
HAL Id: hal-02349629
https://hal.science/hal-02349629

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GIF image retrieval in cloud computing environment
Evelyn Paiz-Reyes, Nadile Nunes-De-Lima, Sule Yildirim-Yayilgan

To cite this version:
Evelyn Paiz-Reyes, Nadile Nunes-De-Lima, Sule Yildirim-Yayilgan. GIF image retrieval in cloud com-
puting environment. Image Analysis and Recognition, pp.261-268, 2018, �10.1007/978-3-319-93000-
8_30�. �hal-02349629�

https://hal.science/hal-02349629
https://hal.archives-ouvertes.fr


GIF Image Retrieval in Cloud Computing
Environment

Evelyn Paiz-Reyes, Nadile Nunes-de-Lima, and Sule Yildirim-Yayilgan

Norwegian University of Science and Technology, Gjøvik, Norway
{elreyes,nadilend}@stud.ntnu.no

{sule.yildirim}@ntnu.no

Abstract. GIF images have been used in the last years, especially on
social media. Here it is explored a content-based image retrieval system
to work specifically with GIF file format. Its implementation is extended
to a cloud computing environment. Given the Tumblr GIF dataset, it is
created a ”search by example” image retrieval system. To describe the
images, low-level features are used: (1) color, (2) texture and (3) shape.
The system performs the search using just GIF images as query images.
To obtain faster results on the retrieval process, a hashing indexing ap-
proach is used. The system showed a complexity of O(n2) for indexing
and O(log(n)) for retrieval. Additionally, better results were obtained
(in relation to precision and recall) for simple images, instead of images
with a lot of movements.

Keywords: GIF image format, content-based image retrieval, hashing,
cloud computing

1 Introduction

The importance of images in people’s daily life has increased along with the ad-
vances in digital technology. The emergence of imaging devices, such as smart-
phones, cameras, and computers, has led the world to witness the growth in
quantity, availability, and value of images [1]. The need to access this type of
data anytime and anywhere has increased its importance.

Content-based image retrieval (CBIR) has been widely studied [2] [3] [4]. A
CBIR system retrieves the relevant images from a database to a search query
based on visual characteristics, where each image in the database is mapped to
a feature vector including visual, structural and conceptual characteristics [5].
On the other hand, a CBIR maintenance is considered to be a typical example
of cloud computing. It offers a great opportunity for on-demand access to a wide
computation and storage resources [1].

Among the many image formats that can be applied on a CBIR system, one
that is interesting to mention is the GIF (Graphics Interchange Format) file for-
mat. Because of its high compression ratio and less disk space needs, this image



format has been spread quickly and supported by a wide variety of applications
[6]. It was designed ”to allow the easy interchange and viewing of image data
stored on local or remote computer systems” [7].

GIF has become well known and it is the second most common image format
used on the World Wide Web after JPEG. Up until now, there have been few
attempts to explore the design and development of a CBIR system for this file
format. The objective of the present work is first to design and develop a CBIR
system for indexing and retrieval of GIF file formats using the Tumblr GIF
dataset [8]. Secondly to extend the CBIR to a cloud computing environment.

2 Related works

2.1 Content-based image retrieval system

No matter what type of CBIR system is intended to be built, the following steps
are the ones needed to complete it [1] [9] [10]:

Image descriptors An image feature can be described as anything that is
localized, meaningful and detectable from an image [4]. In practice, the use of
multiple features is needed to be able to achieve a good description of the image.
The features/signatures intended for this work are color [4], texture [4] [10] and
shape [4].

Dataset indexing Indexing can be described as the process of quantifying the
dataset by utilizing an image descriptor to extract features from each image.

Definition of similarity metric Images can be compared using a distance
metric or similarity function. This function takes the feature vectors as inputs
and its output is a number representing how ”similar” the feature vectors are.
The choice is highly dependent on (1) the dataset and (2) the types of features
that were extracted.

Search The search process is the following: (1) A user submits a query image
to the system, (2) its features are extracted and (3) the similarity function is
applied to compare the query features with the features already indexed. From
there, (4) the results are sorted by relevancy and then presented to the user.

2.2 CBIR and Graphics Interchange Format (GIF)

GIF is a standard image representation and has the possibility to create ani-
mations, which made it popular on social media. There is no work related to a
CBIR system specific for indexing and retrieving GIF files. The GIF format was



developed in 1987 by Steve Wilhite at CompuServe Network [6]. Its purpose is to
store multiple bitmap images in a single file for exchange between platforms and
images. It is stream based and is made up of a series of data packets called blocks
and protocol information. In GIF, lossless file compression method is applied [7].

GIF file format comprises a number of frames that are displayed in succession.
Each frame is displayed with a time delay to wait until the frame is drawn [6].
Then, why not call a GIF a video? Because a video is a collection of both inter
and intra coded frames. In a video, the inter-coded frames take advantages of
the other frames, so compression is far more efficient. On the other hand, a GIF
is just a collection of intra frames and each frame is coded on its own [11].

3 Methodology

The goal is a GIF-based CBIR system. A GIF is an image file and not a video
file [11], but it has the characteristic of frames as video files do. Therefore, this
is considered in the design of the system (Figure 1).

Fig. 1. Flowchart representing the architecture of the designed system.

3.1 Definition of dataset

A collection of 2k randomly selected GIF images from the Tumblr GIF dataset
(containing 100k animated GIFs in total) is used. The dataset consists of various
GIFs images from Tumblr taken from random posts between May and June of
2015 [8].



Because the dataset was not previously divided into classes, the collection
was manually classified into four categories where the images belonging to each
category were considered similar (subjectively by the experimenter). It is impor-
tant to mention that it was not possible to categorize all images. The dataset
was composed of categorized plus uncategorized images. The final classes were
the following:

1. Grayscale with couples.
2. Grayscale focused on faces and/or mainly just one person throughout the

image.
3. Sports on a field (golf, soccer, baseball, etc.)
4. Animals.

3.2 Definition of image descriptor

The most basic image descriptors (color, texture, and shape) are employed. For
each descriptor, a specific feature vector is created and then the three merged into
a single feature vector. This means that each image in the dataset is represented
and quantified using only a list of floating point numbers. Figure 2 shows this
process. Additionally, the ad-hoc values selected were the ones that gave better
result concerning the visual perception of the image and processing time.

Fig. 2. Flowchart representing an example of the feature extraction.

Color-based descriptor The color-based image descriptor is a 3D color his-
togram in the HSV color space. It is used 8 bins for the hue, 12 for the saturation,
and 3 for the value, yielding a feature vector of dimension 8× 12× 3 = 288 [10].

Texture-based descriptor The method of local binary patterns (LBP) [12] is
applied. First, the image is converted to grayscale and, for each pixel, a circular
neighborhood of p = 24 points and radius r = 8, surrounding the center pixel is
selected. An LBP value is calculated for each center pixel and stored in an output
2D array [13]. Its computed histogram is the texture-based image descriptor [12].
A total feature vector of dimension 24 + 2 = 26 is obtained.



Shape-based descriptor Zernike polynomials are orthogonal to each other
and there is no redundancy of information between moments [14] [15]. First, the
image is converted to grayscale and segmented. Next, the Zernike moments are
applied (with r = 21, where r is the radius of the polynomial) to characterize
the shape of the object. The result is a vector with the first 25 Zernike moments
from the segmented image [16].

3.3 System architecture

The system is divided into three basic modules: (1) averaging and description
of the images, (2) indexing of the data and (3) retrieval from a query. Figure 1
shows a graphical representation of the final architecture.

Averaging and description This module takes as an input a GIF image.
A GIF image has the property of containing various images (frames) inside,
and instead of working with all these data, an average image is obtained (see
Algorithm 1). Next, it is computed the three feature vectors described in section
3.2. The output is the combination of these vectors in a single feature vector.

Algorithm 1: Proposed averaging GIF image algorithm.

Data: List of frames/images in the GIF file
1 Set sum image to an empty image;
2 for each frame in the GIF image do
3 add sum image with the frame image pixel by pixel;
4 end
5 average image = (sum image / total number of frames);
6 Return average image;

Indexing The basic process of indexing is done as in a normal CBIR (features
of each image are extracted and stored), but with the inclusion of averaging. For
each image of the dataset (section 3.1), the average is calculated and features
are extracted. The resulting feature vectors are saved in a hash table in the form
of a dictionary, where information of the image (name), a feature vector and
hashed value of the feature vector are stored. The method used for indexing is
the locality sensitive hashing (LSH) [17], aiming to maximize the probability of
a ”collision” for similar items.

Retrieval The module works in the following way: (1) The input is a query GIF
image; (2) the image is averaged and features are extracted to a single vector;
(3) The query feature vector is compared with the stored feature vectors using
Euclidian distance and a set of similar results is obtained; and (4) The top 5
results are retrieved and displayed to the user.



4 Experiments and results

4.1 Indexing and retrieval time

In steps of 200 images, both indexing and retrieval time were tested (Figure 3).
The indexing time of each one of the image descriptors (individually) was also
measured. A PC (Intel Core i5; 2.5 GHz) with macOS High Sierra and Python
2.7 was used in the experiment. The result data (from the measured time) was
fitted on a curve to obtain the complexity of both indexing and retrieval. For
indexing, all image descriptors (individually and combined) showed a polynomial
behavior. In retrieval, the result was a logarithmic structure instead. The final
outcome of the experiment revealed a complexity of O(n2) for indexing and
O(log(n2)) for retrieval.

(a) Indexing time. (b) Retrieval time.

(c) Precision and recall curve. (d) ROC curve.

Fig. 3. Measuring curves of the system from 0 to 2000 images.

4.2 Precision and recall of the system

On the second experiment, the precision and recall of the system were measured
(Figure 3). A total of 4 images from each category were selected randomly as



query and the values of precision and recall were measured for each one of the
queries (retrieving 1 to 10 images as a result). The average results were com-
puted for each category. A final average of all the categories was the resulting
precision and recall curve. Finally, a ROC curve was also computed. The same
measurements of the precision-recall curve were used. Instead of estimating pre-
cision and recall, it was computed sensitivity and specificity. Figure ?? shows
the resulting curves.

4.3 User happiness

The final experiment was a user happiness evaluation. The study was performed
with 6 adult volunteers from the Norwegian University of Science and Technol-
ogy (NTNU). For each category (same as section 3.1), a set of four images was
shown. The user selected one each time and for the retrieved GIFs, the partici-
pant indicated what was considered relevant and irrelevant to him/her.

It was mentioned from their point of view that the time response for the
retrieval was acceptable (83%). Also, users considered the categories 1 and 2
as similar. Finally, during the classification of what was relevant and irrelevant
for the user, the semantics of the files had a strong influence. The participant
tended to consider a file relevant when it contained the same actions or emotions
as the query (i.e. if the query contains a person crying, the relevant results will
be GIFs with people sad or crying as well).

5 Discussion and conclusion

The complexity of the system was divided in two: indexing and retrieval. When
the feature extraction is evaluated separately, it is clear that the texture descrip-
tion is the process that takes the majority of the time. This is because on the
LBP method every single pixel in the image is computed, increasing the time
needed to extract the features. Therefore, for future improvement of the system, a
new method that is able to reduce the complexity of describing texture is advise.

The relevance/irrelevance of the files retrieved was judged by users and sim-
ilarities between the answers were found. However, GIFs nowadays are also part
of the social interaction, being used to transmit emotions and opinions towards
some subject online. Therefore, only low-level features might not be enough to
find the relation between the content of the file and what is the meaning the
user is looking for.

The best results of the system were related to queries that did not have many
motion through the images inside the file. The improvement of this condition
can be a valid future work for this project. The insertion of semantics and classi-
fication would be also recommended, but first, a precise and detailed description
must be done for the dataset (classifying every image). Hence, this classification
would allow the use of machine learning to improve the retrieval process.



References

1. Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., Ren, K.: A privacy-preserving and
copy-deterrence content-based image retrieval scheme in cloud computing. IEEE
Transactions on Information Forensics and Security 11(11) (Nov 2016) 2594–2608

2. Zouaki, H., Abdelkhalak, B.: Indexing and content-based image retrieval. In: 2011
International Conference on Multimedia Computing and Systems. (April 2011) 1–5

3. Rashno, A., Sadri, S.: Content-based image retrieval with color and texture fea-
tures in neutrosophic domain. In: 2017 3rd International Conference on Pattern
Recognition and Image Analysis (IPRIA). (April 2017) 50–55

4. Kaur, M., Sohi, N.: A novel technique for content based image retrieval using
color, texture and edge features. In: International Conference on Communication
and Electronics Systems (ICCES). (10 2016) 1–7

5. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and
trends of the new age. ACM Comput. Surv. 40(2) (May 2008) 5:1–5:60

6. Zhang, Y.: The studies and implementation for conversion of image file format.
In: 2015 10th International Conference on Computer Science Education (ICCSE).
(July 2015) 190–193

7. Tiwari, N., Shandilya, D.M.: Evaluation of various lsb based methods of image
steganography on gif file format

8. Li, Y., Song, Y., Cao, L., Tetreault, J., Goldberg, L., Jaimes, A., Luo, J.: TGIF:
A New Dataset and Benchmark on Animated GIF Description. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). (June 2016)

9. Yang, Z., i. Kamata, S., Ahrary, A.: Nir: Content based image retrieval on cloud
computing. In: 2009 IEEE International Conference on Intelligent Computing and
Intelligent Systems. Volume 3. (Nov 2009) 556–559

10. Rosebrock, A.: The Complete Guide to Building an Image Search En-
gine with Python and OpenCV. https://www.pyimagesearch.com/2014/12/01/

complete-guide-building-image-search-engine-python-opencv/ (2014) [On-
line; accessed 19-September-2017].

11. Hu, W., Xie, N., Li, L., Zeng, X., Maybank, S.: A survey on visual content-
based video indexing and retrieval. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 41(6) (Nov 2011) 797–819

12. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 24(7) (Jul 2002) 971–987

13. Rosebrock, A.: Local Binary Patterns with Python &
OpenCV. https://www.pyimagesearch.com/2015/12/07/

local-binary-patterns-with-python-opencv/ (2015) [Online; accessed 6-
November-2017].

14. Chaumette, F.: Image moments: a general and useful set of features for visual
servoing. IEEE Transactions on Robotics 20(4) (Aug 2004) 713–723

15. Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using zernike moments.
Signal processing: Image communication 16(1) (Aug 2000) 95–102

16. Rosebrock, A.: Building a Pokedex in Python: Indexing our Sprites using
Shape Descriptors (Step 3 of 6). https://www.pyimagesearch.com/2014/04/07/

building-pokedex-python-indexing-sprites-using-shape-descriptors-step-3-6/

(2014) [Online; accessed 6-November-2017].
17. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing

scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry, ACM (2004) 253–262


