

In this framework, z = z(x, y, ρ) is the vertical position of isopycnic271

surfaces, and to calculate PV, we will use Eq. 10b, which only requires the272

evaluation of the density gradient ~Oρ = ∂xρ~i+ ∂yρ ~j+ ∂zρ ~k, but using the273

(x, y, ρ) coordinates. To do so, we use:274

h = −∂ρz = −1/∂zρ

∂xz |y,ρ = −h ∂xρ |y,z

∂yz |x,ρ = −h ∂yρ |x,z

The density gradient is then given by:275
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~Oρ =
1

h
[∂xz ~i+ ∂yz ~j − ~k] (16)

Figure 3: Coordinate system (x, y, ρ) and elementary volume and surfaces used to calculate

PVErtel using the isopycnic coordinate.

Equation 10b is then applied to an elementary volume bounded by two276

isopycnic surfaces sketched in Fig. 3:277

∫ ∫ ∫
δV
PVErtel dV = −

∫ ∫
∂δV

(~Ua × ~Oρ).d~S

= −[(~Ua × ~Oρ).d~S]∂δV (17)

where [.]∂δV is the flux through all surfaces delimiting δV . Note that ~Ua =278

ua ~i + va ~j + wa ~k remains the absolute velocity field expressed in the279

orthogonal Cartesian system.280
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Since the flux across isopycnic surfaces (ρ±δρ) is null and since the other281

surfaces are simple (vertical planes of constant y or x), Eq. 17 gives:282

PV ρ
Ertel δV =− [(~Ua × ~Oρ).~i 2δy 2hδρ]x+δxx−δx

− [(~Ua × ~Oρ).~j 2δx 2hδρ]y+δyy−δy (18)

Given that δV = 2δx 2δy 2δz = −2δx 2δy 2hδρ and283

~Ua × ~Oρ = −1

h
(va + wa∂yz,−ua − wa∂xz,−ua∂yz + va∂xz) (19)

Eq. 18 gives:284

PV ρ
Ertel =

∂x(va + wa∂yz) |ρ −∂y(ua + wa∂xz) |ρ
h

=
∂x(v + w∂yz) |ρ −∂y(u+ w∂xz) |ρ +fz − fy∂yz

h
(20)

which is a generalised form of Eq. 6 with additional terms (in particular all285

components of the Coriolis effect). The terms (u+ w∂xz) |ρ, (v + w∂yz) |ρ286

represent the projection of the velocity field on the plane tangent to the287

isopycnic surface.288

This exact general result can also be derived using Eq. 2, with a change289

of coordinate. But the calculations based on Eq. 10 offer a straightforward290

method.291

4.3. Integration of PV in a ”layer”292

We consider a volume V constituted of a ”layer” embedded between293

two isopycnic surfaces associated with densities ρ1 and ρ2, that can outcrop294

at the surface or bottom (see Fig. 4). The total PV contained within V295
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may be deduced from Eq. 10c and trivial calculations (taking advantage296

of the fact that the boundaries ∂V of the layer are partly delimited by297

isentropic/isopycnic surfaces, and some rearrangements using Eq. A.4).298

This leads to the following form, which depends only on physical fields299

at the surface and bottom outcropping regions:300

∫ ∫ ∫
V
PVErtel dV = −

∫ ∫
Ss+Sb+Sw

(~U × ~Oρ).d~S

+ [

∫ ∫
Ss

(ρ1 − ρs) d~S +

∫ ∫
Sb+Sw

(ρ1 − ρb) d~S +

∫ ∫
Sρ2

(ρ1 − ρ2) d~S]. ~f

(21)

where ρs(x, y) is the density at the ocean surface and ρb(x, y) the density301

along the bottom of the ocean. This form takes advantage of the expression302

Eq. 10c to deal with volumes delimited by the two isopycnal surfaces Sρ1 and303

Sρ2 . Part of the layer boundaries are however associated with outcropping304

surfaces where density varies (Ss, Sw and Sb see Fig. 4). The first right305

hand side term of Eq. 21 depends on ~U × ~Oρ and has to be evaluated along306

these surfaces. For this term, depending on the boundary condition used,307

it may be more convenient to switch back to a form in ρ ~ζ like in Eq. 10a.308

This has to be done carefully using Eq. A.4 (see Appendix A). For instance309

we obtain for the surface Ss:310

−
∫ ∫

Ss
(~U × ~Oρ).d~S =

∫ ∫
Ss

(ρ1 − ρs) ζs dxdy (22)

Finally, notice that the bottom surface has been divided in ”Sidewalls” and311

”Bottom” regions (Sw and Sb, see Fig. 4), possibly associated with different312

boundary conditions. This is artificial if both surfaces are associated with313
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Figure 4: General shape of a layer, bounded by two isopycnic surfaces Sρ1 and Sρ2 , de-

termining a volume where we integrate PV . Outcropping may occur at the surface (Ss)

and at the bottom (Sb). As sketched in the upper plot (a) ”Sidewalls” (Sw) and ”Bot-

tom” (Sb) surfaces are sometimes distinguished in numerical model. In this case, layers

outcropping at the surface and sidewalls can have special constraints (b), as discussed in

section 4.4.
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the seafloor but we did make a difference for the sake of generality. For314

instance in academic configurations, such as a rectangular basin, boundary315

conditions at the walls and at the bottom can differ.316

4.4. Impermeability theorem317

The impermeability theorem (Haynes and McIntyre, 1987, 1990) states318

that there is no net transport of PV across isopycnic (or isentropic) surfaces,319

whatever the evolution. As already shown by Vallis (2006), Eq. 10b is a320

straightforward demonstration of this theorem. Indeed, across such surfaces,321

d~S is parallel to ~Oρ and Eq. 10b shows that they do not contribute to the322

calculation of the PV volume integral, whatever the evolution of the isopy-323

cnic surfaces. Thus, if there are no outcropping regions and the isopycnic324

surfaces are closed, the volume integral of Ertel PV within closed isopycnic325

surfaces is and remains null, whatever the evolution. Alternatively, modi-326

fication of the volume integral of PV in an isopycnic layer is only possible327

when isopycnic surfaces outcrop (Haynes and McIntyre, 1987).328

This principle can be slightly extended. Considering a layer without329

surface outcropping, and considering a no-slip boundary condition at the330

ocean bottom (~Uw = ~U b = ~0), Eq. 21 gives:331

∫ ∫ ∫
V
PVErtel dV =[

∫ ∫
Sb+Sw

(ρ1 − ρb) d~S

+

∫ ∫
Sρ2

(ρ1 − ρ2) d~S ]. ~f . (23)

If ~Uw = ~U b = ~0, the density distribution along the bottom can only be332

modified by diabatic (mixing) effects along the bottom. If the latter are333

negligible, the density field along the bottom is constant, and Eq. 23 then334

shows that there is no modification of the volume integral of PV. Indeed, in335
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this case, both terms in the right hand side of Eq. 23 are constant. This336

is obvious for the first term. The second term is simply the scalar product337

of ~f (constant) and the net Sρ2 surface vector. The latter only depends on338

the position of the edge of the surface, defined by the ρ2 contour along the339

bottom, and thus constant too (an alternative way to demonstrate this is to340

transform the second term using Eq. A.4, see Appendix A). To conclude,341

with no-slip boundary conditions, the volume integral of PV is only modified342

if there exists mixing of the density near the bottom. In practice, the free-343

slip boundary condition is often preferred in ocean circulation models, the344

implication for the generation of PV will be discussed below (section 5.4).345

Another case of interest is when outcropping only occurs at the surface346

and sidewalls (Fig. 4 b). In numerical models, sidewalls are sometimes347

considered vertical and the fy component of the Coriolis vector is also ne-348

glected, so that ~f.d~S = 0. If no-slip boundary conditions are used, many349

terms disappear in Eq. 21 and we then obtain:350

∫ ∫ ∫
V
PVErtel dV = −

∫ ∫
Ss

(~U × ~Oρ) d~S +

∫ ∫
Ss

fz(ρ1 − ρs) dS (24)

This draws attention to the potential importance of sloping boundaries and351

the fy component for the volume integral of PV at basin scale. It also352

shows that the surface terms in Eq. 24 are of special interest and we further353

evaluate their contributions in the next section.354

5. Applications to specific balances355

As discussed in the introduction, there exists a strong link between ocean356

circulation and the PV field, from mesoscale eddies to large scale currents.357

Equation 21 shows that there exists a balance between a volume integral358
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of PV and boundary conditions. Using the divergence form of PV and the359

local PV calculation discussed in section 4.1 allows to preserve this balance.360

This is important for the physical interpretation of model outputs in terms361

of PV.362

In this section, we illustrate how the balance can be used at several scales363

and for various processes in realistic or idealised configurations, for which364

some terms in Eq. 21 can be easily evaluated from observations (e.g. the365

surface ones), simplified or neglected (e.g. for no slip boundary conditions).366

In section 5.1 we discuss how time variations of large scale volume inte-367

gral of PV can be related to surface fields for both models and observations.368

At mesoscale, surface density anomalies play a role similar to PVA369

(Bretherton, 1966). In sections 5.2 and 5.3 we show how Eq. 21 can be370

applied to isolated vortices and jets. We show that the balance leads to a371

precise relationship between surface density anomalies and PVA integrals,372

which has to be satisfied for isolated vortices and jets.373

Finally, in section 5.4 we show how Eq. 21 can be applied to study the374

modification of PV in the bottom boundary layer, underlining the strong375

impact of the boundary conditions (free/no-slip).376

5.1. Surface outcropping regions as indicators of the circulation of deep lay-377

ers378

For some choices of boundary conditions Eq. 21 reduces to Eq. 24. In379

addition, PV can be quickly modified by diabatic processes at the surface380

(Thomas, 2005; Morel et al., 2006; Thomas and Ferrari, 2008; Thomas et al.,381

2013; Wenegrat et al., 2018). We can thus hypothesise that the surface term:382
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Isurf =

∫ ∫
Ss

[(ρ1 − ρs) ~f − (~U × ~Oρs)].d~S

dominates the time evolutions of the integral of PV within a deeper layer,383

which is itself linked to modification of the circulation (Rhines and Young,384

1982a,b; Luyten et al., 1983; Holland et al., 1984; Rhines, 1986; Thomas and385

Rhines, 2002; Polton and Marshall, 2003; Deremble et al., 2014). Comparing386

Isurf from numerical models and observations is thus of interest.387

Using d~S = ~k dxdy (where ~k is the vertical elementary vector), Isurf can388

be rewritten:389

Isurf =

∫ ∫
Ss

[(ρ1 − ρs) ~f − (~U × ~Oρs)].~k dxdy (25)

Note that the integral in Eq. 25 only requires the knowledge of surface390

fields, in particular (~U × ~Oρs).~k only depends on the horizontal gradient of391

the surface density. Isurf can be calculated directly for numerical models.392

For observations, satellite observations (possibly complemented by in situ393

surface drifter observations) provide good estimates of the surface circulation394

over most of the ocean down to scales of order 25 km (see for instance Sudre395

and Morrow, 2008; Abernathey and Marshall, 2013; Rio et al., 2014). To do396

so, the surface current is split into a geostrophic component and a component397

induced by the wind stress:398

~Us = ~Ugeo + ~Uτ (26)

The geostrophic component ~Ugeo and the associated relative vorticity can399

be calculated from the knowledge of the sea surface height (SSH) observed400

by satellite altimetry:401
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~Ugeo =
g

fz
~k × ~OSSH (27)

The wind induced surface current can be evaluated from satellite scat-402

terometer observations and using the wind induced Ekman spiral which gives403

(see Cushman-Roisin and Beckers, 2011):404

~Uτ =
~τ
−π/4
w√
fzν

(28)

where ν is the turbulent eddy viscosity and405

~τ−π/4w =
ρa
ρo
CD‖W‖ ~W−π/4 (29)

where ~W−π/4 is the surface wind but whose orientation has been rotated by406

−π/4, ρa/ρo is the ratio of the air to ocean density and CD ' 3.10−3 is the407

turbulent transfer parameter. As a result, the surface term contributing to408

the calculation of the observed PV within a layer (Eq. 25) can be written:409

Isurf =

∫ ∫
Ss

(ρ1 − ρs) fz − [(
g

fz
~k × ~OSSH +

ρaCD‖W‖ ~W−π/4

ρo
√
fzν

)× ~Oρs].~k dxdy

(30)

and can be calculated from the observed sea surface density (calculated using410

SSS and SST from SMOS, Aquarius and microwave satellite observations),411

SSH and surface wind (all fields generally available over most of the ocean at412

1/4o resolution). We believe the comparison of Isurf from numerical models413

(Eq. 25) and from observations (Eq. 30) can provide an interesting new414

diagnostic for the validation of global or basin scale numerical models.415
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5.2. Constraints for coherent isolated vortices416

Most observed eddies in the ocean are isolated3 (Chelton et al., 2011).417

In QG and SQG models, for coherent isolated vortices, the volume integral418

of PVA and surface density field are linked (Morel and McWilliams, 1997;419

Assassi et al., 2016). We here extend this balance to Ertel PVA.420

Consider a flat earth for which ~f = (0, 0, fz) (f-plane approximation)421

and an axisymmetric vortex over a flat bottom (see Fig. 5 b-d). For the422

sake of simplicity, we also hypothesise that ρ is constant at the bottom and423

that PV
rest

is spatially uniform (linear stratification at rest).424

Integrating the PVA over the control volume Vo (see Fig. 5 b-d) gives:425

∫ ∫ ∫
Vo

PV A dV =

∫ ∫ ∫
Vo

(PVErtel − PV
rest

) dV

=

∫ ∫ ∫
Vo

(−~f.~Oρ− PV rest
) dV

+

∫ ∫ ∫
Vo

−(~∇× ~U).~Oρ dV (31)

By using that PV
rest

= −fz(ρ∞s − ρb)/H, Eq. A.1b and the fact that the426

vortex is isolated, we get:427

∫ ∫ ∫
Vo

(−~f.~Oρ− PV rest
) dV = −

∫ ∫
Ss

(ρs − ρ∞s )fz dx dy (32)

and428

3An isolated vortex has a velocity field that decreases more rapidly than 1/r, where r

is the distance from its center, and the horizontal integral of its vorticity is null at any

level.
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Figure 5: Vertical density structures for axisymmetric vortices having negative (b) and

positive (d) surface anomalies. Vo (dashed contour) is the volume of integration and r is

the distance form the vortex center. The background stratification at rest is indicated in

panels a and c.
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∫ ∫ ∫
Vo

−(~∇× ~U).~Oρ dV = −
∫ ∫

∂Vo

ρ (~∇× ~U).d~S

= −
∫ ∫

Ss
ρs ζsurf dx dy +O(

1

r
)

= −
∫ ∫

Ss
(ρs − ρ∞s )ζsurf dx dy +O(

1

r
) (33)

where ζsurf = ∂xv − ∂yu is the relative vorticity at the surface, ρ∞s is the429

surface density at rest or the surface density far from the vortex center, and430

(ρs − ρ∞s ) is the surface density anomaly associated with the vortex4.431

Integration of Eq. 31 over the whole (infinite) domain shows that PV432

anomalies associated with isolated vortices have to satisfy:433

∫ ∫ ∫
PV A dV +

∫ ∫
Ss

(ρs − ρ∞s )(ζsurf + fz) dx dy = 0 (34)

This extends the integral constraints found in Assassi et al. (2016), which is434

modified for strong surface vorticity (when | ζsurf |' fz) 5. This is the case435

for submesoscale vortices (Lapeyre et al., 2006; Klein et al., 2008; Capet436

et al., 2008; Roullet et al., 2012; Gula et al., 2015; Molemaker et al., 2015;437

Capet et al., 2016).438

4In Eq. 33, the last line is obtained since
∫ ∫

Ss ζ dx dy = 0 for isolated vortices. The

O(1/r) term accounts for the integration over the bottom and lateral boundaries (dashed

contours in Fig. 5). In particular, the lateral contribution scales as | ρ H 2π r ∂zU(r) |≤

O(1/r). The O(1/r) rate of decrease is symbolic and the term simply indicates that these

contributions vanish when r −→∞.
5Strictly speaking, strong anticyclonic vortices, for which ζsurf < − fz, could even

reverse the sign of the deep PVA, but these structures are subject to inertial instability

and are not long lived structures.
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Thus, for isolated vortices, a positive surface density anomaly is accom-439

panied with negative PVA. A positive surface density is equivalent to a440

positive Dirac delta sheet of PVA (Bretherton, 1966). A similar constraint441

holds for a negative density anomaly. Hence, the generalised PVA structure442

of isolated vortices has both positive and negative values, which implies op-443

posite sign PV gradient and opens the possibility of barotropic/baroclinic444

instabilities (Charney and Stern, 1962; Ripa, 1991). This has an impact445

on the evolution (stability and displacement) of the vortex (see Morel and446

McWilliams, 1997). In idealised studies dealing with the dynamics of iso-447

lated vortices, instability of the initial vortex structure can spoil the analysis448

and it is preferential to use specific methods, based on the inversion of stable449

PV structures, to initialise isolated vortices in models (see Herbette et al.,450

2003).451

Moreover, the constraint Eq. 34 can have implications for methodologies452

deriving velocity fields of vortices from surface density observations. The453

methodologies empirically generate PVA distributions based on large-scale454

PV distributions or statistical correlations between surface density obser-455

vations and PVA (Lapeyre et al., 2006; Lapeyre and Klein, 2006; Lapeyre,456

2009; Ponte et al., 2013; Wang et al., 2013; Fresnay et al., 2018). In general,457

the derived PVA distributions do not satisfy constraint 34. The consequence458

is that the velocity field of a reconstructed vortex decreases slowly, which459

can lead to spurious calculations near lateral boundaries (the methodolo-460

gies often consider periodic boundary conditions). It could be interesting461

to modify the methodologies so as to satisfy Eq. 34 in the vicinity of each462

vortex. We however have no clue on the spatial distribution of the PVA463

from the constraint (PVA poles, crown, vertically aligned or not, vertical464

position within the water column, possibly multiple poles of opposite sign,465
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...) and the reconstruction of the vertical vortex PVA have thus to be done466

carefully.467

5.3. Constraints for jets and surface fronts468

Similar constraints can be found for density fronts associated with jet-469

like currents. We consider a 2D configuration with no variation in the y470

direction. In 2D, Eq. 10 becomes471

∫ ∫
S
PVErtel dS = −

∫
∂S
ρ (~∇× ~Ua).~n dl

= −
∫
∂S

(~Ua × ~Oρ).~n dl

= −
∫
∂S
ρ ~f.~n dl −

∫
∂S

(~U × ~Oρ).~n dl (35)

Consider a 2D front outcropping at the surface but with a constant density472

along a flat bottom (see Fig. 6). The velocity field can be written ~U =473

V(x, z) ~j, where V is the velocity component along the y axis. For jet-like474

currents the velocity vanishes away from the front: V(x −→ ±∞, z) = 0.475

The stratification is different on both sides of the front and varies from476

ρ̄−∞(z) to ρ̄+∞(z).477

For this configuration, the determination of the reference PV, associated478

with the state at rest, is slightly more delicate, as we hypothesised that both479

the left and right edges of the front are at rest. It has however to be chosen at480

the left edge as only this side covers the entire density range. The reference481

PV is thus PV −∞rest and we then integrate PVA from x = −∞ to x = L.482

Again, for the sake of simplification, we hypothesise that ~f = (0, 0, fz) and483

PV −∞rest is spatially uniform. Trivial manipulations yield an equation similar484

to Eq. 33:485
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Figure 6: Vertical density structures for a surface outcropping front. S (dashed contour)

is the surface of integration from x = −∞ to x = L.
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∫ ∫
S
PV A dS =

∫ ∫
S
PVErtel − PV −∞rest dS

=−
∫ x=L

−∞
(ρ− ρ−∞) |z=0 (ζz + fz) |z=0 dx

+

∫ z=0

z=−H
(∂zρ V) |x=L dz (36)

Assuming the velocity has a jet-like structure, V(x = L, z) becomes small486

enough so that the last term in Eq. 36, can be neglected. Given the density487

structure discussed here (see Fig. 6), (ρ − ρ−∞) |z=0 is positive, which488

shows that a negative PVA must exist below the outcropping region for jets489

(if (ζz + fz) remains positive). Opposite sign generalised PVA is necessarily490

associated with opposite sign PVA gradients and to instability (Charney491

and Stern, 1962). Similarly to isolated vortices, integral constraint 36 can492

be useful to study the instability of surface fronts and for methods aiming at493

reconstructing the ocean at mesoscale and submesoscale via an estimation494

of PVA within the water column (Lapeyre et al., 2006; Ponte et al., 2013;495

Spall, 1995; Boss et al., 1996; Manucharyan and Timmermans, 2013).496

5.4. PV modification by bottom boundary layer processes497

To study the modification of PV by -necessarily- diabatic processes, Eq.498

4 complemented with the knowledge of diabatic terms is needed (Benthuy-499

sen and Thomas, 2012; Molemaker et al., 2015; Gula et al., 2015, 2019).500

However, as shown next, integral constraints may provide an interesting501

way to monitor the PV evolution within an isopycnic layer intersecting the502

topography.503

To do so let us consider the development of a bottom boundary layer in504

2D, with no variation in the y direction (Fig. 7).505
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Figure 7: Vertical density structures in the deep ocean, near a topography. We consider a

2D configuration and we follow the evolution of a layer determined by two isopycnic levels

ρ1 and ρ2 intersecting the topography. The initial velocity profile and the positions of the

isopycnic levels (a) are modified by some diabatic processes (b).
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We also consider that there is no outcropping at the surface and we fol-506

low a control area A2D bounded by two isopycnic surfaces ρ1 and ρ2, the507

topography and a vertical boundary located at a distance L∞ sufficiently508

large so that we can consider being away from the boundary layer and un-509

affected by the diabatic processes (the stratification and velocity field are510

unchanged, see Fig. 7). Integration of PV over this area gives (see Eq. 35):511

∫ ∫
A2D

PVErtel dA =[

∫
Sw

(ρ1 − ρb) ~n dl +

∫
Sρ2

(ρ1 − ρ2) ~n dl ]. ~f

−
∫
Sw

(~U × ~Oρ).~n dl −
∫
S∞
V∞ ∂zρ∞ dz (37)

Given its definition, the last term in Eq. 37 does not vary.512

The isopycnic levels initially intersect the topography at x = 0 and513

x = L, and along the topography the velocity field is Vo ~j (Fig. 7a). After514

some diabatic processes, involving the viscous boundary layer and diapycnal515

mixing, the velocity profile and the position of isopycnic surfaces are modi-516

fied. The positions of the intersection with the topography are now x = L1517

and x = L2 and the velocity field along the topography is V ~j (Fig. 7b).518

Some trivial manipulations give:519

∫
Sw

(ρ1 − ρb) ~n. ~f dl = −fz
∫ L2

L1

(ρ1 − ρb) dx∫
Sρ2

(ρ1 − ρ2) ~n. ~f dl = fz (ρ2 − ρ1) (L∞ − L2)

−
∫
Sw

(~U × ~Oρ).~n dl = −
∫ ρ2

ρ1

V dρ (38)

Assuming a linear variation of the density along the bottom topography,520

this gives for the initial condition (see Fig. 7):521
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∫ ∫
A2D

PVErtel dA = fz (ρ2 − ρ1)(L∞ −
L

2
)− Vo (ρ2 − ρ1)−

∫
S∞
V∞ ∂zρ∞ dz

(39)

and after the diabatic modification:522

∫ ∫
A′2D

PVErtel dA =fz (ρ2 − ρ1)(L∞ −
L1 + L2

2
)

− V (ρ2 − ρ1)−
∫
S∞
V∞ ∂zρ∞ dz (40)

where V is the mean velocity along the bottom topography (where the av-523

erage is weighted by density). The net modification of the volume integral524

of PV within the layer is thus:525

∆

∫ ∫
layer

PV = −(ρ2 − ρ1) fz ∆X
ρ1/ρ2
bot − (ρ2 − ρ1) ∆Vρ1/ρ2bot (41)

where ∆Vρ1/ρ2bot = V −Vo is the modification of the mean velocity field along526

the bottom and within the layer ρ1/ρ2, and ∆X
ρ1/ρ2
bot = (L1+L2)−L

2 is the527

modification of the mean x position of the layer along the bottom.528

If no-slip conditions are chosen at the bottom, we recover that only529

density mixing along the bottom can modify the volume integral of PV530

within a layer, as already discussed in section 4.4. The time evolution of the531

volume integral of PV then only depends on the variation of the position532

of the intersection of the isopycnic layer: it is negative if the layer goes533

downslope (destratification case as illustrated in Fig. 7) and positive if534

the layer goes upslope (restratification case). Our results are qualitatively535

consistent with Benthuysen and Thomas (2012), despite the fact that we536

consider a layer and not a fixed box for the volume integral of PV.537
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Equation 41 allows the possibility to consider free-slip bottom condi-538

tions. Free-slip boundary conditions is the constraint usually used in nu-539

merical models and can provide an additional modification of the volume540

integral of PV if viscous effects are considered, as first imagined by D’Asaro541

(1988). These viscous effects have to be added to the effect of the modifi-542

cation of density studied in Benthuysen and Thomas (2012) and discussed543

above. Equation 41 shows that they superimpose when calculating the vol-544

ume integral of PV and generally act similarly. Since our results are only545

diagnostics, we have to ”imagine” the evolution of the velocity and density546

fields along the boundary to evaluate the possible PV modification. If we547

consider a velocity field with the shallow region on its right (Vo < 0, as de-548

picted in Fig. 7), in the northern hemisphere, the bottom friction develops549

a downslope Ekman flux that leads to destratification and mixing induces a550

negative volume integral of PV variation. We can also assume that bottom551

friction also acts so as to reduce the strength of the velocity along the bot-552

tom topography, so that | V |<| Vo |. This leads to ∆Vρ1/ρ2bot > 0 and again to553

a negative volume integral of PV variation. Similarly an initial current with554

shallow region on its left would lead to a positive variation. This is consis-555

tent with recent high resolution numerical results, using free-slip boundary556

conditions (see Molemaker et al., 2015; Gula et al., 2015; Vic et al., 2015;557

Gula et al., 2016, 2019) .558

However, as discussed above, the important dynamical quantity is not559

necessarily the volume integral of PV. The key quantity is the PVA within560

an isopycnic layer. We can diagnose the mean PVA evolution within the561

boundary layer by dividing the volume integral of PV by the volume of562

the followed fluid (or its area A2D and A′2D in 2D, see Fig. 7). When563

all isopycnic surfaces remain parallel, this volume is constant (as is the564
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case in Benthuysen and Thomas, 2012, for instance), the mean PVA is565

similar to the volume integral of PV and all previous results thus apply566

to the mean PVA. However, when this is not the case, the modification of567

PVA is more complex and also involves PV dilution or concentration within568

a layer which respectively gains or loses mass (see Haynes and McIntyre,569

1990; Morel and McWilliams, 2001). This process is effective whenever570

there exists variation of turbulence along the topography, which is the case571

if the bottom slope or the velocity field vary spatially. In addition, global572

mass conservation requires that the depletion of one layer coincides with573

the inflation of another layer. Thus, differential diapycnal mixing in bottom574

boundary layers is probably ubiquitous in realistic configurations and we575

can expect the creation of both positive and negative PV anomalies.576

6. Summary and discussion577

6.1. Summary578

In the present paper, we have used three different formulations of Ertel579

PV in divergence form (see Schneider et al., 2003, and Eq. 9) to calculate a580

volume integral of PV from the knowledge of physical fields at the surface581

encompassing the volume. The divergence form and associated integral con-582

straints have then been used to enable easier calculation of PV for numerical583

models, also preserving the balances between boundary conditions and PV.584

This has been explored in more details for specific physical processes at585

different scales.586

We have also shown that the integral constraints associated with the587

divergence form lead to an easier calculation of the PV expression for non588

Cartesian coordinate systems. We have in particular illustrated this by589
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calculating its expression in isopycnal coordinates for the general Navier-590

Stokes equations.591

We have then considered the volume integral of PV within a ”layer”592

delimited by two isopycnic surfaces and their intersections with the ocean593

surface and bottom. A general integral constraint was derived which allows594

to extend the PV impermeability theorem to no-slip conditions provided595

there is no density mixing along the topography. The integral constraint is596

then applied to several specific processes.597

We first explored the link between volume integral of PV and surface598

fields at basin scale and we proposed an indicator to evaluate the time599

evolution of the volume integral of PV within a layer provided it outcrops600

at the sea surface (section 5.1). We proposed an indicator Isurf , depending601

on physical fields at the surface, as the signature of deeper PV. The indicator602

can be easily calculated for models and compared to observations (it depends603

on physical fields that can be estimated using satellite observations: wind,604

sea surface height, surface temperature and salinity).605

When applied to isolated vortices or jets, given the equivalence between606

outcropping and surface PVA concentration (Bretherton, 1966), the balances607

indicate that such structures have opposite sign generalised PVA and are608

thus potentially unstable. It also provides a useful constraint to estimate609

PVA structures from surface information as currently attempted empirically610

(Lapeyre et al., 2006; Lapeyre and Klein, 2006; Lapeyre, 2009; Ponte et al.,611

2013; Wang et al., 2013; Fresnay et al., 2018).612

We finally applied the integral constraints to the modification of PV613

by diabatic processes within the bottom boundary layer. This provides a614

diagnostic of the PV evolution within a layer based on the displacement of its615

mean position and on the modification of the mean along slope velocity along616
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the topography. It shows in particular that free-slip boundary conditions617

have potentially stronger effects on the formation of PVA in the viscous618

boundary layer. Differential mixing (variation of the density mixing along619

the topography) also leads to additional and possibly opposite sign PVA620

along the topography.621

6.2. Discussion622

Concerning the calculation of PV in numerical models, the divergence623

form approach can be adapted to any type of grid (including unstructured624

grids). In numerical models, the main problem is however Lagrangian con-625

servation of PV during the (adiabatic) evolution of the flow. This principally626

relies on numerical schemes used in the model. There exists debates on the627

optimality of numerical grids (for instance between the Charney-Phillips grid628

and the 3D C-grid, see Arakawa and Moorthi, 1988; Bell, 2003) but a fair629

comparison relies on comparable numerical schemes too: numerical schemes630

have to be optimised for the conservation of PV for each grid (see Winther631

et al., 2007). When this is established, the influence of the PV diagnostic632

on the conservation property is interesting to assess too, even though this633

influence is expected to be marginal compared to numerical schemes.634

Concerning the Isurf indicator, we hypothesised that the time evolution635

of the integral of PV in a layer was mostly induced by the evolution of636

the surface fields. Recent studies (Ferrari et al., 2016; McDougall and Fer-637

rari, 2017; de Lavergne et al., 2017; Callies and Ferrari, 2018) have however638

shown that mixing is bottom intensified at large scale and that it is as-639

sociated with strong upwelling/downwelling circulations along the bottom640

topography which control the abyssal circulation overturning. According to641

what is discussed here in section 5.4, this can also modify the average PV.642
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The signature of the modification of the deep PV on surface and bottom643

boundary terms of the PV balance (Eq. 21) can be tested using numerical644

models (Deremble et al., 2014). Equation 14 can be used to calculate PV645

consistently with Eq. 21.646

An interesting perspective is to combine the present results with the wa-647

ter mass transformation (WMT) approach (Walin, 1982; Tziperman, 1986;648

Speer and Tziperman, 1992). If the surface contribution to the volume in-649

tegral of PV can be exactly estimated for numerical models, we have to rely650

on geostrophic and Ekman currents for observations, so that we may miss651

some important ageostrophic contributions to the surface current, in partic-652

ular associated with mixing. The WMT theory allows one to estimate the653

surface drift associated with mixing and heat fluxes and correct the surface654

observations where needed. The importance of this term for the PV balance655

can be assessed in models and the WMT approach provides a way to take656

this effect into account in observations.657

Concerning the dynamics of isolated vortices and jets, the balances can658

be easily extended to take into account variations of density along the bot-659

tom (variations of bottom density have then to be included in Eq. 34 and660

36) and a variable stratification at rest (see Eq. B.6 in Appendix B). This661

implies that the PVA evaluation is also possibly influenced by the bottom662

conditions, so that it may be difficult to reconstruct PVA profiles from the663

knowledge of surface density anomalies alone. Our calculations used the664

f-plane approximation. On the β-plane, weak vortices are dispersed into665

Rossby waves and their initial isolated nature can be rapidly lost. The re-666

sults we derive here are thus of interest mainly for coherent vortices whose667

PV structures is comprised of closed PV contours. For these vortices, we668

can neglect the variation of the Coriolis parameter and Rossby waves.669
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Concerning modification of PV in the bottom boundary layer, the net670

modification of PV is also a function of time (Benthuysen and Thomas,671

2013): the velocity and stratification in the bottom boundary layer do not672

reach instantaneously their equilibrium value (Benthuysen and Thomas,673

2012). Thus, the final modification of PV along a boundary depends on674

the time a fluid parcel will remain in contact with the boundary layer. A675

Lagrangian perspective shows that 3D effects are important for realistic676

conditions: when a circulation encounters a bottom boundary, a fluid parcel677

will be in contact with the boundary layer for a limited time period which678

is a function of the boundary and circulation shapes (see Fig. 8). Both679

frictional effects and diapycnal mixing will modify the PV value of the fluid680

parcel and the strength of the created PVA which eventually separates from681

the boundary.682

The identified processes for PV modification in the bottom boundary683

layer have physical grounds but their implementation in numerical simula-684

tions is a delicate issue as the result also depends on the choices of several685

parameters (turbulent viscosity and diffusion, but also numerical schemes,686

boundary conditions and closure schemes for momentum and tracers in the687

bottom boundary layer). Further studies are needed to evaluate the respec-688

tive strength of each process in numerical simulations and in nature. The689

present results give exact diagnostics that can be helpful for that purpose.690
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Figure 8: Schematic view of the modification of the PV of a fluid parcel that enters and

exits a bottom boundary layer. The PV modification is a function of the time period

the parcel remains within the bottom boundary layer, which is itself a function of the

circulation and topography characteristics.
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Appendix A. General mathematical properties691

For the sake of application to PV, we name ~U , ~ζ and ρ the fields used692

in the following equations, but the latter are exact general mathematical693

results whatever the meaning of the ~U , ~ζ and ρ fields.694

First let us recall some basic properties for the divergence and curl of695

arbitrary fields:696

div(~U × ~B) = (~∇× ~U). ~B − (~∇× ~B).~U, (A.1a)

div(ρ ~ζ) = ~ζ.~Oρ+ ρ div(~ζ), (A.1b)

~∇× (ρ ~U) = ρ (~∇× ~U)− ~U × ~Oρ, (A.1c)

div(~∇× ~U) = 0, (A.1d)

~∇× ( ~Oρ) = ~0. (A.1e)

697

Using ~U = ~Ua and ~B = ~Oρ in A.1a, and ~ζ = ~∇ × ~Ua in A.1b, Eq. A.1698

allow to derive the divergence forms of the PV (Eq. 9).699

We also use the Ostrogradsky-Stokes theorems for the integration of700

divergence and curl fields:701

∫ ∫ ∫
V
div( ~A) dV =

∫ ∫
∂V

~A.d~S (A.2)

and ∫ ∫
S

(~∇× ~A).d~S =

∫
∂S

~A.d~l (A.3)

where V is a finite volume, ∂V is its external surface and d~S is an elementary702

surface oriented outward and is perpendicular to ∂Ω, S is a surface, ∂S is703
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its boundary and d~l is an elementary line oriented parallel to ∂S and in the704

trigonometric direction when S is ”seen from above” (see Fig. A.9).705

Figure A.9: Vector directions for the calculation of volume to surface to line integrals

(Stokes theorem).

Finally, Eq. A.1 and A.3 also give:706

∫ ∫
S
ρ (~∇× ~U).d~S =

∫ ∫
S

(~U × ~Oρ).d~S +

∫
∂S
ρ ~U.d~l. (A.4)

All these integral properties allow the derivation of Eq. 10 and its alter-707

native forms.708

Appendix B. Generalised constraints in nonuniform stratification709

Appendix B.1. Generalised PV710

The definition of PV (Eq. 2) could be changed and ρ can be replaced711

by G(ρ) where G represents a general function. The generalised PV form is712
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thus:713

PVErtel−gen = −(~∇× ~U + ~f).~OG(ρ)

= G′(ρ) PVErtel (B.1)

and such a change does not alter the basic properties associated with PV714

and discussed in the paper.715

The integral of the generalised Ertel PV satisfies all results discussed716

above. In particular, Eq. 10 becomes:717

∫ ∫ ∫
V
PVErtel−gen dV = −

∫ ∫
∂V
G(ρ) (~∇× ~Ua).d~S

= −
∫ ∫

∂V
(~Ua × ~OG(ρ)).d~S

= −
∫ ∫

∂V
G(ρ) ~f.d~S −

∫ ∫
∂V

(~U × ~OG(ρ)).d~S

(B.2)

The integration within a layer (Eq. 21) gives:718

∫ ∫ ∫
V
PVErtel−gen dV = [

∫ ∫
Ss

(G(ρ1)−G(ρs)) d~S

+

∫ ∫
Sb+Sw

(G(ρ1)−G(ρb)) d~S

+

∫ ∫
Sρ2

(G(ρ1)−G(ρ2)) d~S ]. ~f

−
∫ ∫

Ss+Sb+Sw
(~U × ~OG(ρ)).d~S (B.3)

Appendix B.2. Potential Vorticity Anomaly719

For a fluid at rest, where the velocity field and vorticity are null and the720

stratification only depends on the vertical coordinate, the previous gener-721

alised form gives:722
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PV rest
Ertel−gen = −G′(ρ) fz ∂zρ

= −fz ∂z[ G(ρ(z)) ] (B.4)

where fz is the local vertical component of the Coriolis vector and ρ(z) is723

the reference profile of the stratification at rest. Choosing G(X) = ρ̄−1(X),724

where ρ̄−1 is the inverse of the function ρ̄(z) (so that G(ρ(z)) = z), yields725

PV rest
Ertel−gen = −fz: the reference PV is spatially uniform (f-plane approxi-726

mation).727

Using the generalised form of PV given in Eq. B.1 and B.4, we calculate728

the generalised PVA:729

PV Agen = PVErtel−gen − PV rest
Ertel−gen

= −(~∇× ~U + ~f).~OG(ρ) + fz (B.5)

Since the stratification at rest is constant, the calculation performed in730

section 5.2 can be reproduced to lead to the general integral constraints for731

isolated vortices in a nonuniform stratification:732

∫ ∫ ∫
PV Agen dV +

∫ ∫
Ss

(G(ρ)−G(ρ∞s ))(ζ + fz) dx dy = 0

(B.6)

Note that G = ρ̄−1 is a monotonically increasing function, so that all733

the physics discussed in section 5.2 remains qualitatively valid.734
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