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Abstract  35 

The origin of modern disjunct plant distributions in the Brazilian Highlands with strong floristic 36 

affinities to distant montane rainforests of isolated mountaintops in the northeast and northern 37 

Amazonia and the Guyana Shield remains unknown. We tested the hypothesis that these 38 

unexplained biogeographical patterns reflect former ecosystem rearrangements sustained by 39 

widespread plant migrations possibly due to climatic patterns that are very dissimilar from 40 

present-day conditions. To address this issue, we mapped the presence of the montane arboreal 41 

taxa Araucaria, Podocarpus, Drimys, Hedyosmum, Ilex, Myrsine, Symplocos, and Weinmannia, 42 
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and cool-adapted plants in the families Myrtaceae, Ericaceae, and Arecaceae (palms) in 29 43 

palynological records during Heinrich Stadial 1 Event, encompassing a latitudinal range of 30oS 44 

to 0oS. In addition, Principal Component Analysis and Species Distribution Modelling were used 45 

to represent past and modern habitat suitability for Podocarpus and Araucaria. The data reveals 46 

two long-distance patterns of plant migration connecting south/southeast to northeastern Brazil 47 

and Amazonia with a third short route extending from one of them. Their paleofloristic 48 

compositions suggest a climatic scenario of abundant rainfall and relative lower continental 49 

surface temperatures, possibly   intensified by the effects of polar air incursions forming cold 50 

fronts into the Brazilian Highlands. Although these taxa are sensitive to changes in temperature, 51 

the combined pollen and speleothems proxy data indicate that this montane rainforest expansion 52 

during Heinrich Stadial 1 Event was triggered mainly by a less seasonal rainfall regime from the 53 

subtropics to the equatorial region.  54 

 55 

Keywords: Heinrich Stadial 1 event (HS1), pollen, Atlantic Forest, Podocarpus, Araucaria, 56 

Migration, Polar Air Masses, Cold Fronts, Brazilian Highlands  57 

 58 

The origin of disjunct vegetation types in mountain landscapes of southeastern and central 59 

Brazil that display a strong affinity to wet montane floras of northern South America remains 60 

unknown. Earlier hypotheses1,2 suggested cold and wet migration corridors possibly in the Eocene or 61 

Miocene, later affected by the Quaternary climatic change, might have allowed ancient contact 62 

between plant populations now isolated on distant mountaintops.  63 

In this study we investigate the impact on tropical montane vegetation of an enhanced South 64 

American Summer Monsoon (SASM) regime between 18.1 and 14.7 kcal yr BP in synchrony with 65 

glacial episodic iceberg discharge in  the North Atlantic, known as Heinrich Stadial 1 (HS1), as 66 

indicated by speleothem isotope records3–7. Oxygen isotopes in the Botuverá cave speleothems have 67 

indicated that wet phases prevailed during the last glacial cycle in southern Brazil8. Additional 68 

support for this scenario comes from calcite deposits at lake margins within caves and expansion of 69 

wet forests in the HS1 of northern Bahia, currently covered by semi-arid vegetation (caatinga), 70 
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suggested by abundant plant megafossils in calcareous tufas, belonging to arboreal and herbaceous 71 

taxa presently found in the Atlantic and Amazon rainforests9. 72 

We hypothesize that the intensified precipitation within the area climatologically affected by 73 

the South Atlantic Convergence Zone (SACZ) and the Intertropical Convergence Zone (ITCZ) 74 

promoted conditions suitable for the establishment of north-south migration corridors for the 75 

expansion of montane forest. These possible former connections between southeast and central 76 

Brazil, from 31o to 22o S lat. and southeastern Amazonia could, therefore, explain much of the 77 

modern occurrence of disjunct humid and cold-adapted taxa in elevated areas of cerrado and semi-78 

arid caatinga reaching 4oS, with counterparts in the tepuis of the Guyana Shield, including those in 79 

Roraima (northern Brazilian Amazonia) and in Venezuela.  80 

 81 

Methods 82 

We infer vegetational and correlated climatic changes during the HS1 event by analyzing  83 

selected arboreal pollen taxa, in most cases with abundance higher than 5%, in Brazilian Late 84 

Quaternary pollen records, with morphological features that allow identification to genus level and in 85 

some cases only to family10, the exception of which is genus Araucaria Juss., represented in Brazil 86 

only by A. angustifolia (Bert.) O. Kuntze. The selected cold/mild and cold-humid adapted genera are 87 

Araucaria Juss., Podocarpus L'Hér. ex Pers., Drimys J.R. Forst. & G. Forst., Hedyosmum Sw., Ilex 88 

L., Myrsine L., Symplocos Jacq., and Weinmannia L., as well as the families Myrtaceae Juss., 89 

Ericaceae Juss. and Arecaceae Bercht. & J. Presl (sin. Palmae Juss., palms), chosen based on their 90 

frequent presence in glacial pollen signals of tropical America 12–15. It is noteworthy that in southern 91 

and southeastern Brazil, Podocarpus is represented by two species in the highlands, i.e. P. lambertii 92 

Klotzsch ex Endl. and P. sellowii Klotzsch ex Endl.. Pollen rain analyses in this area11 indicate that 93 

its pollen counts can be as low as 0.8% to indicate significant presence in native coastal rainforests.  94 

These taxa are stenopalynous; although some of them may contain thousands of members, 95 
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their pollen is represented only by one morphological type, and thus does not permit separation of 96 

species i.e., Myrtaceae Juss.. Although palm pollen can be assigned to different genera, it frequently 97 

appears in pollen records simply as Arecaceae or Palmae.  98 

Montane species of the families Myrtaceae, Ericaceae and Arecaceae were verified in 99 

herbarium collections of The Field Museum of Natural History and the Department of Botany of the 100 

Institute of Biological Sciences of the University of Sao Paulo and in the Flora do Brasil 202016. 101 

Myrtaceae is represented by a total of 17 genera and 53 species. Ericaceae, an almost exclusive 102 

montane family of shrubs and trees comprised of 12 genera, 99 species and 27 varieties, commonly 103 

found in high altitude montane ecosystems of Brazil where they are subjected to sub-zero 104 

temperatures at certain periods of the year2. The palm family Arecaceae is represented on montane 105 

with subtropical humid climate by 5 genera and 19 species.  A list of montane species for these three 106 

families are given in Supplementary Information.  107 

A detailed survey of the Late Pleistocene palynological literature in Brazil reveals a total of 29 108 

pollen profiles from continental sedimentary records containing HS1 age sediments: 1. Cambará do 109 

Sul 17; 2. São Francisco de Assis 18; 3. Serra da Boa Vista 19; 4. Serra do Tabuleiro 20; 5. Pato Branco 110 

21; 6. Volta Velha 22; 7. Curucutu 23; 8. Colônia Crater 15; 9. Serra de Botucatu 24; 10. Monte Verde 111 

25;  11. Lagoa de Itaipu 26; 12. Morro do Itapeva 11; 13. Lagoa dos Olhos 26, 27; 14. Salitre 14; 15. Serra 112 

Negra13; 16. Brejo do Louro 28; 17. Serra do Espinhaço 29; 18. Buritizeiro 30; 19. and 20. Crominia 31; 113 

21. Turfa de Inhumas 32; 22. Lagoa Bonita 33; 23. Águas Emendadas 34; 24. Chapada dos Veadeiros 114 

35; 25. and 26. Serra dos Carajas 36,37; 27. Lago Caçó 38; 28. and 29. Lagoa da Pata 12,39. 115 

Four of these records are from the lowlands of equatorial regions of eastern37 and 116 

western Amazonia39,40 and one study is from Lagoa do Caçó41, at the easternmost Amazonian 117 

forest/savanna transition in the State of Maranhão, close to the Atlantic coast in northern Brazil. The 118 

remaining pollen records are distributed in montane forests of the Brazilian highlands, a patch of 119 

remaining humid vegetation within the modern Cerrado (Brazilian Savanna) domain of southeastern 120 
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and central Brazil.  121 

 122 

Since the physiognomy of montane forests, specially in southern and southeastern Brazil are 123 

characterized in general by an 30-40 m high emergent layer containing Araucaria underlain by a 124 

sub-canopy containing Podocarpus, we mapped their potential distribution during the late glacial 125 

phase and under current conditions. Species Distribution Model (SDM)  were generated with 126 

MaxEnt85,86 version 3.3.3k, for the HS1 phase in the Brazilian Highlands, correlating pollen records 127 

with monthly mean convective precipitation rate (PRECC), large-scale precipitation rate (PRECL), 128 

surface (TS) and minimum surface temperature (TSMIN) from  CCSM3 Trace21k dataset87, at a 129 

resolution finer than the 3.5° × 3.5° grid. Potential distribution maps of Podocarpus (20 training and 130 

4 test samples, 0.965 average training AUC for the replicate run and 0.012 standard deviation) and 131 

Araucaria (9 training and 2 test samples, 0.976 average training AUC for the replicate runs and 132 

0.006 standard deviation). 133 

Modern Species Distribution models (SDM) for Araucaria (represented only by A.  134 

angustifolia) and Podocarpus (represented by P. lambertii and P. sellowii) were generated with 135 

MaxEnt85,86 version 3.3.3k with bootstrap resampling of 20 replicates, using 19 bioclimatic 136 

variables, obtained from worldclim version 2.0, at a resolution finer than the 1 km × 1 km grid, and 137 

modern occurrence points of SpeciesLink and SiBBr / GBIF: Araucaria angustifolia (124 training 138 

and 13 test samples, 0.987 average training AUC for the replicate runs and 0.001 standard deviation), 139 

Podocarpus lambertii (157 training and 17 test samples, 0.984 average training AUC for the 140 

replicate runs and 0.001standard deviation) and Podocarpus sellowii (124 training and 13 test 141 

samples, 0.987 average training AUC for the replicate run and 0.001standard deviation).  142 

To illustrate the distribution of fossil pollen data from the Brazilian Highlands during HS1 we 143 

made shaded relief images (Figures 1-3, 6 and supplementary figures) of the ETOPO1 Global Digital 144 

Elevation Model42 with 01-minute spatial resolution, draped by a custom hypsometric color scale. 145 
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For the continental area, shaded relief illumination is from 060˚N, 30˚ above horizon, with 40 times 146 

vertical exaggeration. In the oceanic area, illumination is from 060˚N, 20˚ above horizon, with 5 147 

times vertical exaggeration. Raster shading and color scale creation43 were performed in GRASS-148 

GIS 7.4, map composition in QGIS 3.2 and final artwork in Inkscape 0.92. 149 

Of all 89 pollen records examined in our survey, only 29 encompassed large time sections of 150 

the last glacial cycle as shown in Figure 1 (and in supplementary materials), which highlight the two 151 

gymospermous taxa of the Brazilian Flora, Podocarpus and Araucaria, conspicuous elements of 152 

southern/southeastern vegetation, during HS1 and indicative of subtropical climates14, 19, 25, 26.                              153 

  154 

Figure 1. Presence (red circles) and absence (white circles) of Podocarpus (a) and Araucaria (b) 155 
pollen in HS1 records of Brazil. Areas above 610 m elevation are highlighted in red. Dashed line is 156 
the border of Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: 157 
shaded relief illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic 158 
area: illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 159 

 160 

Northward migration during HS1 conditions 161 

The fossil pollen data reveal constant presence of humid forest elements in montane corridors 162 

following three major routes during the HS1 event: a northward expansion linking southern-163 

southeastern Brazil to southern Amazonia, via Serra do Mar/Mantiqueira, central Brazil, Serra Geral, 164 

Serra de Carajás, hereafter Southern-southeastern Brazil to southern Amazonia (route SSA) and a 165 

northward expansion linking southern-southeastern Brazil to northeastern Brazil, via Serra do 166 

Mar/Mantiqueira, Serra do Espinhaço, Chapada Diamantina, Serra de Ipiabapa, hereafter Southern-167 

southeastern Brazil to northeastern Brazil (route SSN) and a more restricted distribution connecting 168 

southern/southeastern to central Brazil, extending from 30oS to 18oS, hereafter Southern-169 

Southeastern Brazil (route SSB; see Figure 2, lower right). The SSA and SSN pattern are evident for 170 

Podocarpus, Ilex, Myrsine, Hedyosmum, Myrtaceae and Arecaceae, describing an arch-like direction. 171 

Some of these taxa extended from the southern/southeastern coast at latitudes as low as 30oS, to the 172 
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central elevated regions of the Brazilian subtropics, thus reaching southeastern Amazonia at 5oS 173 

(Podocarpus, Hedyosmum and Arecaceae) and 4oS within the modern Cerrado/Amazon rainforest 174 

ecotone of northern Maranhão State (Myrtaceae, Myrsine) (routes SSA and SSN, respectively; 175 

Figure 2). It is noteworthy that although most species participate in these different pathways, their 176 

environmental characteristics are fundamentally different. SSA is associated with the humid and 177 

warm Amazonian lowlands, while SSN is associated with xeric environments such as the semi-arid 178 

caatinga of the northeast, and SSB is restricted to humid and cool habitats of the southern high-179 

elevation mountains.  180 

 181 

Figure 2: SSA, SSN and SSB migration routes for montane taxa during HS1 and pollen record 182 
locations in Brazil (open circles). Route SSA extends from southern/southeastern Brazil to southern 183 
Amazonia in the State of Pará. Route SSN extends from Southern-Southeastern to Northeastern 184 
Brazil lacks palynological support but is supported by modern distributions of montane taxa and 185 
Lagoa do Caçó (sedimentary record 28). SSB route connects coastal southern and southeastern sites 186 
up to 18oS synchronous with polar air mass incursions and lowered temperatures as supported by 187 
pollen evidence. Areas above 610 m elevation are highlighted in red. Dashed line is the border of 188 
Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 189 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 190 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration).  191 

 192 

We hypothesize that modern plant distributions on isolated mountaintops of northeastern 193 

Brazil indicate that various rainforest arboreal taxa2,44 possibly reached these regions through a 194 

secondary fork-like branch emerging at 22oS and extending until 18oS into the Brazilian highlands, 195 

very likely to have been maintained by orographic rains and/or adiabatic cooling. In addition, from 196 

18oS northwards, the SSN route could have reached latitudes within the present-day domain of semi-197 

arid caatinga. Although this additional route during HS1 cannot be confirmed by palynological 198 

analyses due to the lack of study sites in that region, macrobotanical evidence in calcareous tufas 199 

deposited at ca. 17 kcal yr BP45 indicate the presence of Atlantic/Amazonian rainforest elements 200 

such as Aparisthmium Endl., Annonaceae Juss., Chrysobalanaceae R. Br., Drymonia coccinea 201 
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(Aubl.) Wiehler, Luehea grandiflora Mart., Prunus sellowii Koehne, Sloanea L., Tetrastylidium 202 

Endl. at 10oS lat. during Heinrich Stadial events in Northeastern Brazil.  203 

Route SSB, utilized by Araucaria, Drimys, Symplocos, Weinmannia and Ericaceae, appeared 204 

to have had a more restricted distribution in Southeastern Brazil limited within a latitudinal band 205 

between 30oS and 18oS. This pathway appears to have two different latitudinal components: a coastal 206 

distribution at low elevation from 30oS to 22oS (Araucaria, Drimys, Symplocos, Weinmannia, and 207 

Ericaceae) and a high montane component from 22oS to 18oS (Araucaria and Drimys).  208 

All migration pathways suggest that during HS1 a long chain of mountains, starting at the 209 

Serra do Mar, followed by the Serra da Mantiqueira and deriving into the Serra do Espinhaço and the 210 

Brazilian Central Plateau, functioned as an efficient corridor for the migration of montane elements 211 

as proposed by earlier biogeographers46, possibly under an enhanced humid phase in the SACZ and 212 

ITCZ climate domains5–7. Also, the occurrence of cold-adapted trees such as Araucaria beyond their 213 

present-day northern limit suggests the possibility that intensified polar air incursions into the 214 

interior of South America might have dropped the temperatures during the HS1 period as has been 215 

inferred for the last glacial period37,47. During that time, the tilt of the Earth´s axis, the eccentricity of 216 

the orbit and the longitude of the perihelion may have affected the solar radiation at the top of the 217 

atmosphere. Therefore, it is possible that under a scenario of less intensified solar radiation during 218 

HS1 polar circulation became somewhat stronger while the Hadley circulation was weakened and 219 

this mechanism is likely to have generated a larger displacement of polar air towards northern South 220 

America48. 221 

Under these conditions of enhanced humidity and lowered temperatures, the maintenance of 222 

both routes appears to be controlled by different pollen and seed dispersal abilities. Most taxa that 223 

migrated further along the SSA route have wind-dispersed pollen and are dioecious, two 224 

evolutionary traits directly linked to high dispersal potential49, in addition to seed dispersal by birds 225 

(Table 1), all of which may have granted them increased ecological amplitude and greater 226 
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colonization ability. Moreover, these taxa can occur in both late and early successional stages, which 227 

can be interpreted as highly adapted to these vegetational changes.  228 

Taxa displaying the SSN route, in general, are characterized by slightly less efficient 229 

dispersal of pollen in terms of distance by entomophily as well as zoochory, other than bird-230 

dispersed, seeds. We hypothesize that these these main routes were actually transects of high 231 

montane microrefugia alignments during the humid and cold phase of HS1 and probably in earlier 232 

glacial phases.  Therefore, the small nuclei of montane vegetation acted as sources of immigrants to 233 

other microrefugia along theses routes, where all dispersal syndromes were highly efficient, thus 234 

permitting geneflow between these populations. Support for this hypothesis comes from a modernal 235 

relictual Podocarpus microrefuge in semi-arid vegetation at Morro do Chapeu, Bahia at 11oS50,51. 236 

There, rocky otucrops reduce mean annual temperature by 5oC and augment humidity by 12%. 237 

Under this scenario, final coalescence of these microrefugia may have formed rather contiguous 238 

humid forested corridors. Testing these hypotheses requires more pollen records especially at lower 239 

latitudes of southern Amazonia and northeastern Brazil. This paleoclimatic scenario is supported by 240 

a marine pollen record off the coast of northeastern Brazil52, containing continental sediments 241 

generated in the region of modern semi-arid vegetation. This record shows an HS1 pollen zone, 242 

characteristic of humid climate, with significant percentages of SSA route taxa such as Hedyosmum, 243 

Ilex, and Myrtaceae, together with Symplocos and Cyathea Sm. It is clear that entomophilous 244 

pollination and animal-dispersed seeds did not hinder the very long dispersal ability of Drimys 245 

possibly due to the beneficial effects of nearby microrefugia and therefore shorter dispersal distances 246 

needed for population expansion. The data suggest that the SSN route could have extended well into 247 

northeastern Brazil, where Drimys, Hedyosmum, Symplocos, Ericaceae, Podocarpus, Myrsine, Ilex, 248 

Weinmannia and others are all found at the modern altitude of 1500 m in the Chapada Diamantina 249 

range, in northeastern Brazil.    250 
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The main feature of route SSB is the northward expansion of Araucaria, a major element in 251 

ombrophilous rainforest of high elevations of southern/southeastern Brazil in consortium with 252 

Podocarpus. It can be considered a good proxy for relatively low temperature and high 253 

humidity13,14,27,53,54. Our hypothesis suggests that its migration pattern reaching 18oS was likely to be 254 

controlled by low temperature regimes and low precipitation variability throughout the year during 255 

HS1.  Although low modern temperature regimes at the Serra do Espinhaço (site 17) are conducive 256 

to sustaining gymnosperm forests as they did during HS1, the site no longer has adequate humidity 257 

due to irregular distribution of precipitation during the long dry season.  258 

Hereafter represented by Podocarpus, demonstrate wider latitudinal expansion abilities, 259 

ranging from 30oS to 0oS, than those displayed by SSB, hereafter represented by Araucaria 260 

(Supplementary Figures 1-11), where taxa were restricted to latitudes between 30oS and 18oS. 261 

 262 

Table 1. Reproductive characters of montane arboreal taxa displaying SSA, SSN and SSB migration 263 
routes. 264 

 265 

Taxon Routes Succession Pollen dispersal Seed dispersal Reproduction 

Podocarpus SSN-SSA 
Late secondary 
but resistant to  
disturbance55 

Anemophilous56 
(wind)  

Zoochory (Birds, 
mammals)57,58  

Dioecious 

Ilex SSN-SSA Early and Late 59,60 
Entomophilous 61,62,
Anemophilous 63 

Autochory66, 
Zoochory66 (Birds) 

Dioecious 

Myrsine SSN-SSA 
Early and Late 64

Intermediate 65 
Anemophilous  
Entomophilous 

Zoochory66,67(Birds) 
 

Monoecious 

Hedyosmum SSN-SSA Late 68 Anemophilous69  
Zoochory (Birds)69,70  

 
Dioecious 

Myrtaceae SSN-SSA Late and early60 
 
Entomophilous, 
Ornithophilous 72  

Zoochory 67,71 (Bat, 
bird, small and 
medium 
mammals)72,73  

Monoecious 

Arecaceae SSN-SSA 
Early, intermediate or 
late74  

Entomophilous, 
Anemophilous75  

Zoochory (Bird, 
small mammals)72, 
Autochory  

Monoecious 

Araucaria SSB Early76  Anemophilous 
Zoochory76 (Birds, 
mammals) 
 

Dioecious 

Drimys SSN Late secondary 77 Entomophilous78 
Zoochory (Birds, 
small mammals)78  

Dioecious 

Symplocos SSN Late secondary60  
Entomophilous79  
Ornithophilous 

Zoochory67

 
Monoecious 

Weinmannia SSN Early and secondary 77 Entomophilous 73,80 Monoecious
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Anemochory70 

 

Ericaceae SSN Early 81 and Late 82 

Gaylussacia – 
Entomophilous 80 

Agarista 
Ornitophilous 80  

Zoochory, 
Autochory, 
Anemochory70  

Monoecious 

     

 266 

 267 

Climatic changes and montane vegetation expansion during HS1 268 

Pollen histories of arboreal taxa common in humid and cold forests of glacial age in 269 

Brazil13,14,23,37,40 support the hypothesis of intensification of transient climatic systems under glacial 270 

regime during HS1. We suggest that continental surface temperatures lowered by the effects of polar 271 

air incursions in South America had a significant forcing effect on modern plant biogeographical 272 

patterns by fostering long-distance migration of currently montane elements. One of the best-known 273 

lines of indirect evidence for this hypothesis is given by the vegetation of the Pico das Almas (13o 274 

34’S), in the Chapada Diamantina mountain range, northeastern Brazil. This vegetation is 275 

floristically more related to that of the Andean paramo and subparamo forests2 with genera like 276 

Podocarpus, Drimys, Symplocos, Weinmannia, and Hedyosmum (SSA pattern), and to the flora of 277 

the tepuis of Venezuela. The second line of indirect evidence is the pollen record of the Icatu site at 278 

10o S, currently under semi-arid vegetation in northeastern Brazil, which shows during the 279 

Pleistocene/Holocene transition83 at c. 11 kcal yr BP abundant cold and humid-adapted taxa such as 280 

Podocarpus, Ilex, Myrtaceae and Hedyosmum coexisting with Humiria Aubl., a taxon of shrubs to 281 

large trees of the Guyanas and Guyana-influenced Amazon and currently present at Serra do 282 

Espinhaço range above 1000 m altitude84. 283 

Although alternative and viable hypotheses for such biogeographical patterns may suggest 284 

that connections could have been established during the cold phases of the Oligocene1,2, following 285 

the tropical decline of the Eocene, Late Pleistocene pollen data points to a powerful reorganization of 286 

ecosystems in South America during the terminal phases of the last glacial cycle. To test this Late 287 

Quaternary expansion of cold and humid forests, i.e. augmentation of the potential distribution of the 288 
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fundamental niche of our selected montane taxa into northern Brazil, we generated a Species 289 

Distribution Model (SDM) for Podocarpus and Araucaria for the HS1 phase in the Brazilian 290 

Highlands, by correlating observations of taxa occurrences in  palynological records, representatives 291 

of the SSA, SSN and SSB routes, with monthly mean of precipitation and surface temperature 292 

from  climatic layers from the CCSM3 Trace21k dataset87 (Figure 3).  293 

 294 

Figure 3. Montane forest potential distribution during HS1 represented by Podocarpus (a) and 295 
Araucaria (b), where black and white circles indicate presence and absence, respectively, in pollen 296 
records. White areas show SDM maps generated in MaxEnt version 3.3.3k for prediction of montane 297 
forests, using presence in pollen records during HS1 correlated with climatic layers from CCSM3 298 
Trace21k dataset. Areas above 610 m elevation are highlighted in red. Dashed line is the border of 299 
Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 300 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 301 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 302 

 303 
 304 
 305 

The resulting maps highlight areas of habitat suitability over large sections of the SSA and 306 

SSB routes especially those between 30oS and 14oS, a region where the South American Monsoonal 307 

System was intensified during HS16,7,88. The disjunct high suitability for Podocarpus for the Carajás 308 

lakes region (site 25) and very low suitability for Lagoa do Caçó41 (site 27) might be due to the 309 

absence of continental pollen records in these equatorial and subequatorial regions in Brazil during 310 

HS1. On the other hand, a marine pollen record off the coast of Ceará59, showing expansion of cold-311 

adapted montane arboreal elements during HS1, provide strong evidence  for high humidity levels 312 

brought about by the southward displacement of the ITCZ6. This scenario is confirmed by CCSM3 313 

Trace21k dataset87 simulation data analyses for current semi-arid Apodi region (<250 m elevation, 314 

mean annual temperature 28.5oC), nearby Caçó lake, indicating average annual accumulation of 315 

2650 mm  associated with high precipitation levels of monthly mean Convective Precipitation Rate 316 

(PRECC) and mean annual surface temperatures (TS) of around 22.6°C, of c. during HS1 and  317 

(Figure 4). Therefore, we estimate a temperature depression of c. 5oC, which is supported by similar 318 
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cooling between ca. 14 – 17 Krs BP, revealed by noble gases paleotemperature record in 319 

groundwater in northeastern Brazil89. In addition to conducive temperature, precipitation values are 320 

also well above the ecological requirements for sustaining a cold and humid forest vegetation with 321 

Podocarpus at Caco Lake, currently under mean annual precipitation of 1400-1500 mm and mean 322 

annual temperature of 25oC38.  323 

 324 
 325 
Figure 4. Boxplot of monthly averages of convective precipitation rate (PRECC) in mm/month (a) 326 
and mean monthly surface temperature TS °C (b) at Chapada do Apodi, next to Caçó Lake, derived 327 
from Simulation of the Transient Climate of the Last 21000 Years (TraCE-21k) during HS1. R-328 
scripts were generated to produce boxplots. 329 

 330 

 331 
The frequency of Podocarpus in pollen records analyzed depict a strong latitudinal control. In 332 

the southernmost range of its distribution (30oS-22oS) it could be found in elevations ranging from 333 

sea level to 1157 m, followed by an intermediate range from north of 22oS to 10oS where it was 334 

restricted to elevations higher than 610 m (Figure 5a). In its northernmost limit, lying between 6oS 335 

and 3oS, Podocarpus eventually reached the Amazonian lowlands, thus descending from 540 m to 80 336 

m elevation (Figure 5a, lower right), next to Caçó Lake. Araucaria, on the other hand, a good 337 

representative of the SSB route, shows a dissimilar distribution pattern in the HS1 pollen records 338 

ranging from 30oS at sea level to 750 m at 26oS with its northern limit during the glacial times at 339 

18oS in 1246 m elevation, with maximum elevation reached at 1820 m at 22oS. The separating line 340 

between sites north and south of 18oS (Figure 5b) suggests the northernmost limit for incursion of 341 

polar air masses during HS1, a fact that possibly imprinted a biogeographical boundary still observed 342 

in the modern southeastern Atlantic rainforest with a higher plant species turnover90 north of 18oS. 343 

Molecular genetic data from three common species of tree frogs widely distributed along the Atlantic 344 

rainforest91 support forest stability in the central core area of this vegetation type in the late 345 

Pleistocene. Combining these with our results, it becomes clear that stability of forest physiognomic 346 

persisted during the Late Pleistocene concurrent with migration of cold-adapted plant species 347 
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northwards propelled by H1 events, which in turn might have contributed to the establishment of 348 

biogeographical compartmentalization of the montane coastal vegetation specially north of 18oS. 349 

 350 

 351 

 352 
Figure 5. Scatter plot of altitude (m) vs. latitude (°S) for Podocarpus (a) and Araucaria (b) as 353 
indicated by presence (filled circles) and absence (clear circles) in pollen records during HS1. R-354 
scripts were generated to produce the scatter plot. 355 

 356 

Modern parameters and the climate of HS1 for the Brazilian Highlands 357 

Podocarpus L’ Her. ex Pers. and Araucaria (Bertol.) Kuntze stand out for beeing more 358 

ecologically informative in terms of precipitation and temperature requirements in southern and 359 

southeastern Brazil. Species Distribution Model (SDM) maps for A. angustifolia, P. lambertii and P. 360 

sellowii, shown in Figure 6, confirm a geographical restriction of Araucaria in southern/southeastern 361 

Brazil as opposed to a large distribution of Podocarpus, ranging rom 30oS to ca 5oS. Data cleaning 362 

methods was used to check the quality of data of modern distribution85, i.e. validation of the 363 

taxonomic identification in relation to the available literature with its corresponded latitude and 364 

longitude coordinates was performed. Georeferencing errors were evaluated and discarded from the 365 

database and a filter was applied to select only occurrences within the Brazilian territory.  366 

 367 

 368 

Figure 6. Modern Potential Distribution maps for Podocarpus (a) and Araucaria angustifolia (b) 369 
where occurrences of taxa are shown by yellow and blue dots, respectively. White areas show SDM 370 
maps generated by MaxEnt version 3.3.3k for prediction of montane forest, using presence from 371 
SpeciesLink and SiBBr / GBIF database and 19 bioclimatic data layers from WorldClim dataset 372 
version 2.0. Areas above 610 m elevation are highlighted in red. Dashed line is the border of Brazil. 373 
Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 374 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 375 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 376 

 377 
 378 

At the northernmost edge of this distribution range, Podocarpus is found in relictual 379 
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populations in orographically controlled humid “islands” within semi-arid climates50,51, isolated in 380 

the Pleistocene, as indicated by genetic data92.  Anotherline of evidence for expanded montane forest 381 

in this region is the discovery9,45 of fossilized leaves of rainforest taxa found in the late glacial 382 

calcareous tufas in a modern Caatinga region adds more support for this climatic mechanism during 383 

Heinrich Stadial events throughout the last glacial period. However, the mode that humid adapted 384 

plants migrated to present-day semi-arid regions in South America is still unknown. 385 

The current distribution of Araucaria angustifolia reaches its northern limit at 21°S in any 386 

elevation, at altitudes of about 400 to 1750 m above sea level (asl) under less than three months dry 387 

season, whereas from 24° to 31°S this taxon occurs as low as at sea level up to ca. 1200 m, under 388 

year-round high humidity levels.  389 

In order to investigate the factors controlling its  modern distribution as well as Podocarpus 390 

lambertii occurrences, we used a 15-year long data set of rainfall data CPC Morphing technique 391 

(CMORPH)93, corrected by the Brazilian meteorological station network data94,95, between 2000 and 392 

2015. Afterwards, R-scripts were written to generate descriptive statistics for the occurrence of each 393 

taxon. Box plots and histograms were generated based on values of 1° x 1° latitude grid of total daily 394 

accumulated precipitation data. These analyses yielded mean values of precipitation for 6 months 395 

periods, for the seasons, months and annual precipitation for that historic series.  396 

Finally, a Principal Component Analysis (PCA) was carried out for both Podocarpus and 397 

Araucaria in order to discriminate the roles of precipitation and temperature in relation to the 398 

following variables: cumulative annual precipitation in mm, total precipitation in Winter, Spring, 399 

Summer and Autunm, wet and dry periods. Modern occurrence of Araucaria angustifolia and 400 

Podocarpus lambertii in Brazil are controlled mainly by mean total annual precipitation of 1680+180 401 

mm and 1520+220 mm based on a 15-year climatic series (2000-2015), whereas optimum mean 402 

annual temperature for both taxa are ca. 17.5oC as indicated by Species Distribution Model and 403 

WorldClim dataset.  404 
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PCA biplots shown on Figure 7 indicate that annual and summer variables are the main 405 

loading values for the PC1 (84.11%) and PC2 (15.15%) components, respectively.  The simultaneous 406 

occurrence of Araucaria angustifolia and Podocarpus lambertii is discernibed as a main central 407 

cluster (Figure 7a) for 1750 mm annual precipitation.  Outside this range, only Podocarpus can 408 

survive as it tolerates higher precipitation variability (Figure 7b). The latitudinal control for 409 

Araucaria is significantly stronger when compared to Podocarpus that can thrive in microrefugia in 410 

latitudes outside the Araucaria-Podocarpus associations typical of south/southeastern Brazil (Figure 411 

7d and 7e). The PCA diagram of the combined distribution, with overlapping clusters, of both taxa 412 

shows that the modern occurrences of Araucaria angustifolia and Podocarpus lambertii in Brazil are 413 

controlled mainly by mean total annual precipitation of 1680 ±180 mm and 1520 ± 220 mm 414 

respectively based on a 15-year climatic series (2000-2015). These values range well within the 415 

classical precipitation values used in the literature for both taxa for the Brazilian highlands. 416 

 417 

 418 
Figure 7. PCA biplot for the modern distribution of Podocarpus lambertii and Araucaria 419 
angustifolia in relation to mean values of total annual precipitation, performed by PAST 3.21 (a). 420 
Boxplots of each annual total precipitation value representing number of years (2000-2015) for 421 
Podocarpus lambertii (1520 ± 220 mm) (b) and Araucaria angustifolia (1680 ±180 mm) (c).  Scatter 422 
plot of Total Annual Precipitation (mm) vs. Latitude (°) of modern distribution for Podocarpus 423 
lambertii and Araucaria angustifolia, respectively (d) and (e). Precipitation data were based on 424 
hourly rainfall estimates with CMORPH between 2000 and 2015, corrected by the Brazilian 425 
meteorological station network. R-scripts were generated to produce boxplots and the scatter plot. 426 
 427 
 428 
 429 

PCA biplots for Araucaria (Figure 8a) reveals annual and summer variables are the main 430 

loading values for the PC1 (71.47%) and PC2 (27.07%) component. PCA loadings indicate that the 431 

distribution of Araucaria angustifolia is primarily influenced by anual acumulated precipitation and 432 

well distributed precipitation long the year, both in dry and wet seasons, respectively. Figures 8b and 433 

8c indicates low precipitation variability as a significant parameter for explaining Araucaria 434 

distribution (Figure 8d) under modern conditions. Therefore, it’s clear that this taxon does not 435 
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tolerate dry conditions even during the dry months, showing an optimum value of precipitation 436 

around 500 mm for the period of March to August. 437 

We suggest that individualistic species reshuffling in the three migration routes during HS1 438 

was constrained by their physiological responses within these temperature and precipitation ranges. 439 

Morevorer, the climatic confinment in terms of humidity stability possibly explains why Araucaria 440 

did not migrate further than lat 18oS in route SSB during HS1. 441 

 442 

 443 

 444 

Figure 8. PCA biplot (a) for modern distribution of Araucaria angustifolia in relation to mean values 445 
of total annual precipitation, performed by PAST 3.21. Annual (b), wet (c) and dry (d) season 446 
histograms for total precipitation values representing number of years (2000-2015), in relation to 447 
mean values of total monthly precipitation.  Precipitation data were based on hourly rainfall 448 
estimates with CMORPH between 2000 and 2015, corrected by the Brazilian meteorological station 449 
network. R-scripts were generated to produce boxplots and the scatter plot.  450 
 451 
 452 
 453 
Conclusions 454 

Our analyses provide strong evidence for the establishment of migration corridors of montane 455 

forest taxa, facialtitated by the presence of microrefugia, connecting different ecosystems in a 456 

continental scale, during humid and cold conditions related to Heinrich Stadial 1, from 18.1 to 14.7 457 

kcal yr BP. Analysis of published Brazilian fossil pollen records corroborate with a climatological 458 

scenario of high humidity sustained by the South American Monsoonal System under lowered 459 

temperatures resulting in more regular polar air mass incursions, reaching 18oS latitude, thus forming 460 

frequent cold fronts advancing northwards, into Amazonia and northeastern Brazil. Consequently, 461 

the two main migration routes, here coined SSA and SSN, respectively, were established. On those 462 

montane pathways, different plant taxa were able to disperse taking full advantage of certain 463 

reproductive traits, especially anemophilous pollen and bird dispersed seeds. It’s possible, that 464 

effective migration along these routes were facilitated by the presence of previous montane forests 465 
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microrefuges, which might have expanded downslope towards the lowlands during HS1, thus 466 

forming coalesced vegetated corridors. The proximity bwtween these established microrefugia 467 

permitted a series of local population expansions along the three montane routes during these cold 468 

and humid events. 469 

It becomes clear that mean annual temperature depression played a major role during the wet 470 

and cold HS1 phase in Brazil of at least 5oC, as indicated by temperature estimation based on noble 471 

gas paleotemperature records not for Last Glacial Maximum but also for HS189.  In addition, the 472 

presence of modern humid microrefuge containing montate taxa such as Poducarpus50 within hyper-473 

xerophylous caatinga is indicating a previous wetter climate conditions that took place during the 474 

establishment of SSN route.   475 

 The Brazilian highlands latitudinal range of 30oS to 18oS, conducive to expansion of 476 

montane vegetation with Araucaria during HS1, has probable ecological limits controlled by 477 

temperature. However, in its northern boundary of the range, intense monsoon rainfall caused shorter 478 

seasonality in comparison to its current limit at 21 oS while mean annual temperatures are today 479 

approximately similar. Currently, at 18oS latitude, long dry seasons of 5 to 6 months inhibit the 480 

growth of Araucaria angustifolia. In comparison, its fossil pollen occurrence during HS1 implies in a 481 

well-distributed precipitation throughout the year. By integrating the pollen data with speleothem 482 

isotope records3,5,7, we can assume that South American Monsoon regime during HS1 was longer 483 

with higher annual precipitation rates.   484 

Unlike Araucaria and other taxa that followed the SSB migration route, Podocarpus and 485 

others were able to migrate further north and beyond the highland domain, thus reaching distant 486 

lowlands regions due to their ability to disperse pollen and seeds more efficiently, and to germinate 487 

and grow in understory and dark forests. Their enlarged biogeographical range during HS1 primarily 488 

reflects a close approximation of their fundamental niches in opposition to their realized niche after 489 
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the onset of Holocene warm climates. This significant habitat reduction is likely to have established 490 

modern disjunct distribution patterns between southern/southeastern and northeastern Brazil.  491 

We, therefore, conclude that, although we do not devalue a possible scenario of early 492 

migration corridors during the Eocene/Miocene1,2 of Brazil, a significant imprint of the HS1 in 493 

delineating modern disjunct distributions there is unquestionable.  494 

One of the major implications of this study deals with possible impact of rising temperature 495 

predicted for future climatic scenarios on a substantial loss of tropical montane biodiversity. Our 496 

investigation suggests that the change in rainfall distribution may potentialy enhance this process. 497 

 498 
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 753 

Figures Captions 754 

 755 

Figure 1. Presence (red circles) and absence (white circles) of Podocarpus (a) and Araucaria (b) 756 
pollen in HS1 records of Brazil. Areas above 610 m elevation are highlighted in red. Dashed line is 757 
the border of Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: 758 
shaded relief illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic 759 
area: illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 760 

Figure 2: SSA, SSN and SSB migration routes for montane taxa during HS1 and pollen record 761 
locations in Brazil (open circles). Route SSA extends from southern/southeastern Brazil to southern 762 
Amazonia in the State of Pará. Route SSN extends from Southern-Southeastern to Northeastern 763 
Brazil lacks palynological support but is supported by modern distributions of montane taxa and 764 
Lagoa do Caçó (sedimentary record 28). SSB route connects coastal southern and southeastern sites 765 
up to 18oS synchronous with polar air mass incursions and lowered temperatures as supported by 766 
pollen evidence. Areas above 610 m elevation are highlighted in red. Dashed line is the border of 767 
Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 768 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 769 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration).  770 

Figure 3. Montane forest potential distribution during HS1 represented by Podocarpus (a) and 771 
Araucaria (b), where black and white circles indicate presence and absence, respectively, in pollen 772 
records. White areas show SDM maps generated in MaxEnt version 3.3.3k for prediction of montane 773 
forests, using presence in pollen records during HS1 correlated with climatic layers from CCSM3 774 
Trace21k dataset. Areas above 610 m elevation are highlighted in red. Dashed line is the border of 775 
Brazil. Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 776 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 777 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 778 

Figure 4. Boxplot of monthly averages of convective precipitation rate (PRECC) in mm/month (a) 779 
and mean monthly surface temperature TS °C (b) at Chapada do Apodi, next to Caçó Lake, derived 780 
from Simulation of the Transient Climate of the Last 21000 Years (TraCE-21k) during HS1. R-781 
scripts were generated to produce boxplots. 782 
 783 
Figure 5. Scatter plot of altitude (m) vs. latitude (°S) for Podocarpus (a) and Araucaria (b) as 784 
indicated by presence (filled circles) and absence (clear circles) in pollen records during HS1. R-785 
scripts were generated to produce the scatter plot. 786 
 787 
Figure 6. Modern Potential Distribution maps for Podocarpus (a) and Araucaria angustifolia (b) 788 
where occurrences of taxa are shown by yellow and blue dots, respectively. White areas show SDM 789 
maps generated by MaxEnt version 3.3.3k for prediction of montane forest, using presence from 790 
SpeciesLink and SiBBr / GBIF database and 19 bioclimatic data layers from WorldClim dataset 791 
version 2.0. Areas above 610 m elevation are highlighted in red. Dashed line is the border of Brazil. 792 
Base layer: Shaded relief image of ETOPO1 Global DEM (continental area: shaded relief 793 
illumination from 060˚N, 30˚ above horizon, 40 times vertical exaggeration; oceanic area: 794 
illumination from 060˚N, 20˚ above horizon, 5 times vertical exaggeration). 795 
 796 
Figure 7. PCA biplot for the modern distribution of Podocarpus lambertii and Araucaria 797 
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angustifolia in relation to mean values of total annual precipitation, performed by PAST 3.21 (a). 798 
Boxplots of each annual total precipitation value representing number of years (2000-2015) for 799 
Podocarpus lambertii (1520 ± 220 mm) (b) and Araucaria angustifolia (1680 ±180 mm) (c).  Scatter 800 
plot of Total Annual Precipitation (mm) vs. Latitude (°) of modern distribution for Podocarpus 801 
lambertii and Araucaria angustifolia, respectively (d) and (e). Precipitation data were based on 802 
hourly rainfall estimates with CMORPH between 2000 and 2015, corrected by the Brazilian 803 
meteorological station network. R-scripts were generated to produce boxplots and the scatter plot. 804 
 805 
Figure 8. PCA biplot (a) for modern distribution of Araucaria angustifolia in relation to mean values 806 
of total annual precipitation, performed by PAST 3.21. Annual (b), wet (c) and dry (d) season 807 
histograms for total precipitation values representing number of years (2000-2015), in relation to 808 
mean values of total monthly precipitation.  Precipitation data were based on hourly rainfall 809 
estimates with CMORPH between 2000 and 2015, corrected by the Brazilian meteorological station 810 
network. R-scripts were generated to produce boxplots and the scatter plot.  811 
 812 
 813 

Tables 814 

Table 1. Reproductive characters of montane arboreal taxa displaying SSA, SSN and SSB migration 815 
routes. 816 

 817 
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