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ABSTRACT

Protein-protein interactions (PPI) offer the unique opportunity to tailor ligands aimed at specifically
stabilizing or disrupting the corresponding interfaces and providing a safer alternative to conventional
ligands targeting monomeric macromolecules. Selecting biologically relevant protein-protein
interfaces for either stabilization or disruption by small molecules is usually biology-driven, on a case-
by-case basis and does not follow a structural rationale that could be applied to an entire interactome.
We herewith provide a first step to the latter goal by using a fully automated and structure-based
workflow, applicable to any PPl of known three-dimensional (3D) structure, to identify and prioritize
druggable cavities at and nearby PPls of pharmacological interest. When applied to the entire Protein
Data Bank, 164,514 druggable cavities were identified and classified in four groups (interfacial, rim,
allosteric, orthosteric) according to their properties and spatial locations. Systematic comparison of
PPI cavities with pockets deduced from druggable protein-ligand complexes shows almost no overlap
in property space, suggesting that even the most druggable PPI cavities are unlikely to be addressed
with conventional drug-like compound libraries. The archive is freely accessible at

http://drugdesign.unistra.fr/ppiome.



INTRODUCTION

Until recently, mostly single macromolecules (proteins, nucleic acids) have been considered as
potential drug targets. Out of the 30,000 proteins currently annotated in the human proteome, ! about
450 targets have currently been addressed by low molecular-weight drugs.? Beside single targets,
large-scale genomics and proteomics have identified complex networks of targets and pathways
regulating physiopathological processes in a coordinated manner.? Protein-protein interactions (PPI)
therefore describe a new biological space that attracts more and more attention, with already 36 PPI
inhibitors under clinical development,* mostly in oncology.® Despite PPIs may adopt quite different
sizes, shapes and electrostatics, identifying high-affinity PPl modulators (inhibitors, stabilizers) is a
considerable challenge.® First and contrarily to conventional targets, a medicinal chemist cannot start
inhibitor design from the structure of endogenous ligands. Second, PPIs often involve flat surfaces
delocalized over multiple epitopes, and lack well-defined buried cavities typical of conventional
targets. Last, high-throughput screening of traditional compound libraries often return no viable hits
for the main reason that PPl modulator chemical space is quite different from that described by
traditional drug-like compounds.” Nonetheless, coupling bioinformatics and proteomics-guided
prioritization of therapeutically relevant protein-protein complexes with efficient screening strategies®

yield more and more PPl modulators.*®

Although the current human protein-protein interactome has been estimated at between 120,000%°
and 650,000 complexes,! a precise map of the human interactome is still missing because even the
most recent and highest quality methods (e.g. yeast two-hybrid, affinity purification or co-
fractionation) yields to almost non-overlapping maps.'2 Many software, metadatabases and internet
resources’®> have been developed to mine protein-protein interactions at different detail levels
(domain, residue, and atom) but none of them is directly usable for rational drug design purpose.
Hence, at least three steps are necessary to post-process the vast amount of available structural data

using heterogeneous tools and file formats. A first restriction, if one aims at using a structure-guided



approach, is to start from PPIs of known experimental structure, deposited in the Protein Data Bank
(PDB).'* Second, interfaces need to be prioritized in order to focus ligand design on pharmacologically
relevant PPIs.?® Third, once the relevant interfaces have been identified, the surface of the protein-
protein complex need to be scanned to identify druggable cavities able to accommodate a high-affinity
ligand.’ It is only at this stage that a structure-based computational approach (e.g. molecular
docking,’” de novo design,*® protein-based pharmacophore search)® can be applied to convert the

structural description of a PPl into a set of putative ligands.

We herewith present a computational approach aimed at filling the above-described gap and fostering
drug discovery from the structural knowledge of protein-protein interfaces. A fully automated
flowchart, made of several steps utilizing in-house developed cheminformatics tools, has been
designed to answer key issues in detecting biologically relevant PPIs and identifying druggable cavities
at the interface or its close vicinity. When applied to the entire PDB, it reveals an almost unexplored
space of 164,514 druggable pockets, specifically geared to design PPl modulators. Intriguingly, a
systematic comparison of this PPl pocketome to that described by known druggable protein-ligand

targets?® shows almost no overlap.



RESULTS

We designed a computational flowchart (Figure 1) that reads the entire PDB content (PDB file format)
and performs a succession of checks for (i) assigning the oligomeric state of the entry, (ii) detecting all
possible two chain-interfaces, (iii) predicting their biological relevance, (iv) detecting all cavities at and
nearby the interface, (v) predicting their structural druggability, and (vi) classifying predicted druggable
cavities into four categories (interfacial, rim, allosteric, orthosteric) according to their properties and

spatial location.
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Figure 1. Computational flowchart to mine the Protein Data Bank. After eliminating low resolution (>
3 A) and diverse entries not solved by X-ray diffraction, the oligomeric status of the entry is checked
for distinguishing monomers from oligomers. For oligomers, all possible binary interfaces are checked
for their biological relevance with a Random Forest model. Predicted biologically relevant interfaces
are then submitted to a full cavity scan and the structural druggability of each cavity predicted with a
support vector machine model. Druggable cavities are then classified in three categories (interfacial,
rim, allosteric) according to their properties and spatial location with respect to the interface.
Monomeric chains, discarded at the first step of the flowchart, are structurally aligned to the same
chain present if part of a biologically relevant protein-protein interface. Cavity detection and
ligandability estimates are performed as described above, and resulting orthosteric cavities added to

the first pool of cavities.



Characterizing biologically relevant PPls. All entries of the PDB were parsed to retain 66,621
oligomeric entries solved by X-ray diffraction with a resolution lower than 3.0 A. To prevent spending
most of the computing time on a tiny fraction of the database, entries presenting more than 10 unique
protein chains (e.g. ribosomes) were discarded from the present analysis. Monomeric entries
(n=30,584) passing the resolution threshold were conserved for later. A total number of 172,635
unique homo- and heterodimeric chain combinations could be detected for which 36% (n=62,278)
were predicted biologically relevant using a previously-developed Random Forest model?! trained to
distinguish crystallographic artifacts from known biologically relevant interfaces For predicted
biologically relevant interfaces, the number of molecular interactions between two chains varies from
7 to 853 with a mean value of 115 (Figure 2a). Analyzing the distribution of interaction types across all
interfaces confirm previous observations???3 that PPIs are composed by a very large proportion of
hydrophobic contacts (85%) whereas hydrogen bonds and ionic bonds are far less frequent (13.7 and
2.5%, respectively; Figure 2b). Comparing the distribution of molecular interactions in protein-protein
(this work) and drug-like protein-ligand complexes?® confirms that shape complementary geared by
apolar contacts is really an hallmark of PPIs (Figure 2b), protein-ligand complexes exhibiting a much
higher proportion of polar interactions (hydrogen bonds and ionic bonds). A large majority of

biologically relevant PPls concerned homodimeric entries (72%).
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Figure 2. Biologically relevant protein-protein interfaces and their cavities. (a) Number of non-covalent
interactions at biologically relevant protein-protein interfaces. (b) Distribution of molecular
interactions (hydrophobic, blue; aromatic, green; hydrogen bond, yellow; ionic bond, rosy brown;
metal chelation, violet) for biologically relevant protein-protein (PPI, n=62,278) and druggable protein-
ligand complexes (sc-PDB, n=16,034) retrieved from the sc-PDB database.?’’ (c) Schematic
representation of four possible cavity types at or nearby an interface between two protein chains A
and B. (d) Distribution of pharmacophoric properties (blue, apolar; green, aromatic; orange, hydrogen
bond donor, yellow, hydrogen bond acceptor; sienna, hydrogen bond donor and acceptor; rosy brown,
positive ionizable; tan, negative ionizable; violet, dummy) for PPI cavities (n=164,514) and drug-like
ligand-bound cavities (sc-PDB, n=16,034). (e) Distribution of cavity volumes (in A) for PPI cavities and
drug-like ligand-bound cavities (sc-PDB). The boxes delimits the 25th and 75th percentiles, the
whiskers delimit the 5th and 95th percentiles, respectively. The median and mean values are indicated

by a horizontal line and a filled square in the box.

Identifying druggable cavities at and nearby biologically relevant PPIs. Having identified the protein-

protein complexes of interest, we next scanned the surface of all corresponding dimeric complexes in



order to detect cavities and estimate their druggability with the previously reported VolSite method.?
Briefly, the method first assigns pharmacophoric features (H-bond acceptor, H-bond donor, H-bond
acceptor and donor, negative ionizable, positive ionizable, hydrophobic, aromatic) to grid points
encompassing each detected cavity. Since pharmacophoric features are defined by complementarity
to the nearest protein atoms, cavity grid points define a negative image of an ideal ligand covering the
entire cavity. Then a support vector machine (SVM) model, trained on 73 VolSite descriptors (number
of cavity points, proportion of each feature type, accessibility of every grid point) of 113 cavity
structures (71 druggable, 42 undruggable) is used to predict in a binary manner (druggable,
undruggable) the structural druggability of each detected cavity. Since its original description,?* the
SVM model has been updated several times, along with VolSite improvments (e.g. better definition of

hydrophobic contacts)? while conserving the same accuracy of 89%.

In order to identify orthosteric cavities that are unmasked only at the surface of monomeric proteins
contributing to the PPI, the protocol was divided in two different workflows (Figure 1). The first one
was run on dimeric complexes selected in the previous section and aims at identifying any but
orthosteric cavities. The second one was only performed on isolated monomeric chains at the
condition that the corresponding protein chain (annotated by chain name and UniProtKB identifier)
was also part of a predicted biologically relevant dimeric complex. To analyze both entries in the same
coordinate space, the structure of the monomeric chain was aligned to that of the corresponding chain
in the dimer.?® Detected cavities at the surface of the aligned monomeric chain were then merged to
the coordinate space of the corresponding dimer, enabling to locate the cavities with respect to the
dimeric interface. According to our previous work on protein-ligand complexes,® lower and upper
volume thresholds (230 A%, 1350 A%) were applied to remove pockets that would be either too small
or too large to accommodate any high-affinity drug-like ligand. Out of the 919,599 cavities identified,

|24

164,514 (17.9 %) were predicted druggable by our support vector machine (SVM) model** trained on



45 pockets descriptors, including size, physicochemical properties, buriedness and curvature (Table 1;
Figure 2c). Druggable cavities were next classified in four categories (interfacial, rim, allosteric,
orthosteric; Figure 2d) depending on their chain composition, average buriedness and distance to the
PPl interface (Table 1). Cut-off values for the two descriptors (buriedness, distance to interface) were
chosen from the manual inspection of known interfacial® and orthosteric?’ cavities. We could detect
6,332 interfacial cavities® which are by definition located at the interface and almost entirely buried by
the two protein chains in contact. By contrast, a large number of solvent-exposed rim cavities (72,242)
could be found as they originate from the assembly of three-dimensional objects?. By nature, they are
also formed by the two chains in contact but remains largely accessible. 41,978 allosteric PPI cavities®®
are located at the surface of only one of the two chains in complex. To limit the relevance of such
cavities, only pockets distant by less than 10 A from the interface were considered here. Last, 43,962
orthosteric cavities were identified. These pockets are only present at the surface of one of the two
interacting chains (in their free state) and are located exactly at a protein-protein interface when the

latter chain is involved in a biologically relevant PPI.

Table 1. Classification of PPI cavities

Type Chains? Buriedness® Distance to interface® Number
Interfacial AandB >75% <3A 6,332
Rim AandB <75% <3A 72,242
Allosteric AorB 2 60% 3-10A 41,978
Orthosteric AorB > 60% <4.5A 43,962
Total count 164,514

2Prototypical AB dimer.®Average buriedness over all voxels defining the cavity. Smallest distance in A
between any cavity voxel and any interaction pseudoatom representing intermolecular interactions

between the two protein chains A and B.




We should point that neither sequence nor structure redundancy has been applied here, as we wanted
to define a full repertoire of druggable cavities that would be insensitive to local minor changes (e.g.

rotameric states of cavity-lining residues) and enable full pairwise cavity comparisons.

Analyzing the pharmacophoric properties of all druggable cavities does not reveal major differences
among the four cavity types (Figure 2d). They are dominated by hydrophobic features (ca. 60% of all
features). The only significant difference, as expected, relates to the solvent exposure that is lower for
interfacial cavities, as revealed by the lower proportion of dummy features (propertyless cavity
features farther than 4.5 A away from any protein heavy atom; Figure 2d). Interestingly, the overall
distribution of pharmacophoric properties observed for PPI cavities deviates from that observed for
conventional ligand-bound druggable cavities in the sc-PDB database.?’ PPI druggable cavities are
clearly more hydrophobic and less buried (Figure 2d). Another noticeable difference lies in the

distribution of cavity volumes that are significantly smaller for PPI pockets (Figure 2e).

Ligand occupancy. We next inspected the location of co-crystallized molecules (ligands, biochemical
reagents, ions, etc...) with respect to the previously identified druggable PPI cavities by measuring for
each entry, the closest distance between the ligand’s center of mass and any cavity pharmacophoric
feature. If the distance is below a user-defined threshold (1.06 A for interfacial, rim and allosteric
cavities; 2.12 A for orthosteric cavities; see Experimental section), the ligand is annotated as being
bound to the corresponding cavity. A vast proportion of druggable PPI cavities are indeed free of any
ligand, however with noticeable differences according to the cavity type (Figure 3a). Rim cavities are
significantly less occupied by bound ligands (9% occupancy on average) than the three other types for
which a ligand is found in 14-19% of cases (Figure 3a). Using an previously developed functional
annotation of PDB chemical components,*® we could annotate pocket occupancy by ligand type (Table
2). For all cavity types, about 50% of unique bound ligands are represented by pharmacological tools

devoid of drug-likeness character (e.g. S-adenosyl-L-homocysteine, retinal). True drug-like ligands
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constitute the second largest category of bound molecules (ca. 30%), notably for orthosteric cavities

for which we could identify 1,572 unique ligands (Table 2). Biochemical reagents (e.g. glycerol,

ethanediol) and cofactors are present in all cavity types, with lower percentages (6-12%) considering

the number of unique molecules (Table 2) but a very high frequency (Table S1, Supporting

Information).

Table 2. Small molecules (unique HET groups) bound to PPI cavities

Ligand type? Cavity

Interfacial Rim Allosteric  Orthosteric
Drug-like® 149 455 559 1,572
Pharmacological tool° 209 1,059 993 2,618
Reagents 40 221 205 293
Cofactor 1 13 12 27
Prosthetic group 0 2 3 3
Natural aminoacid/peptide 3 5 8 0
Modified aminoacid/peptide 9 30 19 68
Sugar 1 31 44 58
Organometallic 5 22 35 56
Nucleic acid/nucleotide/nucleoside 8 19 19 26
Metal 0 3 4 1
lon 3 13 11 31
Water 0 1 0 1
Total 428 1,875 1,915 4,574

3Ligand annotation was realized with IChem, as previously described.>° ®Drug-likeness was defined by

a set of topological fiters (Table S2, Supporting Information) implemented in OpeneEye's Filter

program (OpenEye Scientific Software, Sante Fe, U.S.A.). ‘Ligand rejected by the drug-likeness filter.
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Figure 3. Occupation of PPI cavities by known ligands. (a) Percentages of ligand-free (blue) and ligand-
bound (red) PPI cavities. (b) Example of interfacial cavity (green sphere) between the HLA-B*57:01
protein (tan) and a peptide antigen (blue) with bound ligand (abacavir, yellow sticks; PDB accession
number 3VRI). (c) Example of rim cavity (green sphere) between the alpha chain (tan) and beta chain
(blue) of human HIV-1 protease with bound inhibitor (3IN, yellow sticks; PDB accession number 2C6X).
(d) Example of allosteric cavity (green sphere) between the PYL1 receptor (tan) and the type 2C protein
phosphatase ABI1 (blue) with bound ligand (pyrabactin, yellow sticks; PDB accession number 3NMN).
(e) Example of orthosteric cavity on Bcl-2 (brown) with bound inhibitor (43B, yellow sticks; PDB
accession number 2021). The inhibitor-bound structure is aligned to the structure of Bcl-2 (tan) in

complex with the Bax BH3 peptide (blue; PDD accession number 2XA0).
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Four prototypical examples of drug-like ligands occupying PPl druggable cavities are hihlighted in
Figure 3b-e. For example, the antiviral compound abacavir binds to an interfacial cavity delimited by
two chains of a class | human histocompatibility-peptide complex (PDB accession number 3VRI),*!
thereby altering the repertoire of natural peptide antigens presented to the HLA-B*57:01 allele and
inducing severe immunological side effects.3? A perfect illustration of a ligand bound to a rim pocket is
given by HIV-1 protease inhibitors that bind to the catalytic pocket at the interface of the protease
dimer (PDB accession number 1C6X). Allosteric PPl modulation is here examplified by pyrabactin that
binds to a specific pocket of the PYL1 receptor and further locks the type 2C protein phosphatase ABI1
(PDB accession number 43NMN) in an inactive conformation.> Last, a classical example of orthosteric

inhibition is provided by the anti-apoptotic Bcl-2 inhibitor 43B bound to the Bax BH3 binding pocket

(PDB accession number 2021).

Druggable PPI cavities are unique. Inferring potential ligands for PPl pockets may be obtained by
aligning known ligand-bound pockets to PPI cavities and merging the ligand of the best-aligned pockets
into the PPI cavity space.’® To represent holo pockets, we extracted 16,034 druggable cavities from the
sc-PDB database.?’ We next systematically compared all but allosteric PPI cavities to 16,034 sc-PDB
pockets with the previously reported Shaper algorithm,?* thereby defining a huge similarity matrix of
1.98 billion comparisons. In this exercise, allosteric PPl cavities were not considered as they are
supposed to be already present in the sc-PDB archive. To estimate pair-wise cavity similarities, we
used the in-house developed Shaper software?* that uses a smooth Gaussian function to maximize the
overlap of both shapes and properties of cavity-defining pharmacophoric features. To facilitate the
analysis of the large matrix, only pairs exhibiting a similarity higher than 0.6 (expressed by a Tversky
coefficient on pharmacophoric features overlap; See Experimental section) and a limited difference in
size (less than 10%) were further considered (Filter 1, Table 3). Removing trivial matches (Filter 2, Table

3) between PPl and sc-PDB entries limit the number of possible matching pairs to very small numbers
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(Tables S3-S5, Supporting Information) that were inspected in more details. We notably compared the
predicted location of the sc-PDB-bound ligand in the PPI cavity according to two methods: (i) merging
the sc-PDB ligand in the PPI cavity according to the rotation/translation matrix corresponding to the
best-scored cavity match, (ii) docking the sc-PDB ligand in the PPI pocket. If both methods agreed to
place the ligand in the PPI cavity within 2 A root-mean square deviations (rmsd) on heavy atoms, the
corresponding cavity match was considered as potentially interesting (Filter 3, Table 3). Out of the 1.98
billion comparisons, only 2 matches were retained, both concerning a predicted similarity between an
interfacial cavity of the LJ0536 cinnamoylesterase homodimer (PDB accession number 3527)** and the
flurbiprofen (FLP)-bound cavities of cyclocygenase-1 (PDB accession number 1EQH)* and

cyclooxygenase-2 (PDB accession number 3PGH).3¢

Table 3. Pairwise comparison of PPI to sc-PDB cavities

Cavity type Number of Comparisons Remaining pairs

Filter 1 Filter 2° Filter 3¢
Interfacial 101 million 2,203 11 2
Rim 1.16 billion 3,121 23 0
Orthosteric 727 million 1,474 8 0

3Similarity > 0.60, less than 10% differences in cavity volumes. PDifferent UniProt identifiers and
names, different gene names, different protein families. ‘Less than 2 A rmsd between ligand positions
obtained by either cavity alignment or molecular docking

Both cavities (Figure 4a-b) have a similar shape (352Z, 239 A3; 1EQH, 258 A3) and exhibit a strong
hydrophobic character (ca 85% of cavity features are hydrophobic in both cases). When aligned to
optimize the overlap of their pharmacophoric feature, the shape of the cavities matched almost
perfectly. Interestingly, FLP automatically moved with its pocket upon alignment of cyclooxygenase-1

to cinnamoylesterase) is well centered in the cinnamoylesterase cavity in a position quite similar to
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that predicted by docking (Figure 4c). FLP is predicted to interact only with apolar side chains lining

the interfacial cavity of the esterase (Figure 4c).

The prediction was validated in vitro by demonstrating a weak but significant dose-dependent
inhibition by FLP of the catalytic activity of the LI0536 cinnamoylesterase in converting 4-nitro
phenylbutyrate into 4-nitro phenol (Figure 4d). In order to evaluate if inhibition over the esterase
activity of the purified enzyme from Lactobacillus johnsonii N6.2 was not due the high concentrations
of the inhibitor, we tested different concentrations of esterase in the presence or absence of a fixed
concentration of FLP (400uM) in the conversion of 4-nitrophenyl butyrate into p-nitrophenol. The
results obtained show that the esterase activity of the enzyme was significantly impaired in the
presence of FLP in all concentrations of esterase tested (Figure 4e). Next, we evaluate if the inhibitory
activity of FLP on the esterase activity of the purified enzyme was competitive or noncompetitive. To
address this question, we ran a kinetic assay evaluating the breakthrough of 4-nitrophenyl butyrate in
the presence or absence of flurbiprofen at a concentration of 400uM (Figure 4f). In the presence of
flurbiprofen, the Vmax of the enzyme was significantly decreased (3.7umol/min/mg) with respect to
the control (4.094 umol/min/mg), thereby demonstrating the noncompetive nature of flurbiprofen
inhibition. Given that the cinnamoylesterase dimer exhibits only two catalytic sites (one per monomer)
and one allosteric interfacial cavity, flurbiprofen is very likely to bind to the interfacial cavity, as
predicted above. Of course, we cannot rule out the possibility that flurbiprofen unmasks a previously
unknown binding pocket at the surface of the esterase. The rather weak inhibitory activity reported in
enzymatic assays is however compatible with the predicted binding mode exhibiting a good shape
complementarity between the ligand and the interfacial pocket but an important electrostatic

mismatch between the carboxylic acid of the ligand and its apolar protein environment (Figure 4c).
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Figure 4. Similarity between cavities of LJ0536 cinnamoyl esterase and cyclooxygenase-1. (a) Interfacial
cavity (brown dots) at the surface of the LJ0536 cinnamoylesterase dimer (tan ribbons, PDB accession
number 352Z), (b) Flurbiprofen (dodger blue sticks)-binding cavity (dark blue dots) in cyclooxygenase-

1 (cyanribbons, PDB identifier 1EQH), (c) Shaper-based alignment of 352Z and 1EQH cavities. Predicted
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location of flurbiprofen in the esterase cavity is inferred from the cavity-based alignment of both
targets, (d) Concentration-dependent inhibition by flurbiprofen of the catalytic activity of LI0536
cinnamoylesterase (600 uM), estimated by the in vitro hydrolysis of 4-nitro phenylbutyrate in 4-nitro
phenol (pNP). Results are mean + standard deviations of three experiments. * P < 0.05, *** P < 0.001
vs. no inhibitor (POSITIVE). (e) Conversion rate of 4-nitrophenyl butyrate into 4-nitro phenol (pNP) by
different concentrations of purified esterase from Lactobacillus johnsonii N6.2 in the presence or
absence of flurbiprofen at 400uM. Results are mean * standard deviations of three experiments (***
P < 0.001), (f) Representative enzymatic kinetic curves of the activity of purified esterase from
Lactobacillus johnsonii N6.2 as spectrophotometrically monitored by the appearance of pNP
(absorbance at 412 nm) at the indicated substrate concentrations (4-nitrophenyl butyrate) in the

presence or absence of flurbiprofen at 400uM.

Querying the database. A web interface to the full repertoire of PPIs and their associated druggable
pockets and bound ligands is accessible at http://drugdesign.unistra.fr/ppiome. The database can be
searched from multiple point of views (PDB structure, protein annotations, protein-protein interface,
druggable cavity, bound ligand) therefore enabling complex queries. For example, selecting
heterodimeric PPIs devoid of enzymatic activity with a structure solved at a resolution below 2 A and
exhibiting interfacial cavities larger than 500A3, distant by less than 2 A from the interface, and
presenting an average buriedness higher than 75% can be done with a few mouse clicks (Figure S1A,
Supporting Information), and returns a total of 22 different interfaces in a results summary (Figure
S1B, Supporting Information) that can be individually visualized by selecting the 'view' option.
Choosing for example the 1R8Q interface between chains A and B (ppi_interface_id = 1R8QAE) permits
to visualize both the PPI, related cavities and bound ligands in a molecular viewer along with

corresponding molecular properties in expandable spreadsheets (Figure S2, Supporting Information).
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DISCUSSION

Up to now, PPl modulation by low molecular weight compounds has been essentially focused on
ligands binding to orthosteric pockets, directly competing with one of the two protein partners *. With
noticeable exceptions,3 current PPl modulators are usually high molecular weight ligands with rather
poor pharmacokinetic properties.* Such compounds rarely belong to conventional screening libraries,
therefore explaining why high-throughput screening for PPl modulators often return yield low hit
rates.3® Designing PPI-focused libraries from the current knowledge on PPI inhibitors has led to
remarkable successes®® but the overall applicability domain of these libraries remain obscure, as they
are derived from known inhibitors covering only ca. 30 unique PPIs.*° The current study provides a first
answer to the latter issue since the herein described computational workflow is able to provide for the
first time a clear picture of all druggable cavities present at the surface of biologically relevant PPIs of
known X-ray structures. The proposed protocol exhibits three key advantages: (i) it is fully automated
and fast enough to be applied at the entire PDB scale, (ii) it distinguishes biologically relevant interfaces
from that suspected to be artifacts from crystallization conditions, (iii) it can detect all cavities located

at or nearby the interface and predict their druggability (or ligandability).

For a matter of semantics, it is important to notice first that protein-protein interfaces have been here
selected from a structural point of view. In other words, any homo/heterodimeric protein (enzymatic
or not), exhibiting enough non-covalent interactions between the two chains in contacts, will be
considered. Therefore, many PDB entries (e.g. HIV-1 protease) that are not considered as regular PPls
by the drug design community are taken into account in the present study. A first surprise in the
application of the current computational workflow is the very large proportion of binary interfaces
(64%) predicted as non-biologically relevant by our machine-learning model. Many of these cases apply
to homodimeric structures of proteins known to be monomeric in solution but for which both the

asymmetric unit and the biological assembly provided by the PDB describes a homodimer. A smaller
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but significant fraction of interfaces that were removed from our analysis concerns very large protein-
protein interfaces (> 3000 A?) that might be incorrectly classified by our model trained on interfaces of
smaller sizes (700-2000 A?).2° As already stated in previous studies,***> we here confirm on a very large
scale (>66,000 PDB entries) that molecular interactions contributing to biologically relevant protein-

protein interfaces are largely dominated by hydrophobic contacts.

A second surprise of the current work is the huge repertoire of PPl pockets (164,514 cavities)
presenting all physicochemical properties of truly druggable cavities. Please remind that no flat and
featureless pockets have been considered here. Neither were selected proximal but distinct non-
druggable sites that could be simultaneously occupied by a single high molecular weight inhibitor.*
No PPI-specific druggability model was used in the current study because of the very unbalanced and
scarce nature of currently available experimental data on truly druggable PPI cavities. Moreover, we
believe that druggability (or ligandability or bindability) is a ligand-independent property solely

determined by physicochemical and topological properties of the cavity of interest.

Beside interfacial and orthosteric cavities, whose druggable potential are well documented,® * *°

we
identified 72,242 pockets formed at the rim of the interface that represent an almost uncharted pocket
space of high druggability. A similar observation was previously reported on a much smaller scale but
no particular focus on either biologically-relevant interfaces and potentially druggable cavities.?® Most
of PPI cavities (85% on average) are present in a ligand-free state. However, over 2,000 drug-like
compounds were found in orthosteric, interfacial and rim pockets. Out of the 756 PPI inhibitors
reported in the 2P2I database,?” 270 compounds (36%) could be recovered using the current
computational workflow. Reasons for failures are twofold: (1) the PPl is not predicted as biologically
relevant by our Random Forest model because one of the two protein chains is a short peptide that
generates a small-sized interface (e.g. bromodomain-H4 histone interfaces), (ii) no cavity at or nearby

the PPI could be predicted as druggable by our support vector machine model (e.g. Bcl-2 cavity bound

to ligand LIU, PDB identifier 2022).
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Out of the four categories of ligands targeting each a cavity type (interfacial, rim, allosteric,
orthosteric), the drug design community has almost only followed the concept of orthosteric inhibition
by designing usually high molecular-weight compounds disrupting the PPI by occupying a cavity at the
surface of one of the two partners.* Such ligands remain the most straightforward approach to inhibit
a PPl by a small molecule. Interfacial inhibitors (or interfacial stabilizers), %4**> that stabilize a PPI
through binding to interfacial cavities, have long been neglected but are getting more and more
interest, inspired by natural products (e.g. fusicoccin, rapamycin, brefeldin A) that efficiently inhibit
the function of a protein-protein complex by stabilizing the corresponding dimeric assembly.’
Examples of rim and interfacial ligands modulating PPls are still scarce, for the simple reason that high-
throughput screening assays might not have been developed for that purpose. Paclitaxel remains a
good example of allosteric PPI stabilization, by binding to a hydrophobic pocket of the tubulin -
subunit and promoting the stabilization microtubules.*® Predicting the functional outcome of ligand
binding to either allosteric or rim cavities is currently out of reach. We, however, do hope that the
herein presented PPI-focused pocketome will foster PPI modulator design by addressing allosteric and

rim cavities.

Noteworthy, most ligands (71% on average) do not exhibit a single violation to Lipinski's rule-of-five,*’
thereby attesting a clear potential for medicinal chemistry development. Analyzing standard molecular
properties of cavity-bound drug-like and pharmacological ligands reveals that rim and allosteric and
ligands tend to share similar properties. Interestingly, interfacial ligands tend to exhibit lower
molecular weights, and are more rigid and hydrophobic (Figure S3, Supporting Information). We next
computed the PBF (plane of best fit) score,*® as general globularity descriptor for herein described PPI
ligands, conventional drug-like compounds (sc-PDB) and true PPI inhibitors from the 2P2| database
(Figure S4, Supporting Information). Ligands bound to rim, orthosteric, and allosteric pockets exhibit
quite similar properties. Interestingly, interfacial ligands tend to be less globular (lower PBF score) and
smaller (lower radius of gyration). As to be expected true PPI inhibitors from the 2P2IDB archive are

significantly more globular. This difference is however biased by the fact that the 2P2IDB repository

20



does not take into account the druggability of ligands and pockets, thereby biasing the selection of
ligands towards higher molecular weight compounds. The same observation applies to sc-PDB ligands
for which the drug-like subset has a much lower PBF median score (0.71) than the non drug-like subset

(PBF=0.87).

Despite their apparent drug-like character, the large repertoire of PPl pockets do not resemble cavities
bound to drug-like ligands. Out of 1.98 billion pairwise comparisons, only two matches could be found,
one of which (LJ0536 cinnamoylesterase dimer vs. cyclo-oxygenase-1) being validated in vitro. Due to
the enormous size of the comparison matrix, we had to restrict experimental validations to a subset
of similar-sized pocket pairs. We cannot therefore rule out the possibility of local similarity between
overlapping parts of PPl pockets and ligand-bound cavities that could be occupied for example by
fragments. Moreover, the herein inspected protein-protein interactome is only a subset of a much
larger space. However, the current analysis provides a strong evidence that both pocketomes do not
overlap in 3D space, and consequently a clear structural basis for the known difficulty of conventional

drug-like ligands to target PPlIs.

CONCLUSIONS

The herein characterized pocketome offers novel opportunities for PPl modulation by low molecular
weight compounds that significantly differ from current strategies. First, it demonstrates that PPI
stabilization or disruption by high molecular weight ligands addressing flat and featureless interfaces
is not an absolute dogma. We notably characterized a huge repertoire of druggable cavities, present
at the surface of PPls, and still awaiting ligands to be discovered by in silico or experimental screening.
We acknowledge that the functional effects of such ligands might be difficult to infer from the simple
location of the targeted cavity. It is more than likely that ligands binding to orthosteric pockets will
indeed disrupt the corresponding PPl and therefore be further developed as true PPI inhibitors.?

9,44-45

Moreover, targeting an interfacial pocket will probably lead to interfacial inhibitors stabilizing the
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protein-protein interface and thereby enabling activating or inhibiting a specific biological function.
The functional outcome of ligands targeting herein described rim and allosteric pockets is much more
difficult to predict. We here confirm at a large scale than druggable pockets tend to be created nearby
PPIs by the simple association of three-dimensional objects. The true potential of rim and allosteric
inhibitors has already been demonstrated for homodimeric enzymes (e.g. HIV-1 protease, HIV_1
reverse transcriptase). Whether this paradigm might be applied to heterodimeric non-enzymatic
assemblies still remain to be addressed and offers interesting possibilities to modulate PPIs not

amenable to classical orthosteric inhibition.

To support our view, we recently identified extracellular allosteric modulators of receptor tyrosine
kinases (RTK) preventing, with a high affinity and exquisite selectivity the binding of endogenous
ligands (cytokines, growth factors) to the extracellular domain of targeted RTKs.***°, Second, our study
suggests that neither conventional drug-like libraries nor PPI-focused compound collections are likely
toyield high affinity ligands to the herein described pocketome. One the one hand, current PPI-focused
libraries are enriched in high molecular weight ligands designed to occupy multiple, small and shallow
pockets, observed on a small number of unique PPIs.*® On the other hand, standard drug-like ligand
collections have been built to mimic the chemical space intersecting the most valuable pharmaceutical
targets (kinases, nuclear hormone receptors, proteases, G-protein coupled receptors, ion channels)
whose cavities are very different from that presented here. The physicochemical properties of this
newly disclosed pocketome and the corresponding drug-like ligand repertoire suggests some hints
about which chemotypes to consider for hit identification. First, ligands of limited volumes (400-500
A3) should be considered in order to fit the observed distribution of PPI cavity volumes. Applying this
strategy is perfectly suited for biophysical fragment screening methods.® 4 Second, prioritizing rather
rigid compounds is another advisable strategy?® to efficiently disrupt or stabilize peculiar
conformations of protein-protein interfaces. We acknowledge that our approach does not explicitly
consider protein flexibility and is unable per se to identify cryptic pockets transiently unmasked at the

surface of protein-protein complexes.”® However, the workflow can easily be applied to molecular
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dynamics trajectories of any PPl complex to address the important issue of transient pockets, but on a
case-by-case basis. Moreover, we have only considered high-resolution X-ray structures up to now.
The spectacular development of cryo-electron microscopy>? to solve the structure of macromolecular

assemblies will undoubtedly increase the applicability domain of our approach in a very near future.

EXPERIMENTAL SECTION

The overall post-processing of raw PDB data was done using the in-house developed IChem toolkit°
and a series of standalone python scripts. Two tables (pdb_chain_uniprot.csv, uniprot_pdb.csv) were
retrieved from the SIFTS resource®® to map, for each each PDB entry, a chain name to a unique

UniProtKB>* identifier.

Detection of protein-protein interfaces. Raw PDB files were parsed to retain entries at the condition
that three criteria were satisfied: (i) the experimental method is X-ray diffraction, (ii) the resolution is
below 3 A, (iii) the number of unique chain names described by at least 10 consecutive residues is
between 2 and 9. For each possible interface between 2 different chains, the corresponding dimeric
structure was saved, conserving in case of multiple occupancy values for a single atom, the atomic
coordinates corresponding to the highest occupancy. Hydrogen atoms were then added using the
Protoss algorithm® and the protonated dimer was saved in MOL2 file format. An interface (continuous
or discontinuous) was kept if at least 20 atoms from at least 10 unique amino acids (involving both

chains) were closer than 5 A from each other. Precise intermolecular interactions (apolar, aromatic,
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hydrogen bond, ionic bond) were then computed with IChem,* relying on a set of standard topological
descriptors.®® The corresponding interaction pattern was saved in MOL2 file format as a set of
interaction pseudoatoms?* placed at the geometric barycenter of each interacting atom pair, and
annotated according to the type of interaction. The biological relevance of the protein-protein
interaction was last assessed, from the value of 45 descriptors assigned to the above-described

interaction pseudoatoms, with a Random Forest binary classification model, as previously described.?

Detection of ligand-binding druggable cavities. Dimeric structures predicted to exhibit a biologically
relevant interface were then inspected for the existence of druggable cavities with the in-house
developed VolSite method.?* Each cavity was represented by a set of pharmacophoric features,
complementary to that of the nearest protein atom, and centered on the corresponding cavity voxel.
A support vector machine model, previously trained on 73 molecular descriptors of the cavity-
dependent pharmacophoric features set,?* was applied to estimate the druggability (ligandability) of
each detected cavity. The druggability score (20 if druggable, < 0 if non-druggable), volume (in A3),
pharmacophoric feature composition (% hydrophobic, % aromatic, %h-bond donor, %h-bond acceptor,
%h-bond acceptor and donor, %positive ionizable, % negative ionizable) and average buriedness was
saved for each cavity along with atomic coordinates (MOL2 format) of pharmacophoric features

describing the cavity.

Detection of orthosteric cavities. For orthosteric cavities, a specific procedure was applied since these
cavities require the inspection of monomeric chains. If a monomeric protein (characterized by a chain
name and UniProtKB identifier) is contributing to a previously identified biologically relevant PPI
interface, the structure of the monomeric chain was aligned to that of the same chain in the dimer
with the Combinatorial Extension (CE v1.02) algorithm,?® keeping the alignment with the lowest rmsd

as final result. The cavity detection step was then performed on the aligned monomeric structure, as
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previously described. Any predicted druggable cavity located with 4.5 A of the corresponding protein-
protein interface (shortest distance between any cavity point and any PPI interaction pseudoatom)

was assigned the orthosteric type.

Pairwise cavity comparisons. All pairwise cavity comparisons were done with the Shaper method,?* by
comparing pharmacophore-annotated cavity shapes generated by VolSite. Shaper attempts to
maximize the overlap of pharmacophoric features using a smooth Gaussian function taken from the
ShapeTK toolkit (OpenEye Scientific Software Inc, Santa Fe, U.SA.), and outputs a similarity score Sag

between cavity A (reference) and B (fit) by a Tversky index as follows:

_ OB
0.9514+0.051p+04

SA,B

where Oapis the overlap between pharmacophoric features of cavities A and B, and | non-overlapped

features of each entity A and B.

Calculation of ligand properties. Drug-likeness was predicted from a set of topological and
physicochemical filters (Table S2, Supporting Information) implemented in OpenEye's Filter v.2.5.1.4
(OpenEye Scientific Sofware, Sante Fe, U.S.A). 3D MOL2 files of each ligand were obtained by
converting SMILES strings, downloaded from the Protein Data Bank, with Corina v3.40 (Molecular
Networks GmbH, Erlangen, Germany). Molecular properties of ligands were then computed with

Pipeline Pilot v16.5.0.143 (Dassault Systémes Biovia Corp., San Diego, U.S.A.)

Assigning ligands to cavities. Cavity occupancy was estimated, for each PDB entry, by measuring the
shortest distance between any cavity point and any ligand’s center of mass (ligand being here defined

as any PDB HET identifier present in the PDB entry). If the distance is below a user-defined threshold
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T dependent on the grid resolution R (by default equal to 1.5 A), the ligand is considered located in the

corresponding cavity.

/z RZ2 R
For any but orthosteric cavity, T = =1.06 A

2

For orthosteric cavities, T = [2r? =2.12 A

The larger distance threshold used to map ligands to orthosteric cavities is explained by the prior
alignment of ligand-bound monomeric chains to the corresponding PPl that might not be perfect and
by the potential conformational rearrangement of the PPl pocket when comparing free and bound

states. It was therefore set to twice the value of the grid resolution used to detect cavities.

Cloning, expression and purification of the LJI0536 esterase. The gene of interest was PCR amplified
from genomic DNA isolated as previously reported.>” The PCR fragments were cloned into pET-15b-TV
according to methods described previously.>® The expression of His6-tagged proteins was carried out
in Escherichia coli (DE3) cells (Stratagene) by using IPTG (isopropyl-B-D-thiogalactopyranoside) (1 mM)
as inducer. Escherichia coli BL21cells were collected by centrifugation, suspended in binding buffer (5
mM imidazole, 500 mM NaCl, 20 mM Tris-HCI [pH 7.9]), and disrupted using a French press. The His6-
tagged proteins were purified by affinity chromatography as previously described.”® The purified
protein was dialyzed during 16 h at 4°C against a solution containing 50 mM Tris-HCI buffer (pH 8.00),
500 mM NacCl, and 1 mM dithiothreitol. After dialysis, the samples were flash-frozen and preserved at

-80°C in small aliquots until use.

Enzymatic assays. Aliquots of purified LJ0536 esterase was dialyzed against 5mM BES [N,N-bis (2-
hydroxyethyl)-2-aminoethanesulfonic acid] buffer (pH 7.2). The enzymatic activity was determined
using a colorimetric method using the model substrate p-nitrophenyl butyrate. Flurbiprofen was
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solubilized in 10% methanol. At this methanol concentration, the enzyme activity was not affected. A
typical enzymatic reaction mixture contained 7.1% acetonitrile, 1mM p-nitrophenyl butyrate, 0.4 ug
(600 uM) of the purified esterase, 10% methanol, and 4.5 mM BES (pH7.2). Flurbiprofen was tested at
5, 10, 50, 100, 200, and 400 uM. The enzymatic assays were performed with 200 pl in 96-well plates in
a Synergy HT Biotek reader equipped with temperature control unit. The effect of flurbiprofen on the
esterase activity was evaluated with and without pre-incubation with the enzyme for 2h at room
temperature. The increase in absorbance was continuously monitored during 30 min at 412 nm, and
the concentration of p-nitrophenol was estimated by using the extinction coefficient (¢ = 16,300 M-1
cm-1). All assays and controls were performed in triplicate. Results are shown as means of 3 to 5
determinations, * standard deviations. Statistical significance was determined by analysis of variance
(ANOVA one-way). In all experiments in which a significant result was obtained, the F test was followed

by Tukey's multiple comparison test.
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