
HAL Id: hal-02349474
https://hal.science/hal-02349474

Submitted on 23 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chalcogenide glasses as a playground for the application
of first-principles molecular dynamics to disordered

materials
Guido Ori, Assil Bouzid, Évelyne Martin, Carlo Massobrio, Sébastien Le

Roux, Mauro Boero

To cite this version:
Guido Ori, Assil Bouzid, Évelyne Martin, Carlo Massobrio, Sébastien Le Roux, et al.. Chalcogenide
glasses as a playground for the application of first-principles molecular dynamics to disordered ma-
terials. Solid State Sciences, 2019, 95, pp.105925. �10.1016/j.solidstatesciences.2019.06.014�. �hal-
02349474�

https://hal.science/hal-02349474
https://hal.archives-ouvertes.fr


 1

  
Chalcogenide glasses as a playground for the application of 
first-principles molecular dynamics to disordered materials 

 
Guido Ori1, Assil Bouzid2, Evelyne Martin3, Carlo Massobrio1, Sébastien Le Roux1, 

Mauro Boero1 
1University of Strasbourg, Institut de Physique et Chimie des Materiaux de Strasbourg 

(IPCMS), CNRS, UMR 7504, 23 rue du Loess, F-67034, Strasbourg, France 
2Institut de Recherche sur les Céramiques (IRCER), 12 rue Atlantis, F-87068 Limoges, France 

3University of Lille, CNRS, Centrale Lille, ISEN, UPHF, UMR 8520 IEMN, F-59000 Lille, 
France 

  
Abstract 
An overview of the major first-principles methods used to simulate condensed phases is 
presented, with special emphasis on chalcogenide glasses. The scope of this review 
article is to offer a survey of fundamental algorithms and techniques, accompanied by a 
few recent examples particularly representative of computational materials science 
applied to disordered chalcogenide phases. Special attention is devoted to the inclusion 
of long-range van der Waals dispersion forces, treatment of the exact exchange, 
dynamical simulations and extraction of optical and dielectric properties. Machine 
learning techniques are introduced as recent forefront applications of first-principle 
methods. In this latter case, accurate quantum-mechanics based simulations are crucial 
to generate a data base exploited by neuronal-network type algorithms to create accurate 
interatomic potentials (force fields) allowing for large and long-lasting simulations of 
realistic disordered materials. The atomic-level knowledge provided by the combination 
of high-performance computing and advanced computational methods pave the route for 
a rational approach to the design of novel chalcogenides possessing tuned properties for 
specific applications in next-generation devices. 
 
Keywords: molecular dynamics, electronic structure, glass structure, amorphous materials, 

chalcogenides 

  
1. Introduction 
Despite remarkable advances in theoretical approaches, numerical algorithms, codes 
and high-performance computing (HPC) architectures, simulations of solid-state 
systems large enough to be considered as realistic represent still one of the most 



 2

challenging tasks in computational science. An accurate description of the microscopic 
properties and the intimate details of the underlying electronic structure call for 
quantum-mechanical based approaches and, as a consequence, their intrinsic complexity 
require a many-body methodology, with all the difficulties that this implies. 
The main target in this class of atomic-scale simulations is to reproduce, in a realistic 
way, physical and chemical events occurring in disordered materials as well as in liquid 
or crystalline systems which undergo a phase transition to a glassy phase [1] This 
requires something that goes beyond the simple calculation of the atomic and electronic 
structure of a given set of coordinates RI representing, for instance, the crystallographic 
positions of atoms in a solid. Indeed, from a historical standpoint, this idea gave birth to 
the Molecular Dynamics (MD) field [2-5], whose scope is to replicate, on a computer, 
systems of interacting particles in a way as close as possible to nature. Dynamical 
simulations of this type are expected to reproduce the behavior of an extended system 
over a physical time scale relevant to the properties of interest. Analytic potentials 
written in terms of a mathematical function V(RI) of the atomic coordinates RI can be 
very useful in simulating systems for which parameterization, benchmark and 
assessment on experiments can be done. Yet, this is nearly never the case for a 
disordered system, especially when electronic structure evolves in time, resulting in 
cleavage and formation of chemical bonds which are beyond the reach of analytic 
potentials apart from a very limited class of elements and very specific processes. 
Specifically, if a sufficiently accurate force field is available, classical simulations can 
reproduce all fluctuations and, in a few cases, conformational changes not involving 
electronic structure modifications. Instead, if electronic structure modifications, 
chemical reactions including bonds breaking and formation, polarization effects and 
charge transfer processes are involved, then the use of a quantum approach is 
unavoidable. Indeed, these phenomena are inherently quantum and can be correctly 
described only if electrons are explicitly treated in terms of wavefunctions given by the 
solution of the corresponding Schrödinger or Dirac equations (or one of their 
many-body generalizations). On the other hand, the computational effort required by a 
full quantum treatment makes very expensive even the mere optimization of the 
wavefunctions of the valence electrons for such large and chemically complicated 
materials 
  
2. Hartree-Fock based approaches 
The coordinates {RI} representing the classical Cartesian positions of all the atoms 
composing a general system are the essential ingredients to start any type of calculation 
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and quantum approaches make no exception. To a certain extent, these can be provided 
by X-ray and neutron scattering experiments for crystalline phases. An amorphous, 
instead, is much more demanding due to the lack of long-range order. We shall review 
the basic methods to produce an amorphous system in the forthcoming sections. Yet, for 
any quantum-mechanics based method, these {RI} coordinates are not the only 
variables since the description of the system has to be complemented with the 
information on the electrons concurring to determine the chemical bonds and the 
resulting atomic structure.  
While nuclei can still be represented as classical degrees of freedom, electrons have to 
be properly described as quantum objects, hence, in terms of orbitals (wavefunctions) i. 
As a consequence, the Hamiltonian of the system has to contain all the interactions 
between all the variables involved. The main quantum approaches that have been used 
to study systems composed of many electrons (and atoms) over the years rely all on 
some many-body formulation of the fundamental Schrödinger (more rarely Dirac) 
equation. They are classified according to the basis set or functional form adopted: 
Hartree-Fock (HF), generalized valence bond (GVB), density functional theory (DFT), 
configuration interaction (CI), complete active space self consistent field (CASSCF), 
etc. An excellent and extensive literature is available on these wavefunction based 
methods [6-8]. A recent comprehensive review can be found in the book from D. Marx 
and J. Hutter [9], while practical implementations of the various methods are well 
described in the monography of T. Pang [10]. 
As routinely pointed out in any textbook, solving the Schrödinger equation for a 
many-body system is in general a rather demanding task. The first difficulty to face is 
how to represent electrons with a truly many-body wavefunction (q), where q = (x1, 
x2, …, xN) is a multi-dimensional vector defining the position and the spin state  = 
,  of each one of the N electrons composing the system. Then, one has to solve the 

associated eigenvalues problem by solving the steady state Schrödinger equation 

                            )()(,ˆ qqRq  EH I                       (1) 

Among all the methods proposed over the years, one of the most popular is the HF 
approach. Let us remind that this method is based on the variational principle applied in 
a subspace of wavefunctions where the electronic ground state is assumed to be an 
antisymmetric combination of single-particle orbitals i(x), called Slater determinant, 

on which an orthonormal constraint     ijji is imposed. In the single 

particle wavefunction i(x) the first index i identifies the ith electron while the second 
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one  labels the spin state of each wavefunction, specifically an up arrow for the spin up 
and a down arrow for the spin down as in any spin-unrestricted formulations. Using this 
notation, a Slater determinant becomes  
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The second approximation involved in the HF approach is the analytic form of the 
Hamiltonian of the system. In fact, the HF version of the many-body Schrödinger 
equation, written in terms of single-particle orbitals, in atomic units, i.e. assuming as a 
charge unit the proton (or absolute value of the electron) charge (e =1) and as a mass 
unit the electron mass (me = 1), is written as 
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The terms inside the parentheses in the left-hand side of Eq. (3) are the kinetic energy 
operator, the electron-ion and ion-ion interactions, often referred to as “external 
Coulomb potential” (Vext), and the Coulomb (Hartree) potential acting between two 
electrons, respectively. We prefer to adopt here the definition VeI (electrons-ions) rather 
than Vext because this potential is by no means “external” to the system under study, 
which is composed of nuclei and electrons. It is just external to the electronic degrees of 
freedom, but it plays the role of an essential part of the whole interaction responsible for 
structural and electronic properties of the targeted system. These interactions have the 
following form 
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where the single particle electron density is the result of a sum up on all the spin and 
particle indexes of the j’(x’) square modulus wave functions. In practice, this integral 
form is rarely used, since the Hartree potential VH can be obtained more easily from the 
solution of the associate Poisson equation 
  
                           )(4)(2 xx  HV                          (6) 
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thus avoiding the long sum and integration procedures which would be computationally 
demanding. The second term in Eq. (3), 
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is the exchange operator. The name clearly refers to the fact that this operator, acting on 
the orbital i(x), exchanges the index i with j and the index  with ’, and accounts for 
the fact that from the quantum-mechanics point of view, electrons are indistinguishable 
particles. Although the exchange is correctly accounted for in HF approaches, it has to 
be remarked that this term is exactly zero if the ground state wavefunction is not 
assumed to be antisymmetric. An example of application of this method can be found in 
the seminal work of Edwards and coworkers [11]. In that study, the pseudo-binary 
chalcogenide alloy (GeTe)2(Sb2Te3) has been targeted, since this system can be switched 
electrically in a reversible way from the crystalline to the amorphous phase. This is 
accompanied by a remarkable change in the conductivity, with clear implications for 
applications in next-generation electronic devices. HF calculations allowed to compute 
with appreciable accuracy the electronic structure and to sort out the underlying features 
responsible for the expected changes in the conductivity properties.  
Since neither theoretical nor spectroscopic data were available at the time of this study, 
this pioneering work has represented a first attempt of using quantum chemical 
calculations to complement the experimental work by providing pieces of information 
not directly accessible to experimental probes in the area of chalcogenides. Yet, 
calculations of the exact exchange term of Eq. (7) were and still are a bottleneck for 
very large, hence realistic systems. For this reason, in the available literature, HF-based 
electronic structure calculations on amorphous materials are rare, particularly for 
chalcogenides, and HF approach are generally used for comparisons [12,13] with 
computationally cheaper (e.g. density functional theory) methods. 
As a word of warning, we recall that the Coulomb potential of Eq. (5) acts only between 
electron pairs described by single particle wavefunctions. This implies that three-body 
and higher order terms are neglected and, thus, correlations are not included in HF 
approaches. These are generally added a posteriori in the so called “post-HF” 
approaches. In practical applications, the geometry of the model system is optimized at 
the HF level and then higher order corrections to the energy, coming from perturbation 
theories are applied. This is, for instance, the case of the widely used Møller-Plesset 
(MP2) approach [14]. Yet, the total energy of the system is corrected to the second order, 
but the wavefunctions used to compute the second order perturbation are the ones 
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obtained in the uncorrelated HF calculation. As a consequence, wavefunctions and 
energy functional are not self-consistent and the first derivatives of the MP2 energy 
functional cannot provide the correct forces needed, for example, to run a molecular 
dynamics simulation. Nonetheless, HF-based structural optimizations and successive 
MP2 calculations can be repeated iteratively within a Born-Oppenheimer scheme to 
sample the potential energy surface [15]. This methodology is in principle very 
powerful and can lead to rather precise results. However, it has the drawback that the 
scaling with the system size is very unfavorable. In fact, despite recent attempts of 
reducing the computational cost [16], the typical scaling of an MP2 procedure is at least 
O(N4), whereas the scaling of HF calculations is O(N3). This implies that only systems 
with relatively few electrons can actually be treated within these approaches. 
For the sake of completeness, we recall that the selection of a specific Hamiltonian and 
the single-particle expression of the many-body wavefunction do not include all the 
ingredients needed to actually perform the calculations. One has also to select an 
appropriate (finite) basis set good enough to approximate the (infinite) Hilbert space 
spanned by the eigenfunctions of the Hamiltonian of the system and appropriately fit to 
represent the orbitals i(x) as linear combinations of analytic functions k(x;{RI}). In 
HF approaches, these functions are generally centered on the atomic coordinates RI of 
the system, such that 
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and the number of analytical functions used, M, is also an indicator of the 
computational cost of the quantum calculation, in the sense that the larger the basis set, 
the higher the computational workload. Further information can be found in Ref. 17. 
To date, HF applications to chalcogenide glasses are mostly used as a tool to compute 
magnetic properties on structural models obtained via less expensive methods and, in 
particular, to extract susceptibilities and their modifications occurring upon phase 
transitions [18]. 
  
3. Density functional theory methods 
The density functional theory (DFT), nowadays extensively exploited in a wealth of 
computer codes and applications, dates back to the early 60s [19-24] and its 
multidisciplinary impact was worldwide acknowledged by the Nobel Prize in Chemistry 
in 1998 awarded jointly to Walter Kohn and John A. Pople. Since a rich literature is 
available [9,17,25,26] we limit our review to the main points with special attention to 
differences and analogies with the HF methods discussed in the former paragraph. 
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Contrary to the HF, DFT gives a reformulation of the many-body quantum mechanics in 
terms of the electron density, (x), instead of wavefunctions. The scope is nonetheless 
analogous, providing a theoretically exact description of a (ground state) system 
composed of interacting electrons, treated quantum mechanically, and point-like nuclei 
{RI}, treated as classical particles. The total energy functional of such a system can be 
written in a straightforward way as 

                           IIeIxcHiki EEEEEE   }{}{KS         (9) 

where the superscript KS stands for Kohn-Sham [20]. The first three terms composing 
this functional (Ek, EH, Exc) contain the electron-electron interactions, the fourth (EeI) and 
fifth one (EII) are instead the electron-nucleus and the nucleus-nucleus interactions and 
they are identical to the ones of equation (4) of the HF formulation. In this case, however, 
the cumbersome sum on all the wavefunctions is avoided since only the density (x), i.e. 
a real scalar quantity, is needed to compute this part of the electrostatic interaction. 
Another analogy with the HF approach is the Hartree term EH, namely the Coulomb 
interaction of equation (5), where, again, only the electron density is needed and, also in 
this case, the associated Poisson equation simplifies the calculation. 
More problematic is instead the calculation of the kinetic functional Ek. In fact, this term, 
directly deduced by the Schrödinger equation, would lead to a complicated many-body 
expression. A dramatic simplification can be obtained by assuming that the electron 
density can be written in terms of single electron wavefunctions, in perfect analogy with 
the HF ansatz. The major difference here is that these wavefunctions are just auxiliary 
mathematical objects, hence not necessarily real molecular orbitals. This ansatz allows 
writing explicitly (x) as a sum on all the Nocc occupied states 
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and only the sum of the square moduli actually matters. The coefficients fi are the 
occupation numbers, equal to 1 in the case of spin-unrestricted calculations or 2 for 
doubly occupied spin-restricted cases. The orthonormality constraint  

                           ijji xd   3* )()( xx                       (11) 

is added to ensure the orthonormality of the wavefunctions. With this definition, the 
kinetic operator reads 
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and it is diagonal both in the index i and in the argument x of the wavefunctions, as in a 
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non-interacting system of Nocc electrons. The term Exc[] is the new ingredient in the 
DFT formulation that replaces the exchange operator of equation (7). On one hand, this 
new functional has to be able to account for the exchange interaction by making use of 
the electron density (or spin density) only in order to reduce the computational burden. 
On the other hand, it is more general than the HF exchange, since it is supposed to 
include also all correlation effects beyond the two-body interaction. The existence of 
such a functional is somehow the limit of DFT, since the exact analytical expression of 
this mysterious object is unknown. Nonetheless, sufficiently good approximations are 
available. For the exchange part only, these approximations, although not being an exact 
DFT-based formula or a perturbative expansion, are generally deduced within the limit 
of the homogeneous electron gas [27-29]. By considering only the density (x) given at 
a specific point x, the so-called local density approximation (LDA) reads 
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Analogously, correlation functionals making use of the density (x) have been proposed 
in the early 80s [30]. They can be generally written as 

                            ))(()(3 xx  cc xdE                     (14) 

and the explicit form of the integrand term c((x)) is deduced on the basis of random 
phase approximation calculation [25]. Semi-local approximations for both the exchange 
and the correlation (XC) interactions are the ones including the gradient of the density, 
(x). These represent the second generation of this class of functionals, having the 
general expression 

                           ))(),((, 3 xx  xcxc xdE                (15) 

and making use in practical applications of just the modulus |(x)| of the gradient, 
with clear advantages for the practical implementation and the reduction of the 
computational workload. Despite the fact that these functionals, referred to as 
generalized gradient corrections (GGA), are somehow arbitrary, they are generally based 
on rigorous physical and mathematical backgrounds and their accuracy has been 
carefully assessed over the years [27-38]. The wide and somehow confusing choice of 
possible GGAs is always a matter of debate and their suitability is often dependent on 
the nature of the chemical bond they are meant to describe. Among all these alternative 
formulations, two of the most popular XCs for disordered materials are the PBE [34] and 
the BLYP [27,36] ones. Their worldwide extensive use is due to the fact that they 



 9

provide the best - or at least the most acceptable - performance in terms of geometrical 
parameters and relative energies for a wide variety of network-forming materials. As a 
word of warning, we remind that none of the present XCs includes long-range van der 
Waals interactions. Their inclusion within DFT approaches will be the focus of the next 
paragraph. On a general basis, we can safely state that DFT-based calculations have 
been and are extensively used, even nowadays [39,40], because of their reduced 
computational cost with respect to HF methods. 
  
4. Machine Learning schemes and role of first-principle calculations 
A recent forefront application of DFT calculations is the generation of a set of structures 
{RI} and corresponding KS total energies {Ej} large enough to be exploited as a data 
base in machine learning (ML) paradigms [41-43] for the construction of precise force 
fields (FF). Contrary to conventional FFs, which rely on physical considerations, ML 
potentials employ flexible functional forms to represent reference energies and forces 
provided by DFT. DFT calculations are then performed on a selected ensemble of points 
on the potential energy surface (PES). On these bases, ML schemes are designed to 
extrapolate - or interpolate - the atomic interactions from known selected points 
accurately computed and located on the PES by previous first-principle optimizations. 
Consequently, a very close numerical agreement with electronic structure energies and 
forces can be reached, knowing that the ML potential is by all means more affordable 
than DFT calculation. Shortcomings of ML potentials are the need for large reference 
data sets and their limited transferability, which requires a careful validation of the 
potential. 
A generalized neural-network (NN) potential approach for high-dimensional systems of 
thousands of atoms was introduced by Behler and Parrinello [44]. The high-dimensional 
NN potentials proposed are based on two key components. The first is the 
transformation of the atomic positions, (set of Cartesian coordinates) into many-body 
functions, called atom-centered symmetry functions, describing the local geometric 
environment of the atoms. This is essential to guarantee that certain properties of the 
PES are preserved, such as its translational and rotational invariance, and its symmetry 
with respect to the permutation of atoms of the same type. The second component is a 
set of atomic NNs. Each of these atomic NNs yields the energy contribution to the total 
energy as a function of the atomic environment described by the symmetry functions 
within a given radius. In a nutshell, Fig. 1 shows this procedure and its main steps. Such 
a ML procedure allowed to construct a reliable and versatile FF for a prototype phase 
change material, GeTe [41]. Yet, 5000 independent DFT calculations were needed to 
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construct the initial data base and this already large number has to be subsequently 
increased with additional randomly generated structures to cope with different 
thermodynamic (pressure and temperature) conditions [41]. This preparatory work is 
indeed a challenging amount of workload even within the computationally affordable 
DFT framework. As such, it represents the current bottleneck of NN ML schemes. 

 
Fig. 1. Schematic representation of a Neural Network architecture and related communication 
tasks. 
  
Although still subject to ongoing developments, this first attempt at constructing a 
ML-derived FF for a relatively complicated system has made possible to perform 
long-lasting molecular dynamics simulations on a nanosecond time scale of very large 
GeTe nanowires consisting of about 15000 atoms [45], a remarkable achievement still 
unaffordable a few years ago. On the same line, it is worth mentioning the recent attempt 
at developing a ML-derived FF for the Ge2Sb2Te5 chalcogenide system, prototype for 
applications in next-generation storage-class memory devices [46,47]. 
A clear advantage of ML potentials is their intrinsic high degree of parallelization, since 
the NN is evaluated independently for each atom or group of atoms and, as such, can 
exploit a fully parallelism with a relatively reduced amount of communication tasks. In 
this respect, these schemes are well suited to achieve high-massively parallel computing 
on thousands of processing elements for large systems treatment. Since the coming 
exascale machines will have of the order of a billion processing elements, an additional 
level of parallelism is mandatory, and this is intrinsically granted as summarized in the 
scheme of Fig. 1. On the other hand, as a word of warning, we wish to point out the fact 
that obtaining simultaneously energies and their gradients (forces) within a NN approach 
is nowadays still a stumbling block [41-44]. 
  
5. Complementing DFT: Hybrid functionals and long-range correlations 
Despite the worldwide use of the XC functionals briefly discussed in the previous 
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paragraph, cases in which subtle exchange effects come into play and/or long-range 
correlations become crucial, or even dominant, call for special attention. Although 
expensive, the first issue can be solved by including in the calculation the exact 
exchange formulation presented in the discussion of Hartree-Fock approaches. This 
simple observation is at the basis of any formulation of the so called “hybrid 
functionals”. On a historical perspective, the first one proposed is called B3LYP [48] 
and, as the acronym suggests, it is a linear combination of the Hartree-Fock exact 
exchange functional Ex

HF with the XC energy Exc
 in either its LDA or GGA formulation 
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Specifically, the Becke exchange [27] and the Lee-Yang-Parr [36] functionals are used 
to compose the B3LYP. The empirical parameters a0, a1 and a2 (a0= 0.20, a1= 0.72 and 
a2 = 0.81 for this specific functional) are determined by fitting the computed values of 
atomization energies, ionization potentials, proton affinities, and total atomic energies to 
experiments and higher level quantum chemical calculations (CI, Coupled Cluster, etc.) 
for a set of training molecules. Other popular hybrid functionals are the HSE [49] and 
PBE0 [50] ones. Here we treat them together because they have a common formulation. 
Also these functionals rely on the calculation of the exact Hartree-Fock exchange at least 
at short range Ex

HF,SR. More precisely, the Coulomb potential is divided into two terms 
corresponding to a short (SR) and a long range (LR) interaction 
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For the HSE functional the parameter  is (somehow arbitrarily) fixed to the value 0.2 
and a mixing coefficient a = 0.25 is used to write the functional which takes the form 
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The PBE0 functional is the one obtained by HSE in the limit  = 0 
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As it can be noticed, just the exchange term is modified, while the correlation is 
unaffected. An interesting application of this class of hybrid functional and their effect 
on network forming systems has been presented for the specific case of Ge2Sb2Te5, a 
prototype phase change material (PCM) for optical and memory supports [51]. In that 
work it was shown that although the structural properties are only slightly affected by 
the inclusion of the exact exchange, electronic properties such as band gap, charge 
distribution and degree of ionicity/covalence of the chemical bonds turn out to be 
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improved. In fact, as far as it could be checked, energy gap and density of states are 
closer to the experimental ones than those obtained with a standard (PBE) XC. 
Contrary to the improvements in the exchange interaction, which are somehow 
straightforward by resorting to the HF formulation, long range correlations are more 
demanding. One has to rely on formulations of the van der Waals (vdW) interactions 
based on either empirical corrections [52,53] or on first-principle calculations making 
use of the electronic structure provided by DFT [54-60]. The first class of vdW 
corrections consists in an analytical expression dependent solely on the atomic 
coordinates of the type 
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in which the vdW coefficients C6 are computed for each pair of atoms or atomic species 
present in the system. Since short range correlations are already included in the XC 
functionals currently used in any DFT scheme, a damping auxiliary function 

     1161
 vdWij R/r

ijdamp erf                       (21) 

is included to avoid this double counting. The pre-factor s6 introduced by Grimme 
[52,53] is an additional empirical parameter obtained by fitting on a rather large training 
set of atoms and molecules and its actual numerical value depends on the XC functional 
used. Thus, its choice has to be consistent with the selected version of both the 
exchange and the correlation functionals included in the DFT scheme. Provided that this 
prescription is fulfilled, its application is straightforward and since it does not depend 
on the electronic structure, it adds a negligible computational cost to the calculation. 
For the specific class of materials to which this article is dedicated, we bring to the 
attention of the reader one of the most recent applications of such an empirical 
correction. We refer to a throughout analysis of the performance of different XC 
functionals combined with the Grimme vdW correction on the amorphous GeTe4 
system [61], a prototype system of phase-changing materials. These simulations have 
shown that for an accurate description of the structural properties the choice of the 
functional is the first crucial step, but then, irrespective of the specific XC prescription 
adopted, vdW correlations play a non-negligible role in improving in a systematic way 
the accuracy in terms of both structure factors and pair distribution functions. A direct 
comparison with experimental data provided by synchrotron radiation measurements 
features a better agreement with the outcome of the simulations whenever vdW 
corrections are included. This stringent argument underscores also the importance of 
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vdW interactions, often disregarded in chalcogenide compounds simulations, to get a 
correct structure. On these bases, a detailed insight into local coordination, site 
geometries and network structure provide a comprehensive atomic-level view which 
goes beyond the specific amorphous GeTe4 binary system and extends to ternary 
compounds having GeTe4 as a subsystem. 
Analogous importance of this treatment of the vdW corrections has recently been shown 
to be crucial in the simulation of the structure of both GeSe4 and GeS4 [62,63]. In this 
case amorphous GeSe4 turns out to be characterized by a higher number of 
fourfold-coordinated Ge atoms. The major drawback of any empirical vdW correction 
stems from the fact that it is a sort of parameterized restrain imposed to the system and 
depending solely on the atomic coordinates. No electronic degrees of freedom are 
included, thus not allowing for any recalculation of the vdW interaction, especially the 
C6 coefficients, upon electronic structure modifications occurring during the dynamical 
evolution of the system. Yet, this is of fundamental importance when significant 
modifications of the chemical bonding (bonds cleavage or formation) occur. 
To cope with this issue and to overcome the intrinsic limitations of empirical ad-hoc 
vdW corrections, several formulations involving the use of the electron density and 
extensions of the electrostatic potential [54-56] have been proposed. For the purpose of 
this paragraph, we shall limit the overview to a particular implementation that, starting 
from the Kohn-Sham (KS) electronic orbitals, upon a unitary transformation into 
maximally localized Wannier [64] functions [65,66] (MLWF), allows for a calculation 
“on the fly” of the vdW interaction [57-59] during a dynamical simulation. These 
functions, although not eigenstates of the Hamiltonian of the system, can be obtained as 
a unitary transformation of the KS orbitals with explicit expression 
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and by using the initial condition wi
(0)(x) = i

KS(x) for the iterative solution at step p = 
0. Among all the possible unitary transformations differing just for a phase factor, one 
has to look for that specific one able to minimize the spread 

  
n nnnn wwww 22r r                (23) 

and for each Cartesian component of r = (x,y,z) we get at the first iteration 

       000 2exp nmmn wL/xiwX                   (24) 

and for the subsequent step p = 1 
     )exp()exp( 1011 AXAX )(                   (25) 
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being A(1) an anti-Hermitian matrix corresponding to a finite step in the direction of the 
gradient of  Analogous expressions can be obtained for Y(1) and Z(1) along y and z, 
respectively. The steepest descent procedure then reads 
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and 
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This useful scheme allows for the definition of the center of the MLWF as 
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where  = x,y,z and G=2/L, being L the size of the simulation box along the x 
direction. Analogous definitions hold for the other two Cartesian components. Hence, 
the electronic information concerning the wavefunctions, in terms of MLWF, can be 
reduced to just four numbers, the three Cartesian coordinates of the center of the 
Wannier orbital rn = (xn , yn , zn ), hereafter indicated as WFC (Wannier function center), 
and its spread Sn. This can replace the more cumbersome (discretized) wavefunction 
(x,y,z) either on the real space mesh (Nx x Ny x Nz) or in the reciprocal space(Gx x Gy x 
Gz) corresponding to a large number of double-precision floating-point data 
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amounting to several Mbytes of memory occupation for each orbital. This compact 
electronic structure information is extremely useful for the analysis of the nature of 
chemical bonds in a wealth of systems. 
For instance, the analysis of the chemical bonding environment in terms of MLWF 
centers of an amorphous Ge2Se3 system [67-70] has revealed that beside the expected 
tetrahedral configurations in which a Ge atom coordinates four Se atoms, more 
elaborated ring structures arise, including a number of atoms ranging from four to six 
and sometimes even more. These structures, in turn, may evolve gradually into chains, 
generally formed by an identical chemical element, hence resulting in sequences of 
homopolar bonds as sketched in Fig. 2. In these homopolar bonds, WFCs, as in the 
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second panel of Fig. 2, are roughly located toward the middle of the Ge-Ge bonds and 
are characterized by spreads of the order of magnitude of half of the Ge-Ge bond 
distance, thus accounting for one would expect for a covalent bond. On the other hand, 
along a Ge-Se bond, the WFCs turn out to be closer to Se atoms, thus evidencing the 
higher degree of ionicity of these heteropolar bonds. 

 

Fig. 2. Details of a dynamically evolving Ge2Se3 amorphous system. A tetrahedral motif 
arises in which Ge atoms (green) coordinate four Se atoms (yellow). Moreover, ring 
structures appear, composed by a number of atoms variable between four and six, as 
well as chains of atoms of an identical chemical element (homopolar bonds). The blue 
spheres are WFCs, labeled as Wi (i=1,2,…). 

Analogously, the peculiar chemical bonding environment of the phase change material 
Ge2Sb2Te5 could be disentangled [71] via a thorough WFCs and spread analysis (see 
Fig. 3). This provides a versatile and practical way of analyzing the bonding 
environment of each chemical species participating to the network. The WFCs 
gathering around an atomic site (Te atoms in this example) indicate a more ionic 
character of the atomic site, whereas WFCs positioned in the middle of a schematic 
stick (Fig. 3), as in the case of Sb-Sb chains, underscore the covalent nature of the 
chemical bond. 
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Fig. 3. Phase-change material glassy Ge2Sb2Te5 (system size of 144 atoms) with atoms 
and Wannier centers visualized as spheres. The colors code is orange for Ge, cyan for 
Sb atoms, purple for Te, and green for the WFCs. 
  
The joint use of the WFCs, rn and their spread Sn allows for an easy reconstruction of 
an analytic (localized) wavefunction 
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and this can be used to simplify greatly the Langreth formulation [54] for the C6 
coefficient of the vdW interaction. In fact, the original expression 
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requires the local electronic densities n(r) within an arbitrary cut-off radius rc. Now, 
the electronic distribution (r) in a DFT framework is a many-body scalar field 
describing the distribution of all the electrons in the system and not a simple sum of 
local atom-centered electronic densities. This makes difficult, and to many extents 
arbitrary, to disentangle separate contributions n(r). Even more cumbersome is the 
case in which a non-localized basis set (e.g. plane waves) is used. This intrinsic 
difficulty can be removed by the use of WFCs as in equation (29), which provides the 
local electron density in terms of square moduli of these analytic wavefunctions as 
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The expression for the vdW energy does not change and looks similar to equation (35) 
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Yet, no specific fitting parameter has to be added, contrary to the s6 coefficient of 
Grimme’s formulation. Moreover, the damping function turns out to be self-defined by 
the Wannier functions. In fact, its expression becomes 

     111  snl R/r
nlnl erf                      (33) 

and the cut-off damping radius is simply given by Rs = RvdW + R’vdW, namely the sum 
of the VdW radii of the MLWFs, determined as the radii at which the Wannier function 
densities wn (r) become smaller than 0.01. This value is on the verge of the DFT 
accuracy [24]. Thus, we arrive at the numerical expression 

  nnvdW SS..R  ln86604751                 (34) 
in which the MLWF spread Sn appears. This is not an arbitrary parameter to be selected 
by the user, but instead one of the intrinsic results of the unitary transformation of the 
KS orbitals. In this way, the vdW C6 coefficient is no longer an empirically adjusted 
constant for each atom type, but a quantity recalculated “on the fly”. Therefore, it can 
become in a straightforward way a time-evolving quantity in first principles molecular 
dynamics (FPMD) simulations, discussed in the next paragraph. Moreover, a way to 
avoid even this arbitrariness has been recently proposed [60], replacing the short-range 
damping function by an estimation of the Pauli exchange repulsion given in terms of 
solely WFCs and spreads. 
This method has been further improved [59] to minimize the computational cost. In this 
implementation a maximum deviation of the WFCs and atomic reference positions is 
used as a discriminating quantity for either the recalculation of the MLWF or their 
propagation as classic-like objects during the dynamics. Consequently, the update of 
MLWFs and hence the related recalculation of the vdW C6 coefficients can be skipped 
for several thousands of simulation steps, leading to a remarkable decrease of the 
overhead. For the benchmark of the system [59], this overhead amounts to about 1 % of 
the total computational cost. More precisely, the MLWF scheme for vdW inclusion 
framework in a DFT can be selected and applied according to the three possible 
computational schemes sketched in Fig. 4. 
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Fig. 4. Schemes for the implementation of three possible methods to add long-range van 
der Waals dispersion interactions to a standard density functional theory code. 
  
The most appropriate choice depends on the specific system and its more or less 
complex chemical nature [67]. 
  
6. First principles molecular dynamics 
All the quantum-mechanics based methods, including the HF and DFT ones, discussed 
so far, can be classified as (electro) static descriptions of the electronic and atomic 
structure. The atomic positions are generally either experimental coordinates from X-ray 
or neutron diffraction experiments or stationary points obtained via geometry 
optimization on reference configurations. Nonetheless, finite temperature and entropy 
effects play a major role in network forming materials. The method worldwide known as 
first principles molecular dynamics (FPMD) is the one that allowed this step forward in 
quantum simulations. As an extension of classical molecular dynamics (MD), instead of 
relying on some analytical ad-hoc analytical potential V({RI}), the interactions among 
atoms is directly computed from the DFT total energy Etot = EDFT[{i},{RI}], which is 
simultaneously a function of the electronic structure and of the atomic coordinates. The 
interactions are assumed to be exclusively electrostatic, meaning that they depend just 
on the position and not on the velocities of the particles. From a historical standpoint, the 
first formulation of such a combined quantum (for the electrons) and classical (for the 
nuclei) was proposed by M. Born and J. R Oppenheimer in 1927 [72]. In this specific 
approach, nowadays known as the Born-Oppenheimer (BO) approximation, the ground 
state total energy is calculated (minimized) and subsequently used to compute gradients 
with respect to the nuclear position to propagate in time atoms in a Newton-like fashion, 
namely 
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The BO method requires the solution of Eq. (35) at each time step in the discretization of 
eq. (36), as done in any computer code. This is essential to ensure that electrons stay 
constantly on their ground state while the nuclei evolve dynamically. This feature is 
refereed to as “adiabatic approximation”. For any further information we refer the reader 
to the rich literature [9,17,25,26]. A major leap forward in FPMD was the extended 
Lagrangean method proposed by R. Car and M. Parrinello in 1985 [73,74], in which the 
recalculation of the electronic structure at each step is avoided by including in the 
Lagrangean degrees of freedom the electronic wavefunctions. These become dynamical 
variables with their own equations of motion which, although representing a fictitious 
motion of the electronic structure, allow propagating the solution of the DFT KS orbitals 
instead of recalculating it at each movement of the nuclei. The original Car-Parrinello 
molecular dynamics (CPMD) Lagrangean reads 
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where the first three kinetic energies of the right-hand side refer to the nuclei, to the 
fictitious electronic degrees of freedom and any additional dynamical variable q(t) such 
as thermostats [75-77], barostats [78-80], reaction coordinates / collective variables 
[81,82], etc. The fourth term is the potential energy as provided by DFT, whereas the 
final addendum is the constraint ensuring the orthonormality of the wavefunctions. The 
Euler-Lagrange equations of motion that this Lagrangean provides include then a 
coupling, via the DFT functional of all the dynamically evolving degrees of freedom and, 
explicitly, they read 
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The fictitious electron mass  written in front of the kinetic energy and corresponding 
equations of motion (38) regulates the rate at which the orbitals i(x) are updated with 
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respect to the dynamical evolution of the heavier nuclei. Hence, it is the parameter that 
controls the degree of adiabaticity all along the dynamics. A mathematical proof in the 
case of a finite Hilbert space can be found in the work of F. A. Bornemann and C. 
Schütte [83]. In that paper, the fundamental theorem shows that the CPMD trajectory 
{RCP(t)} evolves close to the truly adiabatic BO one {RBO(t)} and the upper bound is the 
square root of the electron mass  

                          Ctt BOCP )()( RR                      (41) 

where C is a positive constant. Empirical numerical verifications have been reported by 
the group of G. Galli [84,85]. The equations of motion are implemented in discrete finite 
differences [9]. Namely, second derivatives with respect to the time are written in the 
incremental form d2f(t)/dt2~ [f(t+t) + f(t-t) - 2 f(t)] / t2. Thus, the dynamical variables 
RI(t) are updated at a rate t, while the electronic degrees of freedom are updated at a 
rate t/1/2. In fact, the discrete form that the equations of motion for the fictitious 
electronic degrees of freedom assume in a computer code read 
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Standard values for the time step and the fictitious electronic mass are generally 3-5 au 
and 300-600 au, respectively. 
As a recent example in the field of chalcogenide glasses, this approach has allowed for 
the simulation of a realistic amorphous GeS2 surface [86] using a slab model composed 
of 480 atoms (Fig. 5). The interest in such a calculation stems from the fact that both 
structural and electronic properties of this amorphous chalcogenide surfaces make them 
promising candidates for applications in various fields [87]. In particular, the high 
polarizability of chalcogenide surfaces, as opposed to the majority of the oxide-based 
materials, finds practical applications in heterogeneous catalysis and gas phase 
separation. Hence, reliable FPMD simulations can become virtual experiments for the 
design of efficient processes and the testing of chalcogenide compounds with high 
specific surface area (10-500 m2/g). 
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Fig. 5. Glassy GeS2 surface (480 atoms) with the local electrostatic potential shown as a 
density contour on a plane at about 2 Å from the top. Colors code: Ge atoms, ochre; S 
atoms, yellow. 
  
Analogously, and on the same line, porous glassy GeS2 have displayed characteristic 
pore widths of about 3.6 nm. Such a peculiar distance is well fit to confine CO2 
molecules at ambient conditions, namely 298 K and 1-10 bar. This confinement effect 
has been highlighted via dynamical atomic scale simulations [88-90] and an instructive 
snapshot of this confinement phenomenon is given in Fig. 6. Indeed, the adsorption and 
gas separation ability shown by amorphous porous chalcogenides such as GeS2 are 
attracting an increasing interest since they are promising systems for applications as gas 
sensors or as nanocatalysts for gas-phase reactions. Using a realistic molecular model of 
such amorphous adsorbents, it has been shown that they can be used efficiently to 
separate different gas-phase molecules (H2, CO2, CH4, N2) for environmental and 
energy storage applications [88]. In addition to shedding light on the microscopic 
adsorption mechanisms, previously escaping experimental probes, it has been found that 
co-adsorption in this class of porous materials can be described in terms of a simple 
thermodynamic model. Yet, to arrive at this general conclusion, accurate descriptions of 
the pores within the FPMD approach were deemed essential to realistically model the 
system. Hence, these results paved the way for the design of gas separation membranes 
using the large family of porous chalcogenides [89,90]. 
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Fig. 6. Porous amorphous GeS2 (upper and lower yellow-brown slabs) confining CO2 
molecules at ambient conditions. Colors code: GeS2: Ge atoms, ochre and S atoms, 
yellow; CO2: C, blue and O, purple. 
  
The fact that the electronic structure is explicitly taken into account in FPMD and, 
specifically, in the CPMD approach, allows for a straightforward calculation of 
dielectric properties. Indeed, KS electron wavefunctions are updated - and available - at 
each step of the dynamics, and their Wannier unitary transformation make feasible the 
calculation of the instantaneous dipole moment on the fly with no appreciable 
computational burden. From the MLWF centers rn(t) = (xn , yn , zn ) and the atomic 
positions RI(t) available at each time along the trajectory one can then obtain the total 
dipole moment of the system as a simple sum 

          
I n

nIIeI tftZttt nrRppP              (43) 

where ZI is the valence charge of the I-th atom and fn the occupation number of the n-th 
Wannier orbital. It is then straightforward to compute the dipole-dipole autocorrelation 
function, and from this, upon a simple Fourier transform, the infra-red (IR) absorption 
coefficient of the material can be directly obtained [91-93] as 
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where =1/kBT depends on the temperature T at which the simulation was conducted, 
and the rest are known constants (speed of light c, volume of the simulation cell V, etc.). 
This is basically the imaginary part of the refractive index 2() = c ()/2 and the 
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real part 1(), i.e. the (real) refractive index of the material, can be computed from the 
standard Kramers-Kronig [94,95] relation 

   








0 221

21 




 dP                   (45) 

This allows for a full characterization of the optical properties of a system which can 
be directly compared to the experimental measurements.  
Such an approach has been successfully used, for instance, to investigate the dielectric 
and optical response of a series of GexSe1-x compounds [96]. Long-lasting (~84 ps) 
dynamical simulations in which the dipole moment was computed on the fly at each 
step could provide the adsorption coefficient of eq. (44) for a range of frequencies 
between 0.5 and 500 cm-1 (Fig.7, upper panel). Clearly, the total simulation time is 
crucial in getting accurate low frequencies (1 cm-1 ~ 33.36 ps), and this fixes the 
simulation time, i.e. computational workload required. Instead the high frequencies 
(500 cm-1 ~ 0.07 ps) are easily obtained within a few steps (~60) given the small t 
(0.10 fs) used in the numerical integration (eq. 42). The agreement with the 
experimental outcome [97] is appreciable (see Fig. 7). 
  

 
Fig. 7. Imaginary (2()) and real (1()) parts of the dielectric constant (color lines) 
as a function of the frequency for a series of simulated GexSe1-x amorphous systems 
compared to experiments (circles). 
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What are the progresses made so far to increase the computational reach of these 
approaches and allow for calculations on larger systems and extended temporal 
intervals? In what follows we provide some insights into these issues. In 2007, an 
efficient Car-Parrinello-like approach to the BO molecular dynamics has been proposed 
[98], making use of a predictor-corrector method for the integration of the electronic 
degrees of freedom. This has led to the so-called second-generation CPMD (SGCPMD). 
The details about the method have already been presented and discussed elsewhere 
[17,74,98]. For the sake of completeness, we limit here our review to the main 
differences with respect to a standard CPMD scheme. The basic idea is to exploit 
simultaneously the advantages of the BO and the CPMD methods. In a “nutshell”, the 
first method makes use of first order equations of motion to minimize the electronic 
structure, while the second one propagates the electronic orbitals via second order 
equations of motion. The merging of these two methodologies leads to the following 
Langevin-like equations of motion for the electronic degrees of freedom 
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in which we can still recognize the CPMD-like part in the first term on the left-hand 
side, the BO-like one in the second one and then the familiar functional derivative of the 
total energy and the orthonormality constraint. The label NSC (non-self-consistent) on 
the energy functional is a reminder of the fact that a single BO step is done within this 
formalism, not the entire procedure typical of full re-optimization of the wavefunctions. 
This is kept under control with the additional parameter  and the fact that not the entire 
BO self-consistent procedure is implemented, but just a single iteration grants a 
computational workload close to a regular CPMD scheme. The associated equations of 
motion for the nuclei become then 
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The somehow complicated second term, beside the calculation of the forces in terms of 
the gradient of the total energy (as usual) contains extra-components arising from the 
use of atom-centered localized basis functions, thus explicitly dependent on the atomic 
coordinates RI. The use of velocity-dependent (first order time derivatives) terms, 



 25

although the wavefunctions are not self-consistently converged, introduces a friction 
term. This damps the orbitals close to the BO surface, thus allowing for larger 
integration steps with respect to the regular CPMD integration and resulting in an 
appreciable boost of the dynamical simulations. 
In the field of network forming materials and, specifically, in phase change materials 
(PCMs) ternary compounds, the SGCPMD approach has been used to generate glassy 
Ga4Sb6Te3. This peculiar compound is one of the most promising materials for optical 
support and memory devices, since it features nearly all the properties sought, namely: 
- High stability of amorphous and crystalline phase. 
- Large contrast in optical properties and/or resistance change. 
- Large cycle number of reversible transitions. 
- High chemical stability. 
- High laser light absorption 
Yet, obtaining a reliable amorphous phase is extremely challenging. The standard 
simulation protocol, in these cases, is a melting of the crystal phase to a liquid state. 
Then, this liquid phase has to undergo a long equilibration to allow for a sufficient 
randomization of the atomic positions. Finally, a sufficiently low cooling process has to 
be simulated in order to allow the system to relax and to readjust the local bonding 
environment during the quench phase up to room temperature [99]. A schematic 
summary of the procedure adopted is reported in Fig. 8. 
  

 
Fig. 8. Comparison of first principles molecular dynamics simulations within either the 
CPMD or the SGCPMD schemes adopted to generate a model system for the Ga4Sb6Te3 
ternary phase-change material. 
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As it can be seen, long cooling times (~300 ps) were required to obtain a system, here 
indicated either as “Model B” (via regular CPMD simulations, 117 atoms) or “Model C” 
(larger system of 299 atoms by SGCPMD simulations). 
  

 
Fig. 9. Fundamental local structures constituting an amorphous PCM Ga4Sb6Te3. 
  
The obtained amorphous Ga4Sb6Te3 has been shown to contain the fundamental motifs 
shown in Fig. 9 and the material as a whole could be rationalized [99] into a 
superstructure composed of two subnetworks, one being a (GaTe)3, and a second one 
being a GaSb6, this, in practice, Ga4Sb6Te3≡((GaTe)3−GaSb6). 
  
7. Final remarks 
The overview presented here about first-principle based methods is specifically oriented 
to amorphous chalcogenide materials. We aimed at offering to the reader a collection of 
advanced computational methods and techniques, supported by a few selected examples 
that we consider as representative or pioneering in the field. Modern algorithms and 
extension to machine-learning protocols are highlighted as forefront developments of 
either well-assessed “traditional” or novel first-principles based techniques nowadays 
routinely used in the simulation of disordered condensed phases. 
For the sake of completeness, we stress that many more developments and applications 
are available in the rich literature, part of which is reported in the included list of 
references, and that could offer a wider panorama to researchers interested or working 
in the field. 
  
Acknowledgements 
M.B. thanks Pôle HPC, Equipex Equip@Meso / CPER Alsacalcul at the University of 
Strasbourg, and Grand Equipement National de Calcul Intensif (GENCI) under 
allocation DARI-A2 A0060906092. G.O. acknowledges the Fédération de Recherche en 
Matériaux et Nanosciences Region Grand-Est (project HARWEST) and the Seed 
Money program of Eucor - The European Campus (project MEDIA) for financial 
support. 
  



 27

References 
1. E.D. Zanotto, J.C. Mauro J. Non-Cryst. Solids 471 (2017) 590. Doi: 

10.1016/j.jnoncrysol.2017.05.019 
2. B.J. Alder, T.E.J. Wainwright, Chem. Phys. 27 (1957) 1208. doi:10.1063/1.1743957 
3. B.J. Alder, T.E.J. Wainwright, J. Chem. Phys. 31 (1959) 459. Doi: 

10.1063/1.1730376 
4. A. Rahman, Phys. Rev. A 136 (1964) A405. Doi: 10.1103/PhysRev.136.A405 
5. F.H. Stillinger, A. Rahman, J. Chem. Phys. 60 (1974) 1545. Doi: 10.1063/1.1681229 
6. R. McWeeny, Methods of Molecular Quantum Mechanics, Academic Press, London, 

UK, 1992. 
7. I.N. Levine, Quantum Chemistry, Allyn and Bacon Ed., Boston, USA, 1983. 
8. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry – Introduction to Advanced 

Electronic Structure Theory, McGraw-Hill Publishing Co., New York, USA, 1989. 
9. D. Marx, J. Hutter, Ab initio molecular dynamics: Basic Theory and Advanced 

Methods, Cambridge University Press, New York, USA, 2009. 
10. T. Pang, An Introduction to Computational Physics, Cambridge University Press, 

Cambridge, UK, 1997. 
11. A. Edwards, W. Shedd, R. Pugh, Hartree Fock and DFT Study of Models for 

Amorphous Chalcogenide Alloys, American Physical Society, Annual March 
Meeting, March 12-16, 2001 Washington State Convention Center Seattle, 
Washington Meeting ID: MAR01, abstract #S14.010 

12. M. Rekhis, O. Ouamerali, L. Joubert, V. Tognetti, C. Adamo, J. Mol. Struct. 
THEOCHEM 863 (2008) 79. Doi: 10.1016/j.theochem.2008.05.018 

13. A. Fernando, K.L. Dimuthu, M. Weerawardene, N.V. Kaimova, C.M. Alkens, Chem. 
Rev. 115 (2015) 6112. Doi: 10.1021/cr500506r 

14. C. Møller, M.S. Plesset, Phys. Rev. 46 (1934) 618. doi: 10.1103/PhysRev.46.618 
15. J. Jellinek, V. Bonačić-Koutecký, P. Fantucci, M.J. Wiechert, J. Chem. Phys. 101, 

(1994) 10092. Doi: 10.1063/1.467997 
16. M. Kobayashi, Y. Imamura, Y., H. Nakai, J. Chem. Phys. 127 (2007) 074103. doi: 

10.1063/1.2761878 
17. M. Boero, A. Bouzid, S. Le Roux, B. Ozdamar, C. Massobrio, First-Principles 

Molecular Dynamics Methods: An Overview, in Frontiers and challenges in 
Molecular Dynamics Simulations of Disordered Materials: From network glasses to 
phase change memory alloys, pag. 35-55, Springer, Berlin Heidelberg, Germany, 
2015. ISBN: 978-3-319-15674-3 

18. R. Fairman, B. Ushkov, B., Semiconducting Chalcogenide Glass II: Properties of 



 28

Chalcogenide Glasses, Semiconductors and Semimetals vol. 79, ed. by R.K. 
Willardson, E.R. Weber, Elsevier, San Diego, USA, 2004. 

19. P. Hohenberg, W. Kohn, W. Phys. Rev. 136 (1964) B864. Doi: 
10.1103/PhysRev.136.B864 

20. W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133. Doi: 
10.1103/PhysRev.140.A1133 

21. D.J. Defeers, B.A. Levi, S.K. Pollack, W.J. Hehre, J.S. Binkley, J. S., J.A. Pople, J. 
Am. Chem. Soc. 101, (1979) 4085. Doi: 10.1021/ja00509a013 

22. J.A. Pople, M. Head-Gordon, D.J. Fox, K. Raghavachari, L.A. Curtiss, J. Chem. 
Phys. 90 (1989) 5622. Doi: 10.1063/1.456415 

23. J.A. Pople, H.B. Schlegel, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch, R.A. 
Whiteside, R.F. Hout, W.J. Hehre, Int. J. Quantum Chem. Symp. 15 (1981) 269. 
Doi: 10.1002/qua.560200829 

24. B.G. Johnson, P.M.W. Gill, J.A. Pople, J. Chem. Phys. 98 (1993) 5612-5626. Doi: 
10.1063/1.464906 

25. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford 
University Press, New York, USA, 1989. 

26. M. Boero, M. Tateno, Quantum Theoretical Approaches to Proteins and Nucleic 
Acids, in The Oxford Handbook of Nanoscience and Technology Volume 1, Chapter 
17, pag. 549, Oxford University Press, UK, 2010. ISBN: 978-0-19-9533040-6 

27. A.D. Becke, Phys. Rev. A 38 (1988) 3098. Doi: 10.1103/PysRevA.38.3098 
28. A.D. Becke, J. Chem. Phys. 96 (1992) 2155. Doi: 10.1063/1.462066 
29. A.D. Becke, J. Chem. Phys. 98 (1983) 5648-5652. Doi: 10.1063/1.464913 
30. J.P. Perdew, A. Zunger, Phys. Rev. B 23 (1982) 5048. Doi: 

10.1103/PhysRevB.23.5048 
31. J.P. Perdew, Phys. Rev. B 33 (1986) 8822. Doi: 10.1103/PhysRevB.33.8822 
32. J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244. Doi: 

10.1103/PhysRevB.45.13244 
33. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. 

Fiolhais, Phys. Rev. B 46 (1992) 6671. Doi: 10.1103/PhysRevB.46.6671 
34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868. Doi: 

10.1103/PhysRevLett.77.3865 
35. S.H. Vosko, L. Wilk, M. Nusair Can. J. Phys. 58 (1980) 1200. doi: 10.1139/p80-159 
36. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785. Doi: 

10.1103/PhysRevB.37.785 
37. F.A. Hamprecht, A.J. Cohen, D.J. Tozer, N.C. Handy, J. Chem. Phys. 109 (1998) 



 29

6264-6271. Doi: 10.1063/1.477267 
38. N.C. Handy, A.J. Cohen, J. Chem. Phys. 116 (2002) 5411. Doi: 10.1063/1.1457432 
39. A. Pedersen, L. Pizzagalli, H. Jónsson, New J. Phys. 19 (2017) )063018. Doi: 

10.1088/1367-2630/aa732e 
40. G. Ori, C. Massobrio, A. Bouzid, M. Boero, B. Coasne, Phys. Rev. B 90 (2014) 

045423. doi: 10.1103/PhysRevB.90. 045423. 
41. G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85 

(2012) 174103. Doi: 10.1103/PhysRevB.85.174103  
42. V.L. Deringer, N. Bernstein, A.P. Bartók, M.J. Cliffe, R.N. Kerber, L.E. Marbella, 

C.P. Grey, S.R. Elliott, G. Csáni, J. Phys. Chem. Lett. 9 (2018) 2879. Doi: 
10.1021/acs.jpclett.8b00902 

43. Y. Huang, J. Kang, W.A. Goddard III, L.-W. Wang, Phys. Rev. B 99 (2019) 064103, 
Doi: 10.1103/PhysRevB.99.064103 

44. J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (2007) 146401. Doi: 
10.1103/PhysRevLett.98.146401 

45. S. Gabardi, E. Baldi, E. Bossoni, D. Campi, S. Caravati, G.C. Sosso, J. Behler, M. 
Bernasconi, J. Hys. Chem. C 121 (2017) 23827. Doi: 10.1021/acs.jpcc.7b09862 

46. F.C. Mocanu, K. Konstantinou, T.H. Lee, N. Bernstein, V.L. Deringer, G. Csányi, S.R. 
Elliott J. Phys. Chem. B 122 (2018) 8998. Doi: 10.1021/acs.jpcb.8b06476 

47. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma Nat. Rev. Mater. 4 (2019) 150. Doi: 
10.1038/ s41578-018-0076-x 

48. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, C. F., M.J. Frisch, J. Phys. Chem. 98 
(1994) 11623. Doi: 10.1021/j100096a001 

49. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118 (2003) 8207. Doi: 
10.1063/1.15644060 

50. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105 (1996) 9982. Doi: 
10.1063/1.472933 

51. T. Kaewmaraya, M. Ramzan, H. Löfas, R. Ahuja, J. Appl. Phys. 113 (2013) 033510. 
Doi: 10.1063/1.4775715 

52. S. Grimme, J. Comput. Chem. 27 (2006) 1787. Doi: 10.1002/jcc.20495 
53. T. Schwabe, S. Grimme, Phys. Chem. Chem. Phys. 9 (2007) 3397. Doi: 

10.1039/B704725H 
54. D.C. Langreth, M. Dion, H. Rydberg, E. Schröder, P. Hyldgaard, B.I Lundqvist, Int. 

J. Quantum Chem. 101 (2005) 599. Doi: 10.1002/qua.20315 
55. O.A. Vydrov, T. Van Voorhis, Phys. Rev. Lett. 103 (2009) 063004. Doi: 

10.1103/PhysRevlett.103.063004 



 30

56. M. Obata, M. Nakamura, I. Hamada, T. Oda, J. Phys. Soc. Japan 84 (2015) 024715. 
Doi: 10.7566/JPSJ.84. 024715 

57. P.L. Silvestrelli, Phys. Rev. Lett. 100 (2008) 053002. Doi: 
10.1103/PhysRevLett.100.053002 

58. P.L. Silvestrelli, J. Phys. Chem. A 113 (2009) 5224. Doi: 10.1021/jp811138n 
59. T. Ikeda, M. Boero, J. Chem. Phys. 143 (2015) 194510. Doi: 10.1063/1.4935932 
60. P.L. Silvestrelli, A. Ambrosetti, J. Chem. Phys. 150 (2019) 164109. Doi: 

10.1063/1.5093125 
61. A. Bouzid, C. Massobrio, M. Boero, G. Ori, K. Sykina, E. Furet, Phys. Rev. B 92 

(2015) 134208. Doi: 10.1103/PhysRevB.92.134208 
62. Z. Chaker, G. Ori, C. Tugène, S. Le Roux, M. Boero, C. Massobrio, E. Martin, A. 

Bouzid, J. Non-Cryst. Solids 498 (2018) 167. Doi: 
10.1016/j.jnoncrysol.2018.06.031 

63. E. Lampin, A. Bouzid, G. Ori, M. Boero, C. Massobrio, J. Chem. Phys. 147 (2017) 
044504. Doi: 10.1063/1.4986166 

64. G.H. Wannier, Phys. Rev. 52 (1937) 191. Doi: 10.1103/PhysRev.51.191 
65. N. Marzari, D. Vanderbilt, Phys. Rev. B 56 (1997) 12847. Doi: 

10.1103/PhysRevB.56.12847 
66. R. Resta, Phys. Rev. Lett. 80 (1988) 1800. Doi: 10.1103/PhysRevLett.80.1800 
67. C. Massobrio, E. Martin, Z. Chaker, M. Boero, A. Bouzid, S. Le Roux, G. Ori, Front. 

Mater. 5 (2018) 78. Doi: 10.3389/fmats.2018.00078  
68. S. Le Roux, A. Bouzid, M. Boero, C. Massobrio, Phys. Rev. B 86 (2012) 224201. 

Doi : 10.1103/hysRevB.86. 224201 
69. M. Bauchy, M. Micoulaut, M. Boero, C. Massobrio, Phys. Rev. Lett. 110 (2013) 

165501. Doi: 10.1103/PhysRevLett.110. 165501 
70. M. Celino, S. Le Roux, G. Ori, B. Coasne, A. Bouzid, M. Boero, C. Massobrio, 

Phys. Rev. B 88 (2013) 174201. Doi: 10.1103/hysRevB.88.174201 
71. A. Bouzid, G. Ori, M. Boero, E. Lampin, C. Massobrio, Phys. Rev. B 96 (2017) 

224204. Doi: 10.1103/PhysRevB.96.224204 
72. M. Born, J.R. Oppenheimer J. R. Annalen der Physik 84 (1927) 457. Doi: 

10.1002/andp.19273892002 
73. R. Car, M. Parrinello, Phys. Rev. Lett. 55, (1985) 2471. Doi: 

10.1103/PhysRevLett.55.2471 
74. M. Boero, A. Oshiyama, Car-Parrinello Molecular Dynamics in Encyclopedia of 

Nanotechnology, pag. 1-10, Springer, Berlin Heidelberg, Germany, 2015. Doi: 
10.1007/978-94-007-6178-0_100946-1 



 31

75. S. Nosé, Mol. Phys. 52 (1984) 255. Doi: 10.1080/00268978400101201 
76. S. Nosé, J. Chem. Phys. 81 (1984) 511. Doi : 10.1063/1.447334 
77. W.G. Hoover, Phys. Rev. A 31 (1985) 1695. Doi: 10.1103/PhysRevA.31.1695 
78. H.C. Andersen, J. Chem. Phys. 72 (1980) 2384. Doi: 10.1063/1.439486 
79. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45 (1980) 1196. Doi: 

10.1103/PhysRevLett.45.1196 
80. M. Parrinello, A Rahman, J. Appl. Phys. 52 (1981) 7182. Doi: 10.1063/1.328693 
81. M. Iannuzzi, A. Laio, M. Parrinello, Phys. Rev. Lett. 90 (2003) 238302. Doi: 

10.1103/PhysRevLett.90.238302 
82. M. Boero, T. Ikeshoji, C.C. Liew, K. Terakura, M. Parrinello, J. Am. Chem. Soc. 

2004 (126) 6280. Doi: 10.1021/ja049363f 
83. F.A. Bornemann, C. Schütte, Numerische Matematik 78 (1998) 359. Doi: 

10.1007/s002110050316 
84. J.C. Grossman, E. Schwegler, E.W. Draeger, F. Gygi, G. Galli, J. Chem. Phys. 120 

(2004) 300. Doi: 10.1063/1.1630560 
85. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys. 121 (2004) 5400. 

Doi: 10.1063/1.1782074 
86. G. Ori, C. Massobrio, A. Bouzid, M. Boero, B. Coasne, Phys. Rev. B 90 (2014) 

045423. Doi: 10.1103/PhysRevB.90. 045423 
87. T. Baba, Y. Kawamura Y Front. Energy Res. 4 (2016) 22. Doi: 

10.3389/fenrg.2016.00022 
88. G. Ori, C. Massobrio, A. Pradel, M. Ribes, B. Coasne, Langmuir 31 (2015) 6742. 

doi: 10.1021/acs.langmuir.5b00982 
89. G. Ori, C. Massobrio, A. Pradel, M. Ribes, B. Coasne, Phys. Chem. Chem. Phys. 18 

(2016) 13449. doi: 10.1039/C6CP00467A 
90. Z. Chaker, A. Bouzid, B. Coasne, C. Massobrio, M. Boero, G. Ori, J. Non-Cryst. 

Solids 498 (2018) 288. Doi: 10.1016/j.jnoncrysol.2018.06.031 
91. P.L. Silvestrelli, M. Bernasconi, M. Parrinello, Chem. Phys. Lett. 277 (1997) 478. 

doi: 10.1016/S0009-2614(97)00930-5 
92. M. Boero, K. Terakura, T. Ikeshoji, C.C. Liew, M. Parrinello, J. Chem. Phys. 115 

(2001) 2219. Doi: 10.1063/1.1379767 
93. D.A. Schmidt, R. Scipioni, M. Boero, J. Phys. Chem. A 113 (2009) 7725-7729. Doi: 

10.1021/jp9016932 
94. H.A. Kramers, Transactions of Volta Centenary Congress 2 (1927) 545. 
95. R. de L. Kronig, J. Opt. Soc. Am. 12, (1927) 547. Doi: 10.1364/JOSA.12.000547 
96. M. Micoulaut. A. Kachmar, M. Bauchy, S. Le Roux, C. Massobrio, M. Boero, Phys. 



 32

Rev. B 88 (2013) 054203. Doi: 10.1103/PhysRevB.88. 054203 
97. G. Lukovsky, R.J. Nemanich, S.A. Solin, R.C. Keezer, Solid State Commun. 17, 

(1975) 1567. Doi: 10.1016/0038-1098(75)90997-7 
98. T.D. Kühne, M. Krack, F.R. Mohamed, M. Parrinello, Phys. Rev. Lett. 98 (2007) 

066401. doi: 10.1103/PhysRevLett.98.066401 

99. A. Bouzid, S. Gabardi, C. Massobrio, M. Boero, M. Bernasconi, Phys. Rev. B 91 
(2015) 184201. Doi: 10.1103/PhysRevB.91. 184201 

  
  
  
Abbreviation list 
  
HPC  High-performance computing 
MD  Molecular Dynamics 
HF   Hartree-Fock  
GVB  Generalized valence bond  
DFT  Density functional theory  
CI  Configuration interaction  
CASSCF Complete active space self consistent field 
MP2  Second-order Møller-Plesset 
KS  Kohn-Sham 
LDA  Local density approximation 
XC   Exchange-correlation 
GGA  Generalized gradient approximation 
PBE  Perdew-Burke-Enrnzerhof 
BLYP  Becke-Lee-Yang-Parr 
ML  Machine learning 
FF   Force field 
PES  Potential energy surface 
NN  Neural network 
B3LYP Three-parameter Becke-Lee-Yang-Parr 
HSE  Heyd-Scuseria-Ernzerhof 
PBE0 Perdew-Burke-Ernzerhof with Hartree-Fock exchange 
vdW  van der Waals 
MLWF Maximally localized Wannier functions 
WFC  Wannier function center 
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FPMD First principles molecular dynamics 
BO Born-Oppenheimer 
CPMD Car-Parrinello molecular dynamics 
SGCPMD Second-generation Car-Parrinello molecular dynamics 
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