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Abstract 29 

 30 

     The present work was designed to assess the modulatory effects of sesame oil (SO) and 31 

ascorbic acid (AA) on abamectin (ABM)-induced oxidative stress and altered gene expression of 32 

hepatic cytochrome P450 2E1 (CYP-2E1), p38 MAPK, and caspase-3 and cerebral P-33 

glycoprotein (Abcb1a receptor). Male rats were distributed into five groups (6 rats/group), 34 

receiving distilled water, ABM 2 mg/kg bwt 1/5 LD50 orally for 5 days, ABM+AA 100 mg/kg 35 

bwt orally, ABM+SO 5 mL/kg bwt orally, or ABM+SO+AA at the aforementioned doses. 36 

Nineteen compounds were identified in the SO sample by GC-MS analysis, including 37 

tetradecane,2,6,10-trimethyl, octadecane, 1-hexadecanol,2-methyl, and octadecane,6-methyl. 38 

Abamectin significantly upregulated the hepatic CYP-2E1 expression with excess generation of 39 

oxidative radicals, as evident by the significant depletion of reduced glutathione and elevation of 40 

malondialdehyde concentration (p ≤ 0.05) in rat liver and brain tissues. Further, ABM 41 

significantly increased TNF-α concentration, the expression of caspase-3 and p38 MAPK in the 42 

liver, as well as p-glycoprotein and GABA-A receptor in the brain. These results were in line 43 

with the observed histopathological changes. Sesame oil and/or AA supplementation alleviated 44 

ABM-induced cell damage by modulating all tested parameters. In conclusion, ABM induces 45 

oxidative stress and increases the expression of CYP-2E1, caspase-3, and p38 MAPK in the 46 

liver, as well as P-gp and GABA-A receptor in the brain. These effects could be ameliorated by 47 

SO and AA, alone and in combination, probably due to their anti-oxidant, anti-apoptotic, and 48 

gene-regulating activities. 49 

Keywords: abamectin; oxidative stress; sesame oil; ascorbic acid; liver and brain; rats 50 

  51 
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Introduction 52 

     Pesticides are used worldwide to control pests, insects, and disease vectors in veterinary 53 

medicine and agriculture (Jones, 2018). Abamectin (ABM) belongs to the avermectins family; 54 

16-membered macrocyclic lactones with a disaccharide substituent at the carbon-13 position. It 55 

is generated from soil actinomycete fungi (Streptomyces avemitilis) and is a combination of 80% 56 

avermectin B1a plus 20% avermectin B1b. Abamectin is used as an anthelmintic agent in cattle 57 

and sheep to eliminate gastrointestinal nematodes, lung worms and nasal bots (Campbell, 2012). 58 

Non-therapeutic exposures to ivermectin and other macrocyclic lactones may lead to toxic 59 

effects; only after oral ingestion of a large amount. Although the exact mechanisms remain 60 

unclear, macrocyclic lactones, when taken in large doses, may pass through the blood-brain 61 

barrier and produce GABA-mimetic toxic effects. In mammals, avermectin intoxication begins 62 

with hyperexcitability, incoordination, tremors, hypotension, and later develops into ataxia, 63 

coma, respiratory failure, and even death (Yang, 2012).  64 

Avermectin is poorly metabolized in mammals; 80–98% of the initially administered dose gets 65 

eliminated in stool (Sun et al., 2005). The highest levels of ABM were detected in the liver and 66 

fat (owing to its lipophilic nature), while the lowest was found in the brain (Gonzalez Canga et 67 

al., 2009). Therefore, the detoxification of ABM may disturb the functions of hepatocytes. The 68 

biodistribution of ivermectin in the host depends on the efflux by P-glycoprotein (P-gp) and 69 

biotransformation by cytochromes P450 (Alberich et al., 2014). P-gp prevents brain toxicity by 70 

limiting the penetration of toxic compounds across the blood-brain barrier (Roulet et al., 2003). 71 

Besides, it contributes to the intestinal excretion of ivermectin (Ballent et al., 2006). Hepatic 72 

drug metabolism is attained by the microsomal cytochrome P450 enzyme system that facilitates 73 

transformation into toxic intermediates, followed by reactive oxygen species (ROS) production, 74 



 4

inflammatory cytokines release and lipid peroxidation (Lu et al., 2012; Maioli et al., 2013). 75 

These events initiate apoptosis and tissue inflammation through interaction with caspases and 76 

mitogen-activated protein kinases (MAPKs) (BayIr and Kagan, 2008).  77 

Oxidative stress is a key factor in avermectins-induced cytotoxicity (Zhu et al., 2013). Therefore, 78 

the use of antioxidants to ameliorate its toxicity is a logical approach. Ascorbic acid is a water-79 

soluble non-enzymatic antioxidant that defends the cellular compartments against reactive 80 

oxygen species (ROS) (Jurczuk et al., 2007). It is an essential element; must be supplied in diet 81 

because it cannot be synthesized in mammalian bodies. Ascorbic acid showed the ability to 82 

prevent lipid peroxidation and protect lipid membranes, proteins and DNA from oxidative harm 83 

(Granger and Eck, 2018). Moreover, it could antagonize the toxic effects of many xenobiotics 84 

(Abdel-Daim et al., 2019a; Abdel-Daim et al., 2019b; Özkan et al., 2012) and has been shown to 85 

renovate the antioxidant capacity of vitamin E (Serbecic and Beutelspacher, 2005). 86 

Sesame oil (SO) is extracted from Sesamum indicum seeds. These seeds contain many 87 

phytochemicals as flavonoids, phenolic acids, tannins, alkaloids, terpenoids, cephalin and 88 

lecithin and some minerals like iron, calcium, magnesium, copper, zinc, manganese and 89 

phosphorus (Anilakumar et al., 2010; Sani et al., 2013). Several lignans, such as sesamolin, 90 

sesamin, and γ-tocopherol are potent polyphenolic antioxidants found in sesame seeds 91 

(Rangkadilok et al., 2010). For example, sesamin protects against oxidative stress and enhances 92 

hepatic drug detoxification (Shuang et al., 2018; Zhang et al., 2016a). Over decades of research, 93 

sesame (oil) exhibited anti-inflammatory, antibacterial, hypolipidemic, antitumor (Anilakumar et 94 

al., 2010) and anti-allergic effects (Jung et al., 2018). 95 

The goals of this experiment were to explore the impact of acute exposure to the commercial 96 

formulation of ABM on the expression of metabolic cytochromes P450 2E1 (CYP-2E1), p38 97 
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MAPK and caspase-3 enzymes in the liver, as well as membrane p-glycoprotein efflux 98 

transporter and GABA-A signaling in rat brain. Further, we tested the preventive capacities of 99 

SO and/or AA against acute ABM toxicity. 100 

 101 

2. Materials and methods 102 

2.1. Chemicals: Abamectin (Vertemic®, 1.8% EC) was bought from Syngenta Agro Services AG, 103 

Egypt. Sesame Oil was supplied by El-Captain Company (El-Obour City, Egypt) and AA 104 

(Ascorbin® 100% B.p) was obtained from Newvetrovit Company, Egypt. Commercial kits for 105 

malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT) were purchased from 106 

Biodiagnostic Company, Egypt. The kits for SGPT, SGOT, ALP enzymes, and direct bilirubin 107 

were supplied from Greiner Diagnostic GmbH-Bahlingen, Germany. The rest of used chemicals 108 

were of analytical grade. The chemical composition of sesame oil was analyzed using Trace GC-109 

ISQ Mass Spectrometer (Thermo Scientific, Austin, TX, USA) as described in Supplementary 110 

file 1.  111 

2.2. Experimental design: Thirty mature male albino rats (weighing 120 to 150 g), were 112 

purchased from the Egyptian Company for Biological Products and Vaccines. Animals were 113 

kept in stainless steel cages, fed rat chow and water ad libitum, and maintained at lab 114 

temperature of 25 ± 2 ᴼC. All maintenance and care procedures were approved by the Research 115 

Ethical Committee at the Faculty of Veterinary Medicine, Beni-Suef University, Egypt. 116 

After two weeks of acclimation, rats were randomly assigned to five groups (n = 6/group). The 117 

first group received distilled water (negative control). The second group (ABM) received a daily 118 

oral dose of ABM (2 mg/kg bwt, 1/5 LD50) for 5 days (LD50: 10 mg/kg) (Abdel-Daim and 119 

Abdellatief, 2018). The third group (ABM+AA) received ABM plus a daily dose of AA (100 120 
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mg/kg bwt, orally) (Abdel-Daim and El-Ghoneimy, 2015; Seo and Lee, 2002), while the fourth 121 

group (ABM+SO) was given ABM plus a daily dose of SO (5 ml/kg bwt, orally) (Saleem et al., 122 

2014). The fifth group (Combination) received SO and AA with the same doses as before. 123 

Groups (3 to 5) were given SO and/ or AA for 10 days before ABM exposure and 1 hour before 124 

ABM administration for 5 successive days. Figure 1 summarizes the experimental design and 125 

observed findings.  126 

2.3. Blood sampling and tissue processing: On the day following the last ABM dose, rats were 127 

anesthetized using isoflurane for blood withdrawal from the retro-orbital plexus, and then killed 128 

via cervical dislocation. The samples were centrifuged (at 3000 rpm for 15 min) to separate sera. 129 

The liver and brain were excised, washed with saline, and then blotted over filter paper. The 130 

tissue was divided into three parts: the first (0.5 g) was homogenized in phosphate buffer saline 131 

(pH 7.4, 5 ml). Homogenates were later centrifuged at 3000 rpm for 15 min at 4 ˚C using a 132 

cooling, high-speed centrifuge; supernatants were collected and preserved at −80 ˚C until 133 

analysis of tissue oxidant and antioxidant indices. The second tissue part was preserved at -80 ˚C 134 

for molecular investigations. The third tissue part was prepared for histopathological 135 

examination. 136 

2.4. Biochemical estimations: The measurements of MDA, GSH concentrations and CAT 137 

activity were performed as per the methods described by Mihara and Uchiyama (Mihara and 138 

Uchiyama, 1978), Beutler et al. (Beutler et al., 1963) and Aebi (Aebi, 1984), respectively. Serum 139 

samples were used to measure the activities of SGPT and SGOT (Reitman and Frankel, 1957), 140 

ALP (Tietz et al., 1983), and bilirubin (Tolman and Rej, 1999).  141 

 142 

2.5. Detection of TNF-α by ELISA: Tumor necrosis factor-α (TNF-α) levels were determined 143 
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by ELISA technique as per the methods of Tietz 1995 (Tietz, 1995). ELISA kits were purchased 144 

from R&D system (MN, USA). 145 

2.6. Quantitative analysis of gene expression of CYP-2E1, Caspase-3, GABA-A receptor and 146 

p-gp by real time PCR 147 

Total RNA extraction: Total RNA was extracted from the brain and liver tissue homogenates 148 

according to the manufacturer’s instruction, using SV Total RNA Isolation System (Promega, 149 

Madison, WI, USA). The RNA concentrations and purity were measured with UV 150 

spectrophotometer. 151 

Complementary DNA (cDNA) synthesis: The extracted RNA was reverse-transcribed into 152 

cDNA using high capacity cDNA reverse transcription kits (#K1621, Fermentas, USA) following 153 

the manufacturer’s instructions. 154 

Real-time quantitative PCR: Real-time qPCR amplification and analysis were performed using 155 

an Applied Biosystem with software version 3.1 (StepOne™, USA) to measure the expression of 156 

mRNAs of target genes in the liver and brain, with B-actin as an internal reference (house-157 

keeping gene). The isolated cDNA was amplified using SYBR Green Master Mix (Applied 158 

Biosystems) following the manufacturer's protocol. The primers used in the amplification are 159 

shown in Table 1 and were designed by Gene Runner Software (Hasting Software, Inc., Hasting, 160 

NY) from RNA sequences in the gene bank (based on published rat sequences). Data from real-161 

time assays were analyzed using the v1.7 sequence detection software from PE Biosystems 162 

(Foster City, CA). Relative expression of the studied gene mRNA was calculated using the 163 

comparative Cycle threshold (Ct) method. All values were normalized to β-actin and reported as 164 

fold change over background levels detected in the treated groups. All these steps were 165 

performed according to the methods of Livak and Schmittgen (Livak and Schmittgen, 2001). 166 
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2.7. Detection of p38 MAPK protein by Western Blot technique: p38 MAPK protein was 167 

detected following the manufacturer's protocol (V3 Western Workflow™ Complete System, Bio-168 

Rad® Hercules, CA). In brief, ice-cold radio immune precipitation assay (RIPA) buffer, along 169 

with phosphatase/protease inhibitors, were used for protein extraction from liver tissue 170 

homogenates. To visualize p38 MAPK protein, we used enhanced chemiluminescence (from 171 

ECL plus; Amersham, IL), followed by Molecular Analyst Software (Bio-Rad, Richmond, CA) 172 

for quantification. Protein levels were expressed in relation to β-actin.  173 

2.8. Histopathological studies: Sections from the liver and brain tissues (M1 motor cortex and 174 

hippocampus) were fixed in buffered formalin, then stained with Hematoxylin & Eosin to 175 

examine pathological findings under a light microscope.  176 

2.9. Statistical analysis: Data from the five experimental groups were summarized as means ± 177 

standard errors (SEM), and then transferred to a data sheet on the SPSS software (version 22, 178 

IBM Co., Armonk, NY). We used the ANOVA followed by Tukey's post-hoc test for 179 

experimental group comparison. P value ≤ 0.05 was accepted for significance. 180 

 181 

3. Results 182 

3.1. Sesame oil GC-MS analysis: In the present study, 19 compounds have been identified in 183 

the SO sample by GC-MS analysis (Table 2). The major components were tetradecane,2,6,10-184 

trimethyl- (38.41%), octadecane (20.52%), 1-hexadecanol, 2-methyl- (9.14 %), octadecane, 6-185 

methyl- (5.72%), 1-tetradecanol (3.85%) and 9-octadecenoic acid (Z)-  (3.70%). The mass 186 

spectra of all major components in the studied sample are shown in Supplementary file 1. 187 

3.2. Serum biochemical analysis: Oral administration of ABM was associated with significant 188 

(p ≤0.0001) elevations in serum levels of hepatocyte injury biomarkers (SGOT and SGPT) and 189 
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biliary tract injury biomarkers (ALP and direct bilirubin), compared to the control group. Our 190 

results revealed the hepatoprotective effects of SO and AA, alone or in combination, as they 191 

significantly ameliorated the ABM-induced alterations in the four parameters. The obtained 192 

values in the ABM+SO and ABM+AA+SO combination groups were more frequently 193 

comparable to the control group, relative to the ABM+AA group (Table 3). 194 

3.3. Hepatic oxidant/antioxidant markers: Acute ABM exposure was associated with 195 

significant (p ≤0.05) increases in the hepatic tissue MDA concentration and CAT enzyme 196 

activity, as well as a significant drop in GSH level, compared to the control rats. Ascorbic acid 197 

and/or SO supplementation significantly (p ≤0.05) restored MDA, CAT and GSH to the normal 198 

control levels. There were no significant variations among the treated groups (ABM+AA, 199 

ABM+SO or Combination group) (Table 4). 200 

3.4. Brain oxidant/antioxidant markers: Our analysis showed a significant decrease (p ≤0.05) 201 

in MDA concentration and significant increases in GSH content and CAT activity in the brain 202 

tissues of rats, treated with SO and/or AA, in comparison with ABM-exposed rats. Both 203 

treatments, either alone or in combination, could restore MDA and GSH to normal levels; 204 

however, the effect of combined treatment was more pronounced than that of a single treatment 205 

(Table 4). 206 

3.5. Hepatic tumor necrosis factor-α concentration: Following ABM exposure, we observed 207 

significant elevations (p ≤0.05) in liver tissue TNF-α concentrations in comparison to control 208 

rats. Treatments of ABM-intoxicated rats with SO, AA, or their combination was associated with 209 

significant reductions in hepatic TNF-α in comparison to rats, exposed to ABM alone. There 210 

were no significant variations among the treated groups (ABM+SO, ABM+AA or Combination 211 

group); Figure 2. 212 
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3.6. Expression of CYP-2E1, caspase-3, and p38 MAPK in the liver: Abamectin 213 

administration was associated with a significant boost in the hepatic tissue expression of CYP-214 

2E1, caspase-3 and p38 MAPK proteins. In contrast, SO and/or AA supplementation ameliorated 215 

the ABM-induced increases in CYP-2E1, caspase-3, and p38 MAPK expression. There were no 216 

significant variations among the treated groups (ABM+SO, ABM+AA, or Combination groups). 217 

Figure 3 show the observed changes in CYP-2E1, caspase-3, and p38 MAPK expression in rats' 218 

liver tissues. Figure 4 shows the western blotting analysis of p38 MAPK hepatic expression in 219 

relation to β-actin. 220 

3.7. Expression of ABC efflux transporter (Abcb1a) and GABA-A receptor in the brain: In 221 

this study, the expression of genes encoding the major ABC transporter (Abcb1a) was 222 

significantly increased following ABM exposure. This over-expression was significantly 223 

ameliorated in rats, treated with SO and AA, alone or in combination. Similarly, ABM exposure 224 

significantly upregulated GABA-A receptor expression in the brain of ABM-intoxicated rats 225 

(compared to normal controls), which was alleviated in rats treated with ABM plus SO, AA, or 226 

their combination (Figure 5).  227 

3.8. Histopathological findings: Liver tissue sections from the control group show normal 228 

hepatic lobules with granulated and radiating hepatocytic cords from the central vein. However, 229 

tissue sections from ABM-exposed rats display lymphocytic infiltration and hemorrhage in the 230 

portal area, sinusoidal dilatation, as well as cellular hydropic degeneration, nuclear displacement, 231 

and focal ballooning of hepatocytes around the central vein. Marked reductions in these 232 

pathological alterations were observed after administration of SO and AA or their combination. 233 

Hepatic sections were nearly normal in the three treated groups except that those treated with SO 234 

and AA alone showed blood vessels congestion (Figure 6). 235 
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Cerebral cortex tissue sections from the control group show normal histological structure. In 236 

contrast, sections from ABM-intoxicated rats show dark stained nuclei, neuropil vaculation and 237 

hemorrhage. Rat groups, treated with SO or AA alone, showed marked reduction of hemorrhage, 238 

while the combination group sections show lightly-stained vesicular nuclei (Figure 7). 239 

Hippocampal tissue sections from the control group show normal outer pleomorphic, middle 240 

pyramidal, and inner molecular layers. However, sections from ABM-intoxicated rats show 241 

pyknosis, dark stained pyramidal neurons and degenerative changes in the middle pyramidal 242 

layer. Interestingly, ABM-intoxicated rats treated with SO only showed few pyknotic pyramidal 243 

cells, while rats treated with AA and SO+AA combination show nearly normal pyramidal cells 244 

with euchromatic nuclei (Figure 8). 245 

 246 

4. Discussion 247 

     Oxidative stress is a key player in ABM-induced toxicity. The hemeprotein cytochrome P450 248 

multi-enzymatic complex act mainly as mono-oxygenases for the metabolism of many 249 

compounds. During the metabolism of toxic substrates by CYP2E1, more reactive and toxic 250 

products are formed with excess generation of ROS (Danielson, 2002). These ROS further 251 

degrade the CYP hemeprotein to release iron, which catalyzes the Fenton's reaction, potentiating 252 

lipid peroxidation (Caro and Cederbaum, 2004). In the present work, the detected overexpression 253 

of hepatic CYP2E1 gene and resulting ROS probably played a role in the observed hepatic injury 254 

in ABM-intoxicated rats as indicated by the significant increases in the hepatic lipid peroxidation 255 

indicator (MDA concentration) and depletion of GSH stores in the liver. In addition, the brain 256 

redox markers were altered following ABM exposure.  257 
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Reduced glutathione is the principal antioxidant that removes ROS, generated by CYP2E1 (Chen 258 

and Cederbaum, 1998), thus GSH depletion (as observed in this study) leads to H2O2 259 

accumulation, lipid peroxidation and cell damage. Catalase is a prominent endogenous 260 

antioxidant enzyme. The higher activity of hepatic CAT, noticed in the present study, may have 261 

been an adaptive response against H2O2 produced by ABM metabolism. In contrast, CAT 262 

activity was reduced in the brain of ABM-intoxicated rats. This result is parallel with that 263 

reported by Nasr et al. (Nasr et al., 2016), which reflects the failure of the brain antioxidant 264 

capacity to overcome ABM-induced oxidative stress, probably due to the high oxidative 265 

metabolism in the brain (Gandhi and Abramov, 2012).  266 

The link between ROS and TNF-α is complicated; ROS increase TNF-α release and TNF-α 267 

increases ROS production (Blaser et al., 2016). Reactive oxygen species play as second 268 

messengers in the intracellular signal transduction pathways, including apoptosis. The p38 269 

MAPK pathway is a series of serine/threonine kinases in mammalian cells, activated by 270 

excessive ROS generation (Di Lisa et al., 2011) and inflammatory cytokines (Segales et al., 271 

2016). It mediates inflammatory response in various cell types by up-regulating TNF-α, 272 

interleukin-1 and interleukin-8 (Cuenda and Rousseau, 2007). In this study, ABM induced 273 

hepatocyte apoptosis, as confirmed by the increased caspase-3 expression in rat liver. These 274 

results are comparable to those detected in isolated rat hepatocytes (Maioli et al., 2013) and the 275 

pigeon liver (Zhu et al., 2013). The increased caspase-3 expression detected in our study may be 276 

related to the increased TNF-α level, which is involved in the extrinsic apoptotic pathway (Perez 277 

and White, 2000). Therefore, we suggest the possibility of ABM-induced apoptosis based on the 278 

extrinsic apoptotic pathway.  279 
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In addition, our results show that oral administration of ABM 1/5 LD50 (2 mg/kg bwt.) for 5 280 

days significantly increased the serum activities of SGPT, SGOT and ALP in ABM-treated rats, 281 

compared to the control group. In parallel with prior investigations (Hsu et al., 2001; Khaldoun-282 

Oularbi et al., 2013), these findings indicate that ABM causes permeability alteration and blood 283 

leakage of intracellular enzymes from the damaged hepatocytes. Oxidative stress and 284 

inflammatory cytokines activate heme-oxygenase-1 that regulates the synthesis of bilirubin 285 

(Yamamoto et al., 2007). Direct bilirubin is actively excreted at the canalicular membrane after 286 

binding to transporter proteins (Jedlitschky et al., 1997). Therefore, the damaged hepatocytes 287 

may be less able to produce the transporter proteins required for active transportation of direct 288 

bilirubin into the gall bladder, explaining the observed increase in its serum levels in the present 289 

study.  290 

Because avermectins act as GABA-A receptor agonists in vertebrates, their safety in animals 291 

requires an intact blood brain barrier with integral P-gp. These are efflux transporters from the 292 

ATP-Binding Cassette (ABC) transporters superfamily (Jones and George, 2004), expressed 293 

within the capillary endothelial cells in the brain, placenta, and intestine (Ballent et al., 2006). P-294 

gp protects animals against the diffusion of avermectins into the brain, avoiding the consequent 295 

neurotoxicity (Macdonald and Gledhill, 2007). In rodent genome, P-gp is encoded as two genes 296 

known as MDR1a/Abcb1a and MDR1b /Abcb1b. Abcb1a is more similar to the human gene and 297 

is the main form at the blood-brain barrier and intestine (Croop et al., 1989). In the current study, 298 

the expression of Abcb1a gene was significantly increased following ABM exposure. This 299 

finding is in accordance with a former study on ivermectin in murine hepatocytes (Ménez et al., 300 

2012). In contrast, earlier studies showed that avermectin induces neurotoxicity via either 301 

oxidative damage, apoptosis (Li et al., 2013) or down regulation of P-gp (Sun et al., 2010).  302 
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The increased P-gp expression following ABM exposure in this study can be explained by 303 

several mechanisms. Reactive oxygen species increase the hepatic expression of P-gp (Deng et 304 

al., 2001) and brain endothelial cells in rats (Hong et al., 2006). Moreover, p38 MAPK can 305 

activate NF-κB expression (Saha et al., 2007), which activates MDR1 gene transcription 306 

(Bentires-Alj et al., 2003). Additionally, previous investigations have shown that up-regulation 307 

of P-gp is stimulated by TNF-α in primary hepatocytes (Hirsch-Ernst et al., 1998) and the p38 308 

MAPK pathway in rat prostate cancer cells (Sauvant et al., 2008). In the present study, despite 309 

the detected overexpression of Abcb1a in the brain, the neurotoxic effect of ABM supports that it 310 

is an effective inhibitor of p-gp facilitated transport (Lankas et al., 1998). Therefore, ABM could 311 

increase Abcb1a expression as an adaptive response to oxidative stress. At the same time, ABM 312 

inhibits the P-gp efflux transport function, increasing its penetration into the CNS and facilitating 313 

the interaction with GABA receptors.  314 

Another finding of this study is that ABM could significantly upregulate GABA-A receptor 315 

expression in the cerebral tissue of ABM-intoxicated rats. The mechanism of action of 316 

macrocyclic lactones-induced neurotoxicity (including ABM) in pests relies on their high affinity 317 

for glutamate-gated Cl channels in neuronal and muscular cells. In mammals, they bind to the 318 

receptor for the inhibitory neurotransmitter (GABA) and open the ionotropic GABA-A receptor-319 

gated Cl channels that are limited to the CNS (McCavera et al., 2007). Chloride ions then flow 320 

into the postsynaptic neuron in excess, causing hyperpolarization of the membrane potential and 321 

disrupting nerve signal transmission (Novelli et al., 2012).  322 

Ascorbic acid and SO are commonly used as dietary supplements. Oral SO and/or AA 323 

supplementation were able to inhibit the upregulation of CYP-2E1 expression in the liver of 324 

treated rats. Similarly, sesamin reduced the expression of CYP-2E1 in hepatocytes (Zhang et al., 325 
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2016b)  and alleviated oxidative stress in acetaminophen or carbon tetrachloride-treated mouse 326 

liver (Ma et al., 2014). Previous studies have demonstrated that AA could directly react with 327 

lipid peroxides, increase GSH and antioxidant enzyme levels, and prevent resulting apoptosis 328 

(Santos et al., 2009; Wang et al., 2007). Our results showed that antioxidants like SO and AA 329 

eliminated ROS and lipid peroxides in the liver and brain tissues. Additionally, the effect of 330 

combined treatment was more pronounced in alleviating the oxidative stress in the brain tissue 331 

than that of a single treatment. This may be attributed to the augmenting effect of both 332 

treatments. 333 

Administration of SO and AA significantly alleviated ABM-induced apoptosis by inhibiting the 334 

hepatic expression of caspase-3, as well as p38 MAPK and TNF-α. The anti-apoptotic activities 335 

of SO components and AA have been described in earlier studies. Ascorbic acid inhibited p38 336 

MAPK phosphorylation in vitro (Carcamo et al., 2004). Similarly, Hou et al. reported that the 337 

inhibitory effect of sesamolin on caspase-3, p38 MAPK activation and ROS production could 338 

protect microglia against cell injury (Hou et al., 2004). Ma et al. found that CCl4-induced 339 

apoptosis was inhibited in liver by sesamin through reduction of hepatic TNF-α, Bak, Bax, Cyt. 340 

C and caspase-3 expression levels (Ma et al., 2014).  341 

Sesame oil, AA, and their combination could ameliorate the significant increases in serum 342 

SGPT, SGOT and ALP, caused by ABM. These changes were more pronounced in combination 343 

group compared with that of single treated groups. Previous studies have shown that AA 344 

ameliorated the elevated serum SGPT and SGOT levels in rat models of malathion 345 

hepatotoxicity (Kalender et al., 2010) and organophosphate pesticide toxicity (Ambali et al., 346 

2007). Further, SO ameliorated subacute diazinon toxicity (Abdel-Daim et al., 2016) and 347 

protected brain cells against cypermethrin toxicity (Hussien et al., 2013). Sesame oil 348 
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significantly alleviated ABM-induced elevation serum direct bilirubin, as observed previously in 349 

diazinon intoxicated rats (Al-Attar et al., 2017). These effects may be explained in the light of 350 

GC-MS analysis findings; several compounds within the analyzed SO sample, such as 351 

octadecane and 9-octadecenoic acid have anti-inflammatory activities and have been shown to 352 

mitigate oxidative stress and inhibit the formation of arachidonic acid. 353 

In this study, oral SO and/or AA supplementation counteracted the ABM-induced up-regulation 354 

of Abcb1a expression. Previous research has proven the ability of flavonoids to inhibit P-gp 355 

transporters via inhibition of ATPase activity (Pulido et al., 2006) or competitive inhibition 356 

(Alvarez et al., 2010). Thus, the phenolic sesamin, sesamol, and flavonoids in SO may be 357 

responsible for these effects concerning Abcb1a gene (Anilakumar et al., 2010). Further, SO and 358 

AA alleviated ABM-induced overexpression of GABA-A receptor in rat brain. The brain is 359 

susceptible to oxidative injury due to its high oxygen consumption and a high content of 360 

polyunsaturated fatty acids (Gandhi and Abramov, 2012). Redox agents can regulate the GABA-361 

A receptors function (Calero and Calvo, 2008). In contrast, AA has been shown able to control 362 

the activity of glutamate and GABA receptors to protect neurons against glutamate excitotoxicity 363 

(Calero et al., 2011). Therefore, in the present study, the simultaneous administration of SO and 364 

AA could significantly modulate GABA-A receptor mRNA levels owing to their synergistic 365 

ROS-scavenging effect.  366 

In conclusion, ABM induced oxidative stress and increases the expression of TNF-α, caspase-3 367 

and p38 MAPK. Moreover, it upregulates the expression of drug detoxifying genes; the brain 368 

Abcb1a efflux transporter and the hepatic CYP-2E1 enzyme. However, pretreatments with SO 369 

and AA effectively ameliorated ABM-induced oxidative stress and apoptosis. Simultaneous 370 
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administration of SO and AA was more efficient in protecting the rat liver and brain than single 371 

agent use.  372 
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Figure Legends 588 

Figure 1: Synthesis of the experimental design along with assessed molecular mechanisms. AA: 589 

Ascorbic acid, ABM: Abamectin, CAT: Catalase, CYP-2E1: Cytochrome P450 2E1, GSH: 590 

Reduced glutathione, MDA: Malondialdehyde, ROS: reactive oxygen species, SO: Sesame oil, 591 

TNF-α: Tumor necrosis factor-α 592 

Figure 2: The hepatic concentration of tumor necrosis factor-α (pg/mg) in different experimental 593 

groups. AA: Ascorbic acid, SO: Sesame oil. Columns represent means ± SEM (n=6). Columns 594 

with different superscript letters are significantly different at p ≤ 0.05.   595 

Figure 3: Expression of cytochrome P450-2E1 (CYP-2E1), caspase-3, and p38 MAPK proteins 596 

in the liver of different experimental groups (in relation to β-actin). AA: Ascorbic acid, SO: 597 

Sesame oil. Columns represent means ± SEM (n=6). Columns with different superscript letters 598 

are significantly different at p ≤ 0.05. 599 

Figure 4: Western blotting analysis of p38 MAPK hepatic expression (in relation to β-actin) in 600 

different experimental groups. 601 

Figure 5: Relative expression of brain P-glycoprotein (Abcb1a) in different groups and GABA-602 

A receptor in different groups. AA: Ascorbic acid, SO: Sesame oil. Columns represent means ± 603 

SEM (n=6). Columns with different superscript letters are significantly different at p ≤ 0.05. 604 

Figure 6: Photomicrographs of the hepatic sections stained with H&E. (A) Control group 605 

showed normal structure, (B) ABM group showed lymphocytic infiltration (*) and hydropic 606 

degeneration (curved arrow). The incite showed ballooning of hepatocytes (arrow). The treated 607 

groups with SO (C) and AA (D) showed congested bold vessels (thick arrow). (E) The 608 

combination group was nearly normal. Scale bar 50 um. Incite sale bar 20 um.   609 
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Figure 7: Representative photomicrographs of cerebral cortices of experimental groups stained 610 

with H&E. (A) Control group showing normal histological structure. (B) ABM group showing 611 

dark stained nuclei (arrow), neuropil vacuolation (arrowhead) and hemorrhage (*). Rats treated 612 

with SO (C) and AA (D) showing marked reduction of hemorrhage and (E) Combination 613 

showing lightly stained vesicular nuclei (arrow). Scale bar 50 um. 614 

Figure 8: Representative photomicrographs of hippocampus (CA3) of experimental groups 615 

stained with H&E. (A) Control group showing outer pleomorphic layer (o), middle pyramidal 616 

layer (p) and inner molecular layer (M). (B) Abamectin group showed pyknosis, dark stained 617 

pyramidal neurons (arrow) and degenerative changes in the middle pyramidal layer. (C) treated 618 

with SO only few pyknotic pyramidal cells (arrow). (D) Rats treated with AA and (E) SO + AA 619 

combination showing nearly normal pyramidal cells with euchromatic nuclei (arrow). Scale bar 620 

50 um. 621 

 622 

 623 

 624 

 625 
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Table (1): The primer sequence of the studied rat genes  

 Primer sequence 

GABA Forward primer: 5’- TCGGGACCAACCCAACGTGC -3 

Reverse primer: 5′- CGTGC TGGCCTGATTGACGCT -3 

Abcb1a 

 

Forward primer: 5-ACCAGCGGTCAGTGTGCT-3 

Reverse primer: 5-CGGTTGTTTCCTACATTTGC-3 

Cytochrome 

P450 2E1 

Forward: 5- TTTGGATCCAATGGGTGATGTTGAG -3 

Reverse: 5- TTTGAATTCCTCATTAGTAGCTTTTTTGAG-3 

Caspase-3 Forward primer: 5’- TTC ATT ATT CAG GCC TGC CGA GG -3 

Reverse primer: 5′- TTC TGA CAG GCC ATG TCA TCC TCA -3 

Β-actin  Forward primer: 5’--GGTCGGTGTGAACGGATTTGG -3 

Reverse primer: 5′- ATGTAGGCCATGAGGTCCACC-3 

 



Table 2: The chemical composition of sesame oil sample by gas chromatography-mass 

spectrometry  

 

Peak Area % Molecular 

weight 

 

Molecular 

Formula 

Name of the compound RT No. 

0.40 144 C9H20O Nonanol  

 

3.36 1 

3.85 214 C14H30O 1-Tetradecanol 

 

11.50 2 

0.49 170 C11H22O  Undecanal 

 

13.30 3 

0.59 170 C12H26 Dodecane 

 

14.49 4 

9.14 256 C17H36O  1-Hexadecanol, 2-methyl- 

 

15.93 5 

2.64 268 C19H40  Nonadecane 

 

16.25 6 

38.41 240 C17H36  Tetradecane, 2,6,10-trimethyl- 

 

16.49 7 

1.81 280 C19H36O  12-Methyl-E,E-2,13-octadecadien-1 

 

18.19 8 

5.72 268 C19H40 Octadecane, 6-methyl-  

 

18.68 9 

0.96 240 C15H28O2 Z-8-Methyl-9-tetradecenoic acid  

 

20.57 10 

3.14 228 C15H32O 1-Dodecanol, 3,7,11-trimethyl-  

 

21.36 11 

3.70 282 C18H34O2 9-Octadecenoic Acid (Z)-  

 

22.24 12 

1.29 266 C17H30O2 Hexadecadienoic Acid, methyl ester 

 

22.44 13 

3.01 310 C22H46  Docosane  

 

22.84 14 

0.72 294 C19H34O2  E,E,Z-1,3,12-Nonadecatriene-5,14-diol  

 

23.11 15 

1.77 266 C16H26O3 2-Dodecen-1-yl(-)succinic anhydride  

 

23.55 16 

0.51 254 C16H30O2 9-Hexadecenoic acid  

 

25.91 17 

0.67 268 C17H32O2 7-Methyl-Z-tetradecen-1-ol acetate  

 

28.16 18 

20.52 254 C18H38 Octadecane 

 

28.64 19 



 
Table (3): Changes in serum SGPT, SGOT, ALP and direct bilirubin concentrations in 

different groups 

  

Values are expressed as mean ± SEM (n = 6 per group). Values with different letters in a column 

are significantly different at level p < 0.0001. AA: Ascorbic acid, ABM: Abamectin, ALP: Alkaline 

phosphatase, SGPT: Serum glutamic pyruvic transaminase, SGOT: Serum glutamic oxaloacetic 

transaminase, SO: Sesame oil 

 

 

 

 SGPT 

(U/L) 

SGOT 

(U/L) 

ALP 

(U/L) 

Direct bilirubin 

(mg/dl) 

Control   62.27±2.82a 58.03±4.49a 68.58±3.92a 0.99±0.05a 

ABM 79.46±1.88b 86.87±4.55b 125.6±6.03b 2.09±0.10b 

ABM+AA  67.16±0.76a 76.30±2.13c 91.08±3.74c 1.64±0.04c 

ABM+SO  68.23±1.77a 70.72±3.41ac 84.67±3.13ac 1.43±0.03c 

ABM+AA+SO  68.83±0.49a 67.10±2.62ac 80.21±1.94ac 1.40±0.06c 



 
Table (4): Changes in MDA, GSH concentrations and catalase activity in the brain and 

liver of rats in different groups 

 

Values are expressed as mean ± SEM (n = 6 per group). Values with different letters in a column 

are significantly different at level p < 0.05. AA: Ascorbic acid, ABM: Abamectin, GSH: Reduced 

Glutathione, MDA: Malondialdehyde, SO: Sesame oil 

 

  

 

 MDA 

(n.mol/g tissue) 

GSH 

(mg/g tissue) 

Catalase 

(U/g tissue) 

Brain Liver Brain Liver Brain Liver 

Control   10.84±0.24a 15.25±0.91a 16±0.12ac 16.24±0.12a 0.634±0.01a 0.236±0.01a 

ABM 13.20±0.37b 18.63±0.49b 14.12±0.23b 12.22±0.79b 0.461±0.04b 0.323±0.01b 

ABM+AA  11.86±0.57ab 15.19±0.32a 15.61±0.23a 15.79±0.06a 0.624±0.01a 0.303±0.01bc 

ABM+SO  11.51±0.52ab 15.08±0.51a 15.79±0.14a 15.88±0.23a 0.629±0.01a 0.249±0.02a 

ABM+AA+SO  10.99±0.43a 15.24±0.49a 16.68±0.07c 16.64±0.29a 0.630±0.01a 0.222±0.01a 






