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Abstract
Motivated by the increasing appeal of robots in
information-gathering missions, we study multi-
agent path planning problems in which the agents
must remain interconnected. We model an area by a
topological graph specifying the movement and the
connectivity constraints of the agents. We study the
theoretical complexity of the reachability and the
coverage problems of a fleet of connected agents on
various classes of topological graphs. We establish
the complexity of these problems on known classes,
and introduce a new class called sight-moveable
graphs which admit efficient algorithms.

1 Introduction
A number of use cases of planning rose in information-
gathering missions from the development of unmanned au-
tonomous vehicles (UAVs). For instance, in search and rescue
missions, a fleet of drones can cover a lot of ground in a short
amount of time and report any finding to a mission supervisor
to narrow the search for the rescue team. Other examples are
the terrain analysis for smart farms and for areas in hazardous
locations. For this kind of missions, the information gathered
is used for decision making at a supervising station. Thus,
the robots need to be constantly in communication with the
station to report the information gathered during the mission.
The use of multiple UAVs to cover an area not only reduces
the time required to complete the mission but also enables
reaching locations which may not be reachable with a single
drone due to connection constraints.

The original multi-agent path finding problem asks for a
plan to reach a configuration of agents in a graph [Ratner
and Warmuth, 1986]. However, an important problem for
search and rescue missions or terrain analysis is the coverage
of an area. We thus study both the reachability and the cov-
erage problems under a connection constraint over the agents
which requires them to be connected to the base either di-
rectly or via another agent, who can relay its data. We es-
tablish the computational complexity of the connected cov-
erage in its general case and for a practical subclass intro-
duced recently [Tateo et al., 2018] in which the UAVs can
communicate with others located within one step, called the
neighbor-communicable topological graphs. We show that

the coverage is PSPACE-complete in the general case, and
remains so for neighbor-communicable topological graphs.
Thus, restricting to neighbor-communicable graphs does not
make the problem feasible, and the relatively high complex-
ity unfortunately remains. Note that this is in line with the
PSPACE-completeness of the reachability problem recently
reported in [Tateo et al., 2018].

Our main result in this paper is the definition of a class
of topological graphs which is well adapted and realistic for
UAV missions, and for which the coverage and reachability
problems admit efficient algorithms. Our subclass, called
sight-moveable graphs, is defined assuming that the UAVs
cannot communicate through obstacles and are restricted to
line-of-sight communication. This class emerged from an
ongoing case study for a drone assisted search and rescue
project in which the authors take part1. For this class, we
prove that both the reachability and coverage problems are in
LOGSPACE. This drastically changes the status of this prob-
lem since by LOGSPACE⊆ NC (this is the class of problems
solvable in polylogarithmic time in a parallel machine with a
polynomial number of processors), one can build an efficient
parallel algorithm [Cook, 1979]. The bounded versions are
NP-complete. This means efficient SAT solvers can be used
directly to compute bounded executions.

In this work, we consider anonymous agents. Furthermore,
we consider the collisions to be handled by the agents them-
selves, hence are not considered along the results of this pa-
per. We depicted a covering execution of a topological graph
by 3 UAVs in Figure 1. In this example, the UAVs need to
gather information at each node of the graph while staying
connected to the base (red node) during the whole mission.

In Section 2, we present the typical notions used in Multi-
Agent Path Planning (MAPP) and their extension for our case
and the known results in connected planning. In Sections 3 to
6, we study the complexity of our problems from the general
case to the most restrictive one. We describe the related work
in Section 7. We conclude in Section 8.

This paper is the follow-up to the extended abstract pre-
sented at the 18th International Conference on Autonomous
Agents and Multi Agent Systems (AAMAS 2019) [Charrier
et al., 2019]. An extended version2 is also available.

1EIT Retina project
2https://arxiv.org/abs/1903.04300
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Figure 1: Example of a mission execution.
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Figure 2: Examples of topological graphs.

2 Preliminaries
In most applications of path planning, the space is discretized
in order to generate a graph of movements on which algo-
rithms are executed. For instance, regular grids which de-
compose the space in square, triangular or hexagonal cells,
irregular grids with techniques such as quadtrees [Finkel and
Bentley, 1974; Knoll, 2006] or Voronoı̈ diagrams comprehen-
sively discussed in the survey [Aurenhammer, 1991].

Our work is independent of the particular method used to
obtain the discretization. We only work under the hypothesis
that a feasible plan on the graph generated by the discretiza-
tion is also feasible in the continuous space.

2.1 Topological Graph
Compared to the graphs used in MAPP, we also consider com-
munication edges which specify whether agents at two dif-
ferent locations can communicate. We call graphs with this
additional information topological graphs. The formal defi-
nition is the following.

Definition 1 (Topological graph). A topological graph is a

tupleG = 〈V,→, 〉, with V a finite set of nodes containing
a distinguished element B, → ⊆ V × V a set of movement
edges and ⊆ V × V a set of undirected communication
edges.

The node B symbolizes the supervision base station from
which the agents start the mission. A topological graph is
undirected if 〈V,→〉 is an undirected graph.

We will now consider three subclasses of interest.
In most situations, if an agent can move to a location in

one step, it can also communicate with an agent at that loca-
tion. This class has been discussed in [Tateo et al., 2018]. We
call topological graphs satisfying this requirement neighbor-
communicable. An example is given in Figure 2b.

Definition 2 (Neighbor-Communicable topological graph). A
neighbor-communicable topological graph is a topological
graph such that v → v′ implies v v′.

Another class of graphs is that of sight-moveable and is the
main one for which we give efficient algorithms. First, this
class requires the movement edges to be undirected and re-
flexive. Second, whenever an agent can communicate with
another node, then it can also move to that node while main-
taining the communication. This intuitively means that the
communication is restricted to line-of-sight and is disallowed
through obstacles. The formal definition follows, and an ex-
ample is depicted in Figure 2c.

Definition 3 (Sight-Moveable topological graph). A sight-
moveable topological graph is an undirected neighbor-
communicable topological graph in which for all v ∈ V ,
v → v and whenever v v′, there exists a sequence ρ =
〈ρ1, . . . , ρn〉 of nodes such that v = ρ1, v′ = ρn, v ρi and
ρi → ρi+1 for all i ∈ {1, . . . , n}.

Last, we define the complete-communication topological
graphs which are simply sight-moveable topological graphs
with a complete communication topology. This subclass can
model that the communication is not perturbed in the area.
An example of such a graph is depicted in Figure 2d, and the
formal definition is the following.

Definition 4 (Complete-Communication topological graph).
A complete-communication topological graph is a sight-
moveable topological graph such that = V × V .

Observe that complete-communication graphs are reflex-
ive, undirected, connected graphs with = V × V .

2.2 Execution
An execution, in MAPP, is a finite sequence of configurations
describing the placement of the agents during the mission.
The formal definition of a configuration is the following.

Definition 5 (Configuration). A configuration c of n agents
in a topological graph G is an element of V n denoted
c = 〈c1, . . . , cn〉 in which ci is the location of agent i
such that the graph 〈Va, ∩ (Va×Va)〉 is connected with
Va = {B, c1, . . . , cn}. We extend the notation→ and denote
c→ c′ when ci → c′i for all 1 ≤ i ≤ n.

MAPP asks to associate an agent to a specific goal. How-
ever, given that we are interested in covering an area with a
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fleet of agents, the anonymity is useful to get more efficient
plans.

Anonymity. In the rest of this paper, agents are anony-
mous. In other words, a configuration c is equivalent to a
configuration c′ iff c is a permutation of c′.

Moreover, an important notion in MAPP is the computa-
tion of collision-free plans. In the drone case, in which we
are particularly interested, one can place drones at different
heights to avoid collisions. Additionally, most drones are,
nowadays, equipped with local collision avoidance systems.

Collisions. We do not deal with meet- or head-on-
collisions of agents, i.e. we allow two agents to be located
in a same node, and to move in opposite directions of an edge
within a step.

An execution e of length ` with n agents in a graph
G is a sequence of configuration 〈c1, . . . , c`〉 such that for
ci → ci+1 for all 1 ≤ i < `.

A covering execution e = 〈c1, . . . c`〉 of length ` with n
agents in a graph G is an execution such that c1 = c` =
〈B, . . . , B〉 and for all v ∈ V , there exists i ∈ {1, . . . , `}
with v appearing in ci.

2.3 Decision Problems
We define the MAPP problems, the Reachability prob-
lem along with its bounded version, bReachability, for the
makespan optimization of the plan. In addition, we define the
Coverage problem and the bounded coverage, bCoverage.

Definition 6 (Reachability). Given a topological graph G,
n ∈ N written in unary and a configuration c of size n,
decide if there is an execution 〈c1, . . . , c`〉 in G such that
c1 = 〈B, . . . , B〉 and c` = c.

Definition 7 (bReachability). Given a topological graph G,
n ∈ N written in unary and a configuration c of size n
and ` ∈ N written in unary, decide if there is an execution
〈c1, . . . , c`′〉 in G s.t. `′ ≤ ` and c`

′
= c.

Definition 8 (Coverage). Given a topological graph G and
n ∈ N written in unary, decide if there exists a covering exe-
cution with n agents.

Definition 9 (bCoverage). Given a topological graph G,
n, ` ∈ N written in unary, decide if there exists a covering
execution of length `′ such `′ ≤ `.

We study the restrictions of the above problems to classes
of topological graphs. We denote PC the problem P (one of
the four above problems) restricted to a class C of topologi-
cal graphs (C can either be dir for directed, nc for neighbor-
communicable, und for undirected, sm for sight-moveable or
cc for complete-communication topological graphs).

2.4 Known Results
The complexity of the decision problem associated to the
minimization of the makespan with non-anonymous agents
and collision, is known to be NP-hard [Ratner and Warmuth,
1986]. Throughout the study of MAPP, NP-hardness was
shown to hold on planar graphs [Yu, 2016] and, later, on 2D
grid graphs [Banfi et al., 2017]. Variants of MAPP have been
studied such as the package-exchange robot-routing problem
[Ma et al., 2016] where the robots are anonymous but not

the package they exchange, is shown to be NP-hard. A class
of grid graphs was shown to be solvable in polynomial time
[Wang and Botea, 2009].

The connected version of MAPP was introduced in
[Hollinger and Singh, 2012], in which a topological graph
discretizes the space and it is proved that the existence of
a plan for the reachability of a configuration of agents in a
bounded amount of steps is NP-hard:
Theorem 10. bReachability restricted to undirected topo-
logical graphs is NP-hard [Hollinger and Singh, 2012].

In [Tateo et al., 2018], it is shown that deciding the exis-
tence of a feasible plan is PSPACE-complete:
Theorem 11. Reachability restricted to undirected topolog-
ical graphs is PSPACE-complete [Tateo et al., 2018].

Authors prove this result for graphs with self-loops and a
base [Tateo et al., 2018] as in our setting (see Discussion fol-
lowing Theorem 1). The only difference with our setting is
that the agents start at a specific configuration in [Tateo et al.,
2018]. Nevertheless, it can be shown that their complexity re-
sult holds for our problem by a simple but subtle construction
given in the extended version.

In the rest of the paper, we study the upper bounds and the
lower bounds complexity of the defined decision problems
on the previously defined topological graphs. The following
sections present our results, respectively, for the general case,
the neighbor-communicable graphs, sight-moveable graphs,
and complete-communication graphs.

3 Directed Topological Graphs
For the bounded versions, we can guess and check a path of
bounded length in polynomial-time since the input is encoded
in unary:
Proposition 12. bCoveragedir and bReachabilitydir are in
NP.

For the unbounded problems, we can design a straightfor-
ward NPSPACE algorithm that guesses an execution by keep-
ing in memory the last configuration, and, for Coveragedir,
the set of visited regions. We conclude with Savitch’s Theo-
rem (NPSPACE=PSPACE)[Savitch, 1970]:
Theorem 13. Coveragedir and Reachabilitydir are
PSPACE-complete.

The lower bound of Reachabilitydir is given in Theo-
rem 11. We now concentrate on Coveragedir.
Lemma 14. Coveragedir is PSPACE-hard.

Proof. The proof is by reduction from Reachabilitydir in
which the base node has a self-loop. As noted in the remark
following Theorem 11, this problem remains PSPACE-hard.
We map an instance (G, c) ofReachabilitydir to the instance
G′ of Coveragedir where G′ is depicted in Fig. 3. Let k de-
note the number of agents in the instance (G, c). G′ contains
G as a subgraph, plus fresh nodes v1, . . . , vk and s1, . . . , sk.
An agent can move from any node of G to v1 and back.

Node s1 can communicate with the base B, and node vk
can communicate with all nodes ofG′. Furthermore, we have
the communication edges (si, si+1) and (vi, vi+1) for all 1 ≤
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v1 v2 vk

all

copy of G

Figure 3: Topological graph G′ constructed from the
Reachabilitydir-instance.

i ≤ k − 1. Now we prove that the k agents can progress to
the configuration (c1, . . . , ck) in G if and only if there exists
a covering execution in G′.

(⇒) If the agents are in the configuration (c1, . . . , ck) then
they can progress in one step to configuration (s1, . . . , sk).
Then, they have no choice but progress to the configuration
(v1, . . . , vk). Once in this configuration, the agent placed
on the node vk communicates with the base and with all
other agents. This agent stays at vk. Meanwhile the agent
placed on the node v1 will visit all unvisited nodes of G and
come back to v1 while keeping communication to the base
through the agent placed on vk. Meanwhile, agents placed
on v2, . . . , vk−1 come back to B. Finally, when all the nodes
have been visited, both agents on v1 and vk come back to B.

(⇐) If there exists a covering execution of the whole graph
G′, it means all nodes have been visited. In particular, node
sk has been visited and let us consider the first time tsk when
sk is visited. Time tsk − 1 denotes the time just before tsk .

Fact 15. At time tsk − 1, no node vi and no node si were
visited.

Proof. Suppose by contradiction that a node vi was visited by
some agent before tsk , then the only possibility such an agent
to communicate to the base is that there is also an agent at
vk at time tsk . But then, it means that sk was visited strictly
before tsk , leading to a contradiction. Thus, no node vi were
visited at time tsk (thus at time tsk − 1).

As no node vi are visited before tsk , no node si are visited
before tsk − 1.

Fact 16. At time tsk − 1, the configuration is 〈c1, . . . , ck〉.

Proof. At time tsk , as the agent at sk needs to communicate
with the base, the only possibility is that the configuration is
〈s1, . . . , sk〉. Thus, the only possibility is that configuration
is 〈c1, . . . , ck〉.

Facts 15 implies that the prefix from time 0 to time tsk −
1 of the covering execution is an execution in G. Fact 16
implies that sub-execution reaches 〈c1, . . . , ck〉.

4 Neighbor-Communicable Topological
Graphs

In this subsection, we show that our problems remain hard for
neighbor-communicable graphs.

Theorem 17. Coveragenc is PSPACE-complete.

Proof. The upper bound is given by Theorem 13.
For the lower bound on Coveragenc, the reduction given

in Figure 3 is not adapted for neighbor communicable graphs.
Indeed, all nodes may be visited although c1, . . . , ck is not
reached: v1 and vk can be reached by two lines of agents
connected to the base, making the coverage of the full graph
possible. We nevertheless give a similar reduction by adapt-
ing the previous reduction.

The details are given in the extended version.

5 Sight-Moveable Topological Graphs
In this subsection, we show that Reachabilitysm and
Coveragesm are in LOGSPACE while the bounded version
bReachabilitysm is NP-complete.

5.1 Upper Bounds
The results of this subsection rely on the problem of checking
the connectivity of two nodes s and t in an undirected graph,
namely USTCONN.

Theorem 18. USTCONN is in LOGSPACE[Reingold, 2008].

Proposition 19. Reachabilitysm is in LOGSPACE.

Proof. The idea of the proof is to reduce Reachabilitysm to
UCONN, that is the problem of deciding whether an undi-
rected graph is connected. From Theorem 18, we can reduce
UCONN to USTCONN by simply looping over all pairs of
nodes (s, t) and checking for a path from s to t. Therefore,
UCONN is in LOGSPACE.

Now we describe the logarith-
mic space reduction of Reachabilitysm
to UCONN. Let G = 〈V,→, 〉 a sight-moveable topolog-
ical graph and c a configuration. Let V ′ = {c1, . . . , cn, B}.
The configuration c is reachable iff the restriction of
G′ := (V, ) to the nodes in V ′ is -connected. Indeed,
if it is, then c is reachable: each agent follows some→-path
from B to ci contained in a -path from B to ci. In other
words, (G, c) is a positive Reachabilitysm-instance iff G′ is
a positive UCONN-instance. The reduction is in logarithmic
space: we compute G′ by enumerating all (u, v) -edges
in G, and we output (u, v) when u, v ∈ V ′. We recall that we
only take into account the working memory for computing
G′; the output – G′ itself – is not taken into account in the
used space (see e.g. [Sipser, 1997], Ch. 8, Def. 8.21).

Proposition 20. Coveragesm is in LOGSPACE.

Proof. First we prove that the bounded version of the con-
nectivity in undirected graphs is also in LOGSPACE.

Lemma 21. Bounded-USTCONN, that is the problem, giving
an undirected graph G, two nodes s, t, an integer n written in
binary, of deciding whether there is a path of length at most
n from s to t in G is in LOGSPACE.

Proof. We reduce Bounded-USTCONN to USTCONN in
logarithmic space as follows. From a Bounded-
USTCONN instance (G, s, t, n) we construct in logarithmic
space a USTCONN instance (G′, s′, t′): 1. The nodes of G′
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are pairs (v, j) where v is a node of G and j is an integer
in {0, n} but smaller than the number of nodes in G′; 2. G′
contains an edge between (v, j) and (v′, j + 1) when there is
an edge between v and v′ in G or when v = v′; 3. s′ = (s, 0)
and t′ = (t′, n).

Now let G = 〈V,→, 〉 be a sight-moveable topologi-
cal graph and n an integer written in binary. There is a path
from any node v to the baseB with at most n communication
edges iff (G,n) is a positive instance of Coverage. Thus,
we test sequentially, for all v, that ((V, ), v, B, n) is a pos-
itive instance of Bounded-USTCONN . Hence, we obtain an
algorithm in logarithmic space to decide Coverage.

5.2 Lower Bounds
We now focus on the NP lower bound of bReachabilitysm.

Proposition 22. bReachabilitysm is NP-hard for a fixed ex-
ecution length ` ≥ 3.

Proof. The proof is by polynomial time reduction
from 3-SAT problem (see [Karp, 1972]). Given
a 3-SAT instance, set of clauses c1, . . . , cm with
variables x1, . . . , xn, we describe the construc-
tion of an instance (G, c) of bReachabilitysm
with k = n+m agents.

The topological graph G = 〈V,→, 〉 is constructed as
follows. We start by placing the baseB from which the agents
start their mission.

Please recall that a sight-moveable graph is also a
neighbor-communicable graph so all movements edges are
also communication edges in the construction below even if
not explicitly stated.

For each variable x, we construct a gadget composed of
5 nodes connected to the base depicted in Figure 5a: nodes
x, ¬x, staging nodes nx, n¬x and a goal node gx. We add
movement edges fromB to nx, from nx to x and from x to gx
(resp. fromB to n¬x, from n¬x to ¬x and from ¬x to gx). As
for the communication, the node x (res. ¬x) communicates
with the base.

For each clause c, we construct a gadget composed of 3
nodes depicted in Figure 5b. We create a node c, a staging
node nc and a goal node gc. We add movement edges from
B to nc, from nc to c and from c to gc. The communica-
tion between a clause c and a literal x or ¬x is dictated by
the existence of the literal in the clause: ci xj if and only
if xj ∈ ci; and ci ¬xj if and only if ¬xj ∈ ci.

We add movement edges from gxi
to gxi+1

, and from gci
to gci+1

for all 1 ≤ i < n, as well as we from gxn
to gc1 . Last,

we add a fully connected path containing 3 fresh nodes from
gx1 to the base such that gx1 B, in the sense that all nodes
of this path have communication edges between them. This
translation is polynomial in the number of clauses and vari-
ables. The construction is depicted in Figure 4. The snake-
like path from gx1

to B is the fully connected path.
From a 3-SAT instance, one can construct the graph G and

ask for an execution of length 3 to reach the configuration
〈gx1

, . . . , gxn
, gc1 , . . . , gcm〉.

The rest of the proof is given in the extended version.

From Propositions 12 and 22, we have:

Theorem 23. bReachabilitysm is NP-complete.

6 Complete-Communication Topological
Graphs

The following result relies on the fact that the communication
is complete.

Proposition 24. bReachabilitycc is in LOGSPACE.

Proof. From Lemma 21, one can construct an algorithm in
LOGSPACE for bReachabilitycc. Indeed, given a configu-
ration c and ` ∈ N, the straightforward iteration on the lo-
cations ci followed by the verification of a path of at most `
(given in unary) steps from B to ci yields a sound and com-
plete algorithm for bReachabilitycc.

Our NP lower bound proof of the bCoveragecc problem is
by reduction from the grid Hamiltonian cycle (G-HC) prob-
lem which is the Hamiltonian cycle problem restricted to grid
graphs and is NP-complete [Itai et al., 1982].

Theorem 25. bCoveragecc is NP-complete.

The upper bound follows from Proposition 12. The NP-
hardness proof is given in the extended version.

7 Related Work
The coverage planning is an interesting approach to path
planning. Indeed, a covering plan can be used for fields such
as floor cleaning, lawn mowing, etc. A survey of this field
appears in [Choset, 2001]. This multi-agent extension has
the ability to reduce the length of the overall mission and
also reach parts of the area a single agent would not able to.
This problem was studied in [Rekleitis et al., 1997] for two
agents. As shown in the survey by Chen et al. [Chen et al.,
2014], many coverage problems have been addressed by us-
ing analytic techniques. For instance, in [Yanmaz, 2012] and
[Teacy et al., 2010], they consider UAVs that should cover
an area while staying connected to the base, but only empir-
ically study some path planning algorithms without proving
formally their soundness and completeness.

We advocate formal methods that give formal guarantees
and have already been applied to generate plans for robots
and UAVs. Model checking has been applied to robot plan-
ning (see [Lacerda et al., 2014]) and to UAVs [Webster et
al., 2011]. Humphrey [Humphrey, 2013] shows how to use
LTL (linear-temporal logic) model checking for capturing re-
sponse and fairness properties in cooperation (for instance, if
a task is requested then it is eventually performed).

Bodin et al. [Bodin et al., 2018] treat a similar problem
except that the UAVs cover the graph without returning to the
base. Without the return-to-the-base constraint, we claim that
all our hardness results still hold, except for bCoveragecc.
They provide an implementation by describing the problem
in Planning Domain Description Language and then run the
planner Functional Strips [Francès et al., 2017].

Murano et al. [Murano et al., 2015] advocate for a graph-
theoretic representations of states, that is, by assigning loca-
tions to agents as in Definition 5. In [Aminof et al., 2016;
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Figure 4: Sight-Moveable topological graph computed from the formula (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3).

B

nx

x

n¬x

¬x
gx

(a) Variable gadget.

B

nc

c

gc

(b) Clause gadget.

Figure 5: Gadgets in proof of Proposition 22.
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Figure 6: Complexity results (results in the paper are in gray).

Rubin, 2015], a general formalism is given to specify LTL
and monadic second-order logic properties, which are expres-
sive enough to describe the connectivity constraint. They pro-
vide an algorithm for parametrized verification in the sense
that they check a temporal property in a class of graphs. This
is relevant for partially-known environments. The algorithm
described is non-elementary (i.e. the running time cannot
bounded by any tower of exponentials) and therefore not us-
able in practice. We believe that this is an important problem
and our paper identifies an efficient and relevant fragment.

The multiple traveling salesman problem (mTSP) is a gen-
eralization of the traveling salesman problem (TSP) in which
multiple salesmen are located at a depot [Anbuudayasankar
et al., 2016]. mTSP asks for the coverage of all cities so as
to minimize the total plan cost by visiting each city exactly
once. An overview of TSP and its extensions are presented
[Matai et al., 2010]. The Coverage problem is related to
mTSP, since we use results on Hamiltonian cycle to prove the
NP-hardness of bCoveragecc. However, we wish to mini-
mize the length of the execution and not the cost of the exe-
cution. Those problems are equivalent on unit graphs, but it
is not trivial to use general results on mTSP in order to solve
Coverage. Furthermore, to the best of our knowledge, con-
nected versions of mTSP and VRP have not been studied.

8 Conclusion
Sight-moveable topological graphs we introduced only con-
strain the communication graph. One can be interested to
constrain the movement graph to be planar or a 2D grid given
the common usage of grid modelling of the environment.
Given the intractability of MAPP on planar graphs [Yu, 2016]
and on general 2D grid graphs [Banfi et al., 2017], it is likely
that this problem is intractable as well. Furthermore, in [Tateo
et al., 2018], the decision is proved to stay PSPACE-complete
on planar graphs and grids as well. However, one can study
this problem on solid grid graphs, given that the Hamiltonian
cycle is tractable on such graphs [Umans and Lenhart, 1997].

Note that our NP lower bounds hold without the anonymity
of the agents. Indeed, the bCoverage case is straightforward
and for bReachability case, each agent can be associated to
a clause or variable, so the reduction would still hold.

We do not know if Coverage remains PSPACE-hard
when the →-relation is symmetric (see Figure 6). We think
this open issue is important since symmetric →-relations (if
UAVs can go from v to v′, they can also come back from v′

to v) are relevant for practical applications. We plan to study
the parametrized complexity [Downey and Fellows, 1999] of
our problems - parameters could be for instance the treewidth
of the topological graph or the number of UAVs.
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