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The PI3K/AKT pathway promotes gefitinib resistance in
mutant KRAS lung adenocarcinoma by a deacetylase-dependent
mechanism

Victor Jeannot1,2, Benôıt Busser1,2,3, Elisabeth Brambilla1,2,3, Marie Wislez4,5, Blaise Robin1,2, Jacques Cadranel4,5†,

Jean-Luc Coll1,2 and Amandine Hurbin1,2

1 INSERM U823, Grenoble, France
2 University UJF Grenoble 1, Grenoble, France
3 CHRU Grenoble University Hospital, Grenoble, France
4 AP-HP Tenon Hospital, Pneumology Service, University Paris 6, France
5 Intergroupe Francophone de Canc�erologie Thoracique (IFCT), Paris, France

To select the appropriate patients for treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), it is

important to gain a better understanding of the intracellular pathways leading to EGFR-TKI resistance, which is a common problem

in patients with lung cancer. We recently reported that mutant KRAS adenocarcinoma is resistant to gefitinib as a result of amphi-

regulin and insulin-like growth factor-1 receptor overexpression. This resistance leads to inhibition of Ku70 acetylation, thus

enhancing the BAX/Ku70 interaction and preventing apoptosis. Here, we determined the intracellular pathways involved in gefitinib

resistance in lung cancers and explored the impact of their inhibition. We analyzed the activation of the phosphatidyl inositol-3-

kinase (PI3K)/AKT pathway and the mitogen-activated protein kinase/extracellular-signal regulated kinase (MAPK/ERK) pathway in

lung tumors. The activation of AKT was associated with disease progression in tumors with wild-type EGFR from patients treated

with gefitinib (phase II clinical trial IFCT0401). The administration of IGF1R-TKI or amphiregulin-directed shRNA decreased AKT

signaling and restored gefitinib sensitivity in mutant KRAS cells. The combination of PI3K/AKT inhibition with gefitinib restored

apoptosis via Ku70 downregulation and BAX release from Ku70. Deacetylase inhibitors, which decreased the BAX/Ku70 interaction,

inhibited AKT signaling and induced gefitinib-dependent apoptosis. The PI3K/AKT pathway is thus a major pathway contributing to

gefitinib resistance in lung tumors with KRAS mutation, through the regulation of the BAX/Ku70 interaction. This finding suggests

that combined treatments could improve the outcomes for this subset of lung cancer patients, who have a poor prognosis.

The epidermal growth factor receptor (EGFR) is frequently
overexpressed in nonsmall-cell lung cancers (NSCLCs) and is
associated with a poor prognosis.1 As a consequence, thera-
pies targeting the tyrosine kinase activity of EGFR (EGFR-
TKIs, such as gefitinib and erlotinib) have been developed,
and are highly effective for the treatment of EGFR-mutated
NSCLC.2 For patients with EGFR wild-type tumors, first-line
chemotherapy is still the standard of care.2 EGFR-TKIs are
approved for the second- and third-line treatment of
advanced NSCLC or as maintenance therapy.2 However, the
limited response rates to EGFR-TKIs observed in EGFR wild
type led to the investigation of mechanisms governing resis-
tance to EGFR-TKI treatments.3 Tumors with constitutive
activation of KRAS small GTPase (30%) are hypothesized to
be intrinsically resistant to EGFR-TKI.2 Elevated level of cir-
culating amphiregulin, an EGFR ligand, is correlated with a
poor prognosis in NSCLC patients.4 Our group has demons-
trated that amphiregulin cooperates with the insulin-like
growth factor-type 1 receptor (IGF1R)5,6 to promote resis-
tance to gefitinib-induced apoptosis in KRAS mutant NSCLC
cells.7,8 The overexpression of amphiregulin or IGF1R has
been observed in the mucinous invasive adenocarcinoma sub-
type of NSCLC tumors, which often harbors KRAS mutations
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and is resistant to EGFR-TKI treatments.8,9 In addition,
amphiregulin prevents gefitinib-induced cell death through
the inhibition Ku70 protein acetylation, thus enhancing the
interaction between the proapoptotic protein BAX and
Ku70.7,10 However, the survival-signaling pathway that is
induced by amphiregulin and IGF1R in the presence of an
EGFR-TKI, leading to the regulation of acetylation, is not
fully understood. Receptor tyrosine kinases, such as EGFR or
IGF1R, mainly activate the phosphatidyl inositol-3 kinase
(PI3K)/AKT and mitogen-activated protein kinase (MAPK)/
extracellular-signal regulated kinase (ERK1/2) pathway. PI3K/
AKT signaling is frequently deregulated in NSCLC.11 Recent
studies indicate that the PI3K/AKT pathway plays a crucial
role in the resistance to various types of TKI, including
EGFR-TKIs.12–14

Acetylation is a reversible modification controlled by the
antagonistic actions of two types of enzymes, histone acetyl-
transferases and histone deacetylases (HDACs). HDACs regu-
late the function of histones and many nonhistone proteins
by modulating their acetylation status and have emerged as
crucial transcriptional co-repressors in highly diverse physio-
logical and pathological systems.15 To date, 18 human
HDACs have been identified and grouped into four classes.15

Class I, class II (subdivided into classes IIa and IIb) and class
IV HDACs are named “classical” HDACs. Class III HDACs
are also called sirtuins. The expression of HDACs is deregu-
lated in many cancer types. Interestingly, class I and II
HDACs are involved in lung carcinogenesis.15,16 The use of
class I/II HDACs inhibitor (trichostatin A) or class III
HDACs inhibitor (nicotinamide) results in the increased
acetylation of Ku70 and the dissociation of BAX/Ku70.10,17

Recently, the tubulin deacetylase HDAC6 has been shown to
deacetylate Ku70 and to regulate BAX/Ku70 binding in
neuroblastoma.18

In the present study, we analyzed the intracellular path-
ways associated with EGFR-TKI response in EGFR wild-type
lung adenocarcinoma. In particular, we examined whether
the activation of AKT or ERK1/2 can predict the responses
of patients with adenocarcinoma to gefitinib as well as
whether the inhibition of these signaling pathways can over-
come EGFR-TKI resistance induced by amphiregulin and
IGF1R in mutant KRAS adenocarcinoma cells. In this setting,
we investigated the relationships between AKT or ERK1/2
activation and acetylation-dependent regulation of BAX/Ku70
interaction.

Material and methods
Immunohistochemistry of NSCLC tumors

The experiments were performed on 62 formalin-fixed paraf-
fin-embedded human adenocarcinoma samples. Twenty-eight
were taken from the site of the surgical resections of lung
tumors, and 34 were collected from patients enrolled in the
prospective multicenter phase II trial that was conducted to
evaluate gefitinib as a first-line therapy for non-resectable
adenocarcinoma (IFCT0401, NCT00198380).9 All patients
enrolled in this trial provided informed consent. Tissue ban-
king and research conduct were approved by the ministry of
research (approval AC-2010-1129) and by the regional IRB
(CPP 5 Sud-Est). EGFR exons 18–21 and KRAS exon 2 were
amplified and sequenced in both directions, as previously
described.8 Mucinous invasive adenocarcinoma were catego-
rized as mucinous type (n 5 15), whereas others adenocarci-
noma were categorized as nonmucinous type (n 5 47), as
previously described.8

Immunostaining analysis was performed with 3-lm-thick
tissue sections on an automated instrument (BenchMark,
Ventana Medical Systems). Sections were incubated with
antibody against phosphorylated-AKT or -ERK1/2 (Cell Si-
gnaling Technology, 1/50 and 1/100, respectively). An indi-
rect biotin avidin system and the Ventana Basic DAB
detection kit (Ventana Medical Systems) were used, accord-
ing to the manufacturer’s instructions. The omission of the
primary antibody and/or incubation with same species and
isotype IgG at the same concentration of the primary anti-
body served as negative controls. Pathologists blinded to the
clinicopathological variables, mutation status and treatment
response independently evaluated the immunostaining. Dif-
ferential scores (0–300) were ascribed by multiplying the per-
centage of stained cells (0–100%) by the staining intensity
(11, 21, 31). A score >0 was considered positive.

Cell culture and drug treatments

The human H358 and H322 NSCLC cell lines were obtained
from the American Type Culture Collection (ATCC, Manas-
sas, VA) and were maintained in RPMI 1640 medium (Gibco,
Cergy Pontoise, France), supplemented with 10% heat-
inactivated fetal bovine serum in a humidified atmosphere
with 5% CO2. Amphiregulin-directed or control shRNA lenti-
viral particles (Santa Cruz Biotechnology) were used to infect
H358 cells. Stable cell lines were selected by culturing cells in

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

What’s new?

EGFR is frequently overexpressed in non-small cell lungcancers (NSCLCs) and is associated with poor prognosis. While thera-

pies targetingthe tyrosine kinase activity of EGFR (EGFR-TKIs, such as gefitinib) are highly effective for the treatment of EGFR

mutated NSCLC, limited response rates are observed in EGFR wild-type NSCLC. Here the authorsfound that the PI3K/AKT path-

way contributes to gefitinib resistance in mutant KRASadenocarcinoma by a deacetylase-dependent mechanism. They showed

for the first timethat the PI3K/AKT pathway induces survival of wild-type EGFR NSCLCswithKRAS mutations, suggesting a new

therapeutic target for treating this subset of lung cancer patients.
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2 lg/mL puromycin (Calbiochem, La Jolla, CA) for 2 weeks.
Western blotting or qPCR was used to determine the effects
of gene expression knockdown as described.7

Tubastatin A, LY294002, gefitinib, PD98059 and OSI-906
were from Selleckchem (Munich, Germany); trichostatin A,
nicotinamide, U0126 and sodium butyrate were from Sigma-
Aldrich (St Quentin-Fallavier, France).

Apoptosis assays

The morphological changes related to apoptosis were assessed
by fluorescence microscopy after Hoechst 33342 (5 lg/mL,
Sigma) staining of cells. The percentage of apoptotic cells was
scored after counting at least 500 cells. Active caspase-3 was
detected by immunoblotting or by flow cytometry using a
phycoerythrin-conjugated monoclonal active caspase-3 anti-
body kit (BD Pharmingen, Le Pont de Claix, France), follo-
wing the manufacturer’s instructions. The analysis was
performed on a BD-Accuri C6 flow cytometer with CFlow-
Plus software (BD Biosciences).

Immunoprecipitation and immunoblotting

Endogenous BAX immunoprecipitation and immunoblotting
experiments were performed as previously described7,10 using
antibodies against Ku70 (N3H1), IGF1Rb (Santa Cruz Bio-
technology), BAX (BD Pharmingen), cleaved caspase-3
(Asp175), actin, phospho-EGFR-Y1068, EGFR, phospho-
IGF1R-Y1135/1136, phospho-AKT-S473, pan-AKT, phospho-
ERK1/2-T202/Y204 and ERK1/2 (Cell Signaling Technology, St
Quentin en Yvelines, France). The relative intensity, meas-
ured using ImageJ (NIH software), of co-precipitated Ku70
was normalized to the respective immunoprecipitated Bax.

Statistical analyses

Difference in treatments and continuous variables were
compared using the Kruskall–Wallis test or Mann–Whitney
U-test. Two-sided p values <0.05 were considered statistically
significant. All analyses were performed using Statview 4.1
software (Abacus Concept, Berkeley, CA).

Results
AKT and ERK1/2 activation in patients

We previously showed that gefitinib resistance is associated
with the overexpression of IGF1R and amphiregulin in muci-
nous invasive adenocarcinoma.8 We investigated the intracellu-
lar pathways involved in this resistance by analyzing the
phosphorylation of AKT (p-AKT) and ERK1/2 (p-ERK1/2) in
62 lung adenocarcinoma samples. p-ERK1/2 and p-AKT were
undetectable in normal tissues distant from cancer tissues and
moderately detectable in normal bronchial epithelia adjacent to
tumor cells. p-AKT and p-ERK1/2 displayed diffuse cytoplas-
mic staining and less frequent (�32% of positive tumors)
nuclear staining patterns (Fig.F1 1a). Twenty-five (49%) and 49
(82%) tumors had a staining score >0 for p-AKT and p-
ERK1/2, respectively (Fig. 1b). The medians of the staining
scores for p-AKT and p-ERK1/2 are shown in TableT1 1. High p-

ERK1/2 levels were strongly associated with the presence of
lymph-node metastasis (p 5 0.0053); p-AKT levels were also
higher in tumors with lymph-node metastasis (not significant).

Five tumors (8%) had EGFR exon-19 or -21 mutations.
All were non-mucinous subtypes, as previously described,8

and had higher levels of p-AKT (p 5 0.0732), highlighting
the continuous activation of the mutated EGFR.

Among EGFR wild-type tumors, 11 (19%) had a KRAS
exon 2 mutation and higher p-AKT and p-ERK1/2 levels (not
significant). No additional relationships were observed between
p-AKT and p-ERK1/2 (Table 1) or between EGFR, IGF1R,
amphiregulin expression (Supporting Information Table S1)
and other clinical parameters in EGFR wild-type tumors.

p-AKT, p-ERK1/2 and the gefitinib response

Among the adenocarcinoma samples, we analyzed the
responses to gefitinib of the 34 patients with surgical samples
who were enrolled in the IFCT0401 phase II clinical trial, ini-
tially conducted to evaluate gefitinib as a first-line therapy for
nonresectable adenocarcinoma.9 Twelve patients achieved di-
sease control at 3 months with gefitinib treatment.8 Among
them, four patients with an EGFR mutation had a partial
response to treatment. Consistent with the enhanced p-AKT
levels in patients with mutated EGFR among the 62 tumors,
a high p-AKT was associated with a partial response to gefiti-
nib (p 5 0.0378, Table 1). No significant relationship was
observed between p-ERK1/2 level and disease control with
gefitinib (p 5 0.43, Table 1).

Interestingly, in patients with wild-type EGFR, a high
p-AKT level was associated with disease progression (p 5

0.0475, Fig. 1c), whereas the eight patients with stable di-
seases had wild-type EGFR and KRAS and did not express
p-AKT. No significant relationship was observed between
p-ERK1/2 level and disease progression in patients with wild-
type EGFR (p 5 0.32, Fig. 1c). These results suggest that
high p-AKT levels are associated with gefitinib resistance in
lung adenocarcinoma with wild-type EGFR, independently of
KRAS mutational status.

Amphiregulin and IGF1R activate AKT and promote

gefitinib resistance

Amphiregulin and IGF1R control gefitinib resistance in adeno-
carcinoma cells with wild-type EGFR,7,8 as seen using the mutant
KRAS adenocarcinoma cell line H358, which overexpresses
amphiregulin6 and is resistant to gefitinib.7,8 Small hairpin RNA
(shRNA) were used to stably silence amphiregulin expression
(Fig. F22a) and to restore the sensitivity to gefitinib at the same
level as that of the wild-type EGFR and KRAS, amphiregulin-
lacking NSCLC cell line H322 (Fig. 2b). We examined the phos-
phorylation of EGFR, IGF1R and their downstream pathways
(the PI3K/AKT and MAPK/ERK1/2 pathways) by western blot-
ting. As previously shown,8 gefitinib decreased the level of p-
EGFR and increased the levels of p-IGF1R, p-AKT and p-ERK1/
2 after 96 hr of treatment (Figs. 2c and 2e, second column).
Amphiregulin-directed shRNA prevented gefitinib resistance by
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inhibiting p-IGF1R and p-AKT, whereas ERK1/2 phosphoryla-
tion was not affected (Fig. 2c). OSI-906, an IGF1R-TKI, inhibited
cell proliferation (Supporting Information Fig. S1) and restored
gefitinib-induced apoptosis in H358 cells (Fig. 2d). OSI-906 also
strongly blocked p-IGF1R and the gefitinib resistance by decreas-

ing p-AKT but not p-ERK1/2 (Fig. 2e). These results further sug-
gest that amphiregulin and IGF1R control resistance to gefitinib
through the activation of downstream PI3K/AKT.

To confirm the importance of the PI3K/AKT pathway in
gefitinib resistance, we examined whether the inhibition of
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Figure 1. p-AKT and p-ERK1/2 immunostaining in NSCLC tumors. (a) Immunohistochemistry showing p-AKT expression (a, negative score, b,

score of 100, c, score of 240) and p-ERK1/2 expression (d, negative score, e, score of 60, f, score of 160). Original magnification: 2003.

(b) Distribution of p-AKT (left) and p-ERK1/2 (right) staining across all tumor samples: percentage of samples (Y-axis) showing the indicated

scores of stained cells (X-axis). (c) Distribution of p-AKT scores (left) and p-ERK1/2 (right) scores, according to disease control with gefitinib

in patients with wild-type EGFR. Numbers: median score staining. Statistical analysis was carried out using the Mann–Whitney U-test.
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this pathway could affect gefitinib-induced apoptosis in vitro.
LY294002, a PI3K inhibitor, strongly inhibited the activation
of AKT without affecting the levels of p-EGFR, p-IGF1R or
p-ERK1/2 (Fig.F3 3a). The resistance of H358 cells to gefitinib
was abolished when the cells were co-treated with LY294002,
producing a significant induction of apoptosis (Fig. 3b) and
inhibition of cell proliferation (Supporting Information Fig.
S1). The same results were obtained using the PI3K inhibitor

wortmannin (Supporting Information Fig. S1). In contrast,
MAPK/ERK1/2 pathway inhibition, using the specific inhibi-
tors PD98059 or U0126, did not significantly enhance
gefitinib-induced apoptosis (Fig. 3c, left panel). The effect
of PD98059 and U0126 on gefitinib-induced ERK1/2 phos-
phorylation inhibition was confirmed by western-blot (Fig. 3c,
right panel). These results confirm that PI3K/AKT activation
is a major pathway contributing to gefitinib resistance
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Table 1. Immunohistochemical analysis of p-AKT and p-ERK1/2 in lung adenocarcinoma

p-AKT p-ERK1/2

n (%) Median (range) P Median (range) p

All patients 62 (100%) 0 (0–240) 60 (0–240)

Gender 0.26 0.63

Male 39 (63%) 30 (0–240) 100 (0–210)

Female 23 (37%) 0 (0–200) 60 (0–240)

Age (years) 0.80 0.25

Median (range) 65.7 (36–80.4)

<70 44 (71%) 10 (0–240) 80 (0–240)

�70 18 (29%) 0 (0–200) 60 (0–160)

Smoking status 0.57 0.18

Smokers 49 (79%) 25 (0–240) 80 (0–240)

Never a smoker 13 (21%) 0 (0–200) 50 (0–160)

Stage 0.84 0.57

I–II 23 (37%) 15 (0–240) 60 (0–210)

III–IV 39 (63%) 0 (0–200) 90 (0–240)

Node metastasis 0.19 0.0053

No 38 (61%) 0 (0–240) 50 (0–210)

Yes 24 (39%) 45 (0–120) 120 (0–240)

Metastasis 0.98 0.14

No 37 (60%) 20 (0–240) 80 (0–240)

Yes 25 (40%) 0 (0–200) 60 (0–200)

Cytological subtype 0.10 0.94

Mucinous 15 (24%) 0 (0–200) 100 (0–160)

Nonmucinous 47 (76%) 30 (0–240) 60 (0–240)

EGFR mutation 0.0732 0.33

Mutation 5 (8%) 100 (0–200) 40 (20–150)

No mutation 57 (92%) 0 (0–240) 80 (0–240)

KRAS mutation 0.60 0.78

Mutation 11 (19%) 40 (0–240) 110 (0–200)

No mutation 47 (81%) 10 (0–200) 70 (0–240)

Noninterpretable 4

IFCT0401 patients 34 (100%) 0 (0–240) 30 (0–160)

Disease control with gefitinib 0.0378* 0.43*

Partial response 4 (12%) 90 (0–200) 35 (20–50)

Stable disease 8 (24%) 0 (0) 30 (0–80)

Progressive disease 22 (64%) 0 (0–240) 60 (0–160)

Statistical analysis was performed using Mann–Whitney U-test or *Kruskall–Wallis test.
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Figure 2. Amphiregulin or IGF1R inhibition restored gefitinib sensitivity and decreased p-AKT levels. (a) Amphiregulin (Areg) mRNA (left), assessed

by quantitative real-time RT-PCR for amphiregulin mRNA on total RNA extracted from cells, and protein levels (right), detected by enzyme-linked

immunosorbent assay, in H358, H322 and H358 stably expressing control shRNA (shC) or amphiregulin-directed shRNA (shAreg). Results are

expressed as a rate of amphiregulin mRNA or amphiregulin released by H358 cells and as the mean 6 SD. (b and c) H358, H322 or H358/shC or

H358/shAreg were treated with 0.5 lmol/L gefitinib for 96 hr. (d–e) H358 cells were treated with 1 lmol/L OSI-906 and/or 0.5 lmol/L gefitinib for

96 hr. (b and d) Percentages of apoptosis were scored and expressed as the mean 6 SD (n � 3). *p < 0.05, **p < 0.01 for comparison between

treated and control cells, and (c and e) representative immunoblots of EGFR, IGF1R, AKT and ERK1/2 and their respective phosphorylated forms are

shown.
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between the proapoptotic protein BAX and Ku70.7,10 The inhibi-
tion of Ku70 acetylation enhances BAX/Ku70 binding and pre-
vents gefitinib-induced apoptosis. In contrast, the acetylation of
Ku70 releases BAX from Ku70 and restores the sensitivity to
gefitinib.10 We investigated the involvement of the PI3K/AKT
pathway in the interaction between BAX and Ku70. We
observed that PI3K/AKT inhibition by LY294002 decreased
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Figure 3. PI3K/AKT inhibition restored gefitinib sensitivity. H358 cells were treated with 25 lmol/L LY294002, 20 lmol/L PD98059 or

U0126 and/or 0.5 lmol/L gefitinib, as indicated. (a) Representative immunoblots of EGFR, IGF1R, AKT and ERK1/2 and their respective

phosphorylated forms are shown. (b and c) Left panel: Percentages of apoptotic cells were scored and expressed as means 6 SD (n 5 4).

*p < 0.05, for comparison between treated and control cells. (c) Right panel: Representative immunoblots of ERK1/2 and their respective

phosphorylated forms. (d) Endogenous BAX immunoprecipitations (left panel) were performed and subjected to immunoblotting with Ku70-

specific and BAX-specific antibodies. IgG: irrelevant immunoglobulin, used as negative control. Input: cell lysate not subjected to immuno-

precipitation. Actin was used as a protein level control (right panel). The histogram shows the relative intensity of Ku70 protein bands of

samples to that of gefitinib treated cells, after being normalized to the respective Bax and represents the means 6 SD of two independent

experiments. (e) Representative immunoblot of Ku70. Tubulin was used as a protein level control.
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and that PI3K/AKT inhibition can overcome gefitinib 
resistance.

AKT activation controls BAX/Ku70 interaction in the 
gefitinib resistance mechanism

We have previously shown that amphiregulin and IGF1R medi-
ate gefitinib resistance through increasing the interaction

Int. J. Cancer: 00, 00–00 (2013) 
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Figure 4. HDACs inhibited gefitinib-induced apoptosis in NSCLC cells via a decrease in BAX/Ku70 interaction. H358 cells were treated with 2

mmol/L sodium butyrate (NaBu), 200 ng/mL trichostatin A (TSA), 5 mmol/L nicotinamide (NAM), 5 lmol/L tubastatin A (tubA), 0.5 lmol/L gefitinib

or a combination of inhibitors for 96 hr as indicated. (a) Percentages of apoptotic cells were scored and expressed as means 6 SD (n � 3). *p <

0.05, **p < 0.01, ***p < 0.001 for comparisons between treated and control cells or as indicated. (b and c) Endogenous BAX immunoprecipitations

were performed and subjected to immunoblotting with Ku70-specific and BAX-specific antibodies. IgG: irrelevant immunoglobulin, used as negative

controls. Input: cell lysate not subjected to immunoprecipitation. The histograms show the relative intensity of Ku70 protein bands of samples to

that of gefitinib treated cells, after being normalized to the respective Bax and represent the means 6 SD of two or three independent experiments.
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HDACs control BAX/Ku70 interaction via AKT activation

We next examined the relationship between acetylation,
which controls the interaction between BAX and Ku70, gefiti-
nib resistance and the PI3K/AKT pathway. Trichostastin A
(classes I/II HDAC inhibitor) and nicotinamide (class III/sir-
tuin deacetylases inhibitor) strongly sensitized H358 cells to
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Figure 5. HDACs inhibited gefitinib-induced apoptosis in NSCLC cells via activation of AKT. H358 cells were treated as described in Figure

4. Representative immunoblots of cleaved caspase-3, AKT and ERK1/2 and of their respective phosphorylated forms are shown. Actin was

used as a protein-level control.

Figure 6. Hypothesized model for regulation of gefitinib resistance by PI3K/AKT and HDAC in mutant KRAS lung adenocarcinoma cells. In

the presence of gefitinib (left panel), the level of p-ERK1/2 is increased, probably through the Ras/Raf/MAPK pathway activation by mutant

KRAS. Amphiregulin (Areg), whose level of expression and secretion is upregulated by mutant KRAS, and IGF1R cooperate to enhance the

level of p-AKT, which inhibits the proteolysis of Ku70. Ku70 levels are thus high enough to suppress BAX activation and apoptosis. Classes

I/II/III HDACs also increase the activation of p-AKT, and in addition, inhibit Ku70 acetylation, thus enhancing BAX/Ku70 binding and pre-

venting gefitinib-induced apoptosis. HDAC6 may regulate sirtuins activation. In the presence of combination treatments with gefitinib (right

panel), leading to inhibition of active AKT signals (shAreg, OSI-906, LY294002), Ku70 is targeted for degradation. In addition, HDACs inhibi-

tors (trichostatin A (TSA) or nicotinamide (NAM)) inhibit the activation of AKT in an additive manner, and enhance Ku70 acetylation by his-

tone acetyltransferase such as CBP. These conditions allow the release of BAX from inhibition, and BAX is activated. In contrast, tubastatin

A (TubA) removes sirtuins inhibition, thus reinforcing p-AKT activation and Ku70 deacetylation. The level of p-ERK1/2 is still increased

through Ras/Raf/MAPK pathway, except in presence of PD98059 or U0126.
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gefitinib-induced BAX/Ku70 binding in the immunoprecipita-
tion assay using a BAX-specific antibody (Fig. 3d, left panel). In 
addition, LY294002 downregulated the level of Ku70 (Figs. 3d, 
right panel, and 3e). These data suggest that the PI3K/AKT 
pathway controls gefitinib-induced apoptosis, at least in part 
through the regulation of Ku70 levels and interaction with BAX.

Int. J. Cancer: 00, 00–00 (2013



gefitinib-induced apoptosis,10 in contrast to sodium butyrate
(classes I/IIa HDAC inhibitor) (Fig.F4 4a). In addition, the
combination of trichostatin A and nicotinamide treatment
induced apoptosis and significantly sensitized cells to gefitinib
compared to gefitinib treatment with trichostatin A or nico-
tinamide alone (Fig. 4a). As a control of their activity, we
verified that administration of trichostatin A or nicotinamide
increased the acetylation of a-tubulin,19,20 whereas sodium
butyrate promoted the accumulation of the cyclin-dependent
kinase inhibitor p21WAF1 protein21 and trichostatin A or
sodium butyrate strongly inhibited cell proliferation (Sup-
porting Information Fig. S2).

When gefitinib, trichostatin A, or nicotinamide were
administered alone, the interaction between BAX and Ku70
was strongly enhanced,10 whereas combination treatments
(gefitinib with either trichostatin A or nicotinamide)
decreased the interaction between BAX and Ku70,10 in agree-
ment with the induction of apoptosis (Fig. 4b). Together,
these data suggest that gefitinib in combination with trichos-
tatin A or nicotinamide leads to BAX-dependent NSCLC cell
death, whereas sodium butyrate induces cellular growth
arrest.

The effects of trichostatin A and sodium butyrate sug-
gested the involvement of a class IIb HDAC. As the class IIb
HDAC HDAC6 has been shown to deacetylate Ku70 and to
regulate BAX/Ku70 binding,18 we analyzed its role in gefiti-
nib resistance. Specific HDAC6 inhibition using tubastatin A
enhanced BAX/Ku70 binding (Fig. 4c, left panel), without
affecting the HDAC6 level, cell proliferation (Supporting
Information Fig. S2) or apoptosis induction (Fig. 4a), in
either the presence or absence of gefitinib. These results were
confirmed using specific siRNA targeting either HDAC6 or
the other class IIb HDAC HDAC10 (Supporting Information
Fig. S3). Interestingly, nicotinamide sensitized the cells to
gefitinib-induced apoptosis (Fig. 4a) and decreased the inter-
action between BAX and Ku70 (Fig. 4c, right panel), even in
presence of tubastatin A. Overall, these results suggest that
inhibition of class IIb HDACs is not sufficient to restore
gefitinib-induced apoptosis. In contrast, HDACs and sirtuin
deacetylases prevented gefitinib-dependent BAX-mediated cell
death.

Finally, we assessed the effect of HDACs and sirtuin
deacetylases on the PI3K/AKT pathway with respect to gefiti-
nib resistance. The effects of gefitinib and/or HDAC inhibi-
tors on apoptosis were controlled by cleaved caspase-3
detection by western-blot (Fig.F5 5). Trichostatin A or nicotina-
mide inhibited the gefitinib-induced activation of p-AKT
through an additive effect (Fig. 5). In contrast, both tubasta-
tin A and gefitinib increased the p-AKT level; this effect was
blocked by NAM. HDAC6- or HDAC10-directed siRNA also
enhanced the p-AKT level (Supporting Information Fig. S3).
The level of activation of p-ERK1/2 was not affected by
HDAC inhibitor treatment. These results suggest that trichos-
tatin A or nicotinamide lead to BAX-dependent apoptosis
through p-AKT inactivation.

Discussion
The intracellular pathways leading to EGFR-TKI resistance in
NSCLC patients with wild-type EGFR should be investigated
in order to search for new combination therapies. We have
previously shown that amphiregulin and IGF1R both induce
gefitinib resistance in mucinous invasive adenocarcinoma8

through the inhibition of Ku70 acetylation, which enhances
the BAX/Ku70 interaction.10 Here, we investigated which
downstream pathways underlie this mechanism in 62 human
lung tumors and showed that the activation of AKT is associ-
ated with progressive disease during gefitinib treatment in
patients with wild-type EGFR. The inhibition of amphiregu-
lin, IGF1R or deacetylase expression in vitro decreases PI3K/
AKT signaling and releases BAX from Ku70, thus restoring
apoptosis under gefitinib treatment (Fig. F66). PI3K/AKT inhi-
bition strongly sensitizes wild-type EGFR and mutant KRAS
mucinous adenocarcinoma cells to gefitinib, suggesting that
this treatment could overcome the resistance of these tumors
to EGFR-TKIs (Fig. 6).

AKT activation in tumors and its correlation with clinicopa-
thological parameters have already been investigated.22,23 Over-
all, these studies show that elevated AKT activity is prevalent
in high-grade, advanced tumors and is associated with metasta-
sis, radioresistance and reduced patient survival.22,24 Most cases
of NSCLC that harbor mutations in the EGFR show hyper-
phosphorylated AKT,11,24,25 and their gefitinib responsiveness
can be predicted by AKT activation.26 The present study con-
firms that elevated AKT activity is associated with EGFR muta-
tion and plays an essential role downstream of continuous
activation of mutated EGFR. Interestingly, we observed that
AKT activation is also associated with disease progression
under gefitinib treatment in adenocarcinoma patients with
wild-type EGFR. This underlines the importance of blocking
the PI3K/AKT pathway while treating adenocarcinoma with
EGFR-TKIs. Resistance to TKI has been associated with the
presence of a KRAS mutation,27 most likely through the direct
activation of downstream Ras effector pathways MEK/ERK1/2
and PI3K/AKT.28 The EGFR/Ras axis is often thought of a
simple one-directional signaling cascade where Ras activation
leads to changes in gene expression. However, several studies
have suggested that tumors with aberrant Ras signaling may
require an EGFR autocrine feedback loop to promote tumor
growth and progression.29 In agreement, the upregulated
expression and secretion of EGFR ligands including amphire-
gulin have been observed in KRAS mutant cells.29 Depending
on mutant KRAS amino-acid substitutions, PI3K/AKT signal-
ing is constitutively activated or is growth factor dependent.30

To support these observations, we established here the involve-
ment of PI3K/AKT signaling by amphiregulin and IGF1R in
wild-type EGFR and mutant KRAS mucinous invasive adeno-
carcinoma cells (Fig. 6). This suggests that inhibiting EGFR
may be more effective if combined with selective inhibition of
the downstream pathways for treating wild-type EGFR and
mutant KRAS tumor cells, in agreement with previous
studies.14,29,30
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AKT phosphorylation, but maintained the BAX/Ku70 interac-
tion, and thus failed to restore apoptosis in adenocarcinoma
cells, in contrast to that observed in neuroblastoma cells.18 One
likely explanation is that other HDACs prevent Ku70 acetyla-
tion, thus compensating for the specific inhibition of class IIb
HDAC. Consistent with this possibility, nicotinamide inhibited
p-AKT, induced BAX/Ku70 dissociation and restored gefitinib-
induced apoptosis, even in presence of tubastatin A. This fin-
ding suggests that the activation of PI3K/AKT following
HDAC6 inhibition could be mediated by sirtuins (Fig. 6). Syn-
ergistic relationships between HDACs and sirtuins have been
reported in several cancers.20,45,46 Our results support an
important role for sirtuins in EGFR-TKI resistance mediated
through PI3K/AKT signaling. Consistent with this idea, direct
binding of SIRT1 to AKT has been demonstrated in the pres-
ence of growth factor stimulation, mediating the activating
deacetylation of AKT/PDK1.47 The specific sirtuin isoform
involved in the regulation of the BAX/Ku70 interaction in ade-
nocarcinoma cells in response to gefitinib remains to be
identified.

Our results support a potential therapeutic role of co-
targeting EGFR and the PI3K pathway to counteract gefitinib
resistance and suggest that this approach should be evaluated
further for lung cancer patients with wild-type EGFR and
mutant KRAS. A large number of PI3K inhibitors are cur-
rently being developed.23,48,49 Perifosine, an allosteric inhibitor
of AKT, reduces the levels of activated AKT in breast and
ovarian cancer cells.50 Other trials of triciribine phosphate,
which inhibits AKT phosphorylation and its recruitment to
the plasma membrane,51 and of BKM12052 have been initi-
ated. However, the inhibition of AKT frequently induces the
expression of upstream receptor tyrosine kinases and their
activity by relieving feedback inhibition.53 In addition, EGFR
can function both upstream and downstream of Ras,29 rein-
forcing the use of combinatorial therapy using EGFR-TKI and
AKT signaling pathway inhibitors in mutant KRAS tumor
cells.

In summary, we have shown that PI3K/AKT activation is
a major pathway leading to gefitinib resistance and that it
contributes to maintaining the BAX/Ku70 complex, at least
in part by inhibiting the proteolysis of cytosolic Ku70.
HDACs and sirtuin deacetylases participate in this resistance
through the control of PI3K/AKT activation and the BAX/
Ku70 interaction. These findings suggest new prospects for
combining both PI3K/AKT and EGFR inhibitors for the
treatment of resistant mutant KRAS adenocarcinoma; these
possibilities should be evaluated in clinical trials for patients
with lung adenocarcinoma.
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AKT activation is dependent on the stimulation of 
growth factor receptors and is initiated through transloca-
tion to the plasma membrane and phosphorylation at 
Thr308 by PI3K-dependent kinase (PDK1) and at Ser473 by 
PDK2.22 Subsequently, AKT translocates to distinct cellu-
lar compartments, phosphorylates its substrates and regu-
lates diverse cellular functions, such as survival, cell-cycle 
progression and growth.22 AKT has been shown to sup-
press BAX-mediated apoptosis through cytosolic Ku70 
proteolysis inhibition.31 In agreement, we observed a 
decrease in the Ku70 level after PI3K/AKT inhibition. The 
activation of the PI3K/AKT pathway under treatment with 
an EGFR-TKI inhibits Ku70 degradation, thus reinforcing 
the BAX/Ku70 interaction. This results in BAX inhibition, 
absence of apoptosis and thus to resistance to the treat-
ment (Fig. 6).

The interaction between BAX and Ku70 is also regulated 
by an acetylation-dependent mechanism. Ku70 is targeted for 
deacetylation by classes I/II and III/sirtuin deacetylases.17,18 

Class I/II HDACs are involved in the development of lung 
cancer32,33 and are associated with poor prognosis.16,34 Class 
III/sirtuin deacetylases are implicated in important cellular 
processes, such as aging, metabolism, stress response and 
cancer.35,36 Deacetylation of Ku70 by the sirtuin SIRT1 or 
SIRT3 promotes the interaction of Ku70 with BAX,37–39 and 
high SIRT1 expression may be important in the pathogenesis 
of lung cancer.40 In agreement with these studies, we showed 
that the class I/II HDAC inhibitor trichostatin A and the 
class III/sirtuin deacetylase inhibitor nicotinamide both sensi-
tize NSCLC cells to gefitinib10 through the inhibition of p-
AKT and the release of BAX from Ku70. Surprisingly, the 
administration of trichostatin A or nicotinamide alone 
enhanced the interaction of BAX and Ku70, suggesting that 
the acetylation level of Ku70 is not strong enough to release 
BAX and requires the combination of both trichostatin A 
and nicotinamide, as previously demonstrated.17 This could 
indicate that HDAC activity can compensate for sirtuins inhi-
bition and vice versa and that both inhibitors are required 
concomitantly in order to induce cell death in NSCLC cells. 
In addition, HDAC inhibitors may allow these resistant cells 
to maintain a reservoir of active BAX, ready for apoptosis 
induction after additional exposure to gefitinib, as already 
proposed.41

In contrast to trichostatin A, the class I/IIa HDAC inhibitor 
sodium butyrate did not restore gefitinib sensitivity, suggesting 
the involvement of class IIb HDACs in resistance to EGFR-
TKIs. HDAC6, a class IIb HDAC mainly localized in the cyto-
plasm, directly deacetylates tubulin, cortactin, Hsp90 and 
Ku70.18,42 In particular, HDAC6 interacts with cytoplasmic 
Ku70 and regulates its acetylation and BAX-dependent cell 
death in neuroblastoma.18 Little is known about the other class 
IIb HDAC HDAC10.15,16 HDAC10 has been recently reported 
to be involved in autophagy-mediated cell survival.43 In our 
hands, specific HDAC6 inhibition using the highly specific 
tubastatin A44 or siRNA, or HDAC10 invalidation, 
induced

Int. J. Cancer: 00, 00–00 (2013) 
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