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Abstract

We provide an overview of what has been accomplished by our team, since 1998, in the area of first-

principles molecular dynamics (FPMD) modeling of glassy chalcogenides, a prototypical family of network

disordered materials. After a broad introduction that defines the main motivation and strategy of our ap-

proach, we treat several cases by focusing first on a specific issue of generic character (the origin of the first

sharp diffraction peak in the neutron structure factor as a signature of intermediate range order) and then on

particular systems mostly within (or closely related to) the GexSe1-x binary family. Chalcogenides ternary

glasses will also be considered. It appears that first-principle molecular dynamics has acquired an unprece-

dented level of reliability in the field of glassy chalcogenides, by enriching and complementing successfully

the knowledge of these materials.
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INTRODUCTION

This contribution describes atomic-scale studies devoted to a specific class of network glasses,

glassy chalcogenides, for which extensive first-principles molecular dynamics (FPMD) work has

been performed by our team on some GexSe1-x binary systems and ternary compounds. Focusing

on disordered chalcogenides, the experience collected over the past 25 years led us to the convic-

tion that the use of molecular dynamics in conjunction with density functional theory (DFT) is

the method of choice to circumvent the limitations of effective interatomic potentials (termed also

force-fields schemes or classical potentials in what follows). Classical potentials are intrinsically

unable to describe deviations from chemically ordered topologies occurring, for a given stoichiom-

etry, in specific network structures (as glassy chalcogenides) made of interconnected tetrahedra.

This issue can be better understood by considering the case of a model AX2 system featuring a

marked difference of electronegativity between A and X atomic species (SiO2 being a valuable ex-

ample, electronegativity Si=1.9, O=3.44). The simple assignment of formal negative and positive

point charges ensures the establishment of a tetrahedral network resulting in structural properties

broadly consistent with experiments. However, problems occur when high temperatures come

into play or when, by changing the chemical composition, the differences of electronegativity are

smaller (for instance, in GeSe2, electronegativity Ge= 2.01, Se=2.55). In these cases, the charge

point approximation inherent in force-fields schemes becomes devoid of any physical meaning.

These situations result in the emergence of structural defects (homopolar bonds and coordination

other than four for A-elements and two for X-elements) that are indicative of a delicate interplay

between different bonding characters (typically ionic and covalent), requiring models based on

the explicit account of the electronic structure. In this review we retrace the genesis and develop-

ment of our approach by describing achievements obtained when applying FPMD to disordered

chalcogenides, mostly, but not exclusively, belonging to the GexSe1-x family. With no loss of gen-

erality, some concepts and ideas developed hereafter stem from calculations and results obtained

for liquids also. For instance, we shall review a comparative study based on FPMD and a classical

potential proposed for liquid GeSe2. Overall, our main intent is to highlight different milestone

results that contributed to an understanding of network chalcogenide glasses (fostering innovation

in material science) well beyond the particular cases addressed.

Computational material science makes available several ways of complementing and enriching

experiments. The most popular consists in calculating properties to be directly compared to ex-
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periments, by providing additional information not accessible to measurements. As an alternative

instead, one can focus on a single property to extract general hints applicable to other systems

close or dissimilar in nature to the original object of the study. In 1995, when we began working

in this area, we selected this second route, being very much intrigued by the interplay between

atomic scale structural motifs and specific marks recorded in experimental data. This guided our

work toward the understanding of the origins of the first sharp diffraction peak (FSDP) in the total

and in the partial structure factor of liquid GeSe2. Measurements of the partial structure factors

had revealed the occurrence of a very intense FSDP in the Faber-Ziman (FZ) [1] Ge-Ge partial

structure factor and in the Bhatia-Thornton (BT) [2] concentration-concentration structure factor

of liquid GeSe2. We recall that the FZ and the BT formalisms express a description of the net-

work based on the notion of atoms and number/concentration, respectively [1, 2]. The existence of

correlations extending well beyond nearest neighbors and reflecting fluctuations of concentration

on intermediate scale was taken as a challenge for atomic-scale modeling. Two main reasons are

worth invoking. First, the case of liquid GeSe2 was essentially unique among network-forming

disordered materials, the FSDP in SCC being among the most prominent ever recorded. Second,

such peak was absent in any available FPMD model, and this regardless of the kind of exchange-

correlation functional employed within density functional theory [3]. This last point deserves

some more consideration. We were able to demonstrate in the case of liquid GeSe2 that a correct

reproduction of experimental data in reciprocal space can be obtained provided the generalized

gradient approximation (GGA, in one of the standard, available forms, due to Perdew and Wang

(PW) [4]) is employed in the expression of the exchange correlation (XC) functional [5]. GGA is

able to enhance the ionic character of bonding by ensuring the stability of the tetrahedral network.

Among the GGA schemes, the one by Becke, Lee, Yang, and Parr (BLYP) [6, 7] was found to be

the best performing in the case of the disordered GexSe1-x family, in spite of the fact that our first

results on liquid GeSe2 were obtained with the PW scheme [3]. The robust modeling framework

thereby established (FPMD with BLYP-GGA) allowed us to achieve a series of results featuring

quantitative predictions for disordered chalcogenides. Some of them will be described in this re-

view, by exemplifying the link between modeling, material science and statistical mechanics as

the guideline reflecting the strategy followed ever since our early involvement in this field. All

the GGA schemes are implemented in the CPMD code [8] according to the scheme proposed by

White and Bird [9] exploiting the fully parallelized fast Fourier transform (FFT) algorithm. In

recent versions (presently the 4.3) of this same code, the FFT can be avoided by a direct real space
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implementation as proposed by Bylander and Kleinman [10], thereby allowing for a substantial

speed up in the calculation performances.

Atomic-scale origin of the first sharp diffraction peak

To substantiate the present review with a triggering case marking our impact on the area of

glassy chalcogenides modeling, it is worthwhile to start by recalling our ideas and results in regard

to the atomic-scale understanding of the FSDP in the total structure factor and in the concentration-

concentration SCC partial structure factor. Our first insight was proposed in 2001 (see Ref. 11, 12).

We started from the consideration that the relationship between the FSDP in reciprocal space and

specific structural arrangements in real space had been the object of interpretations for a long

time. Among the schemes frequently invoked, we can mention the one that associates the FSDP

to a precise signature of crystalline-like layers, a relationship existing between the position of

the FSDP and the interlayer separation [13]. A second idea is based on the occurrence of low

density regions in glasses. In this framework, clusters are conjectured to be structural units having

interstitial voids as neighbors. The existence of these two motifs results in correlation distances

responsible for the establishment of intermediate range order. [14] We have exploited a set of

criteria to ascertain whether or not the formation of layers and/or the presence of correlations

between clusters and voids can be at the very origin of the FSDP in disordered network-forming

systems. We were able to show that the appearance of the FSDP cannot be ascribed to crystalline-

like layers, whereas cluster-voids correlations are common to all systems considered. In fact, this

latter kind of correlation occurs also for models of liquids that do not feature any FSDP.

In 2007 (see Ref. 15), we put forth an interpretation for the origins of the FSDP in the

Bhatia-Thornton concentration-concentration structure factor, SCCin terms of a particular kind

of structural unit. Chains of two fourfold rings were found to account for the occurrence of the

FSDP in SCC (see figure 1).

To achieve this conclusion, we partitioned instantaneous atomic configurations occurring during

the motion of a model liquid in two sets, corresponding to high values and low values of the

FSDP height. The chains of two fourfold rings are much more numerous in the configuration

corresponding to high FSDP in SCC. [15]
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Figure 1: (Color online) a) Bhatia-Thornton partial structure factors for liquid GeSe2: experimental mea-

surements from Ref. 16 (lines with error bars) are compared to the results of the FPMD calculations

from Ref. 15 (solid lines): from top to bottom Number-Number (NN), Number-Concentration (NC) and

Concentration-Concentration (CC) partial structure factors are presented. The number of chains made of

two fourfold rings (see an illustration of this motif at the bottom of the figure in b)) is much larger in the

trajectories corresponding to the right column averaged data. At the same time (again, data in the right

column), a distinct peak at the FSDP location is observed in the Concentration-Concentration (CC) partial

structure factor.

5



So far we have reported on a specific structural feature and its atomic-scale counterpart.

This means that we have taken FPMD as a mean to link a signature of intermediate range order

to a suitable structural motif. In what follows, we illustrate how the FSDP methodology was

put to good use to unravel structural properties for a prototypical family of glassy networks.

Accordingly, atomic-scale computer experiments are employed to extract, for a given system,

all kinds of possible information (a priori including also the one on the electronic structure).

Throughout the next part of this contribution, it has to be intended altogether that our models have

been successfully validated and bear a very high predictive power. The essence of the underlying

methodology has been detailed in several recent contributions devoted to the implementation of

first-principles molecular dynamics, to which we refer the interested reader [17, 18].

OVERVIEW OF ACHIEVEMENTS IN THE FPMD MODELING OF NETWORK-FORMING

GLASSES

Glassy GeSe2

The first glassy system we considered was GeSe2 (see Refs. 19, 20). We were stimulated by

the existence of the partial structure factors measured by the method of isotopic substitution in

neutron diffraction [21]. By producing several independent trajectories via quench from the liquid

state we obtained a description of this glass consistent with experiments, even though Ge-Ge cor-

relations features some non-negligible differences between theory and experiments. The question

arises on whether such discrepancy could be ascribed to the cooling rates employed, of the order

of 1013 K/s. It appears that the validity of this conjecture cannot be checked on appropriate, much

longer time intervals, due to the intrinsic computational limits of our approach in terms of lengths

of the trajectories. However, as a first observation, we point out that the reduced number of defects

(i.e. the reduced departure from chemical disorder) at the end of the cooling process indicates that

cooling rates as high as 1013 K/s do not hamper the adjustment of the system to changes of temper-

ature, since non negligible relaxations of the structure can occur even on very short (few ps) time

scales. As a second observation, it is worthwhile to mention that a much better agreement for the

Ge-Ge pair correlation functions was obtained when accounting for pressure effects,[22] so as to

eliminate the residual pressures existing on the simulation periodic cell considered in Refs. 19, 20

at fixed density. This means that any concern for the possible impact of very high quench rates
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on the structure of glasses does not have to overshadow the proper account of other effects more

closely related to the validity of the model. These are related to the quality of the interaction

scheme and to the correct consideration of the thermodynamic conditions. Keeping these consid-

erations in mind, our analysis of the structure of glassy GeSe2 goes as follows. Pair correlation

functions are in very satisfactory agreement with the experiments in the Ge-Se and Se-Se cases.

The quantity of Se-Se homopolar bonds and the number of Ge-Se neighbors are slightly larger

than in the experimental counterpart. The case of Ge-Ge correlations is quite different, confirming

results obtained for liquid GeSe2[3]. As a first observation (see figure 2), the profile of gth
GeGe(r)

lacks a well-defined minimum between r < 4.5 Å and 4.5 Å < r < 8 Å˙

Second, we record an underestimate for the counting of homopolar Ge-Ge bonds. This means

that most of the Ge-Ge pairs found in the liquid disappear after the quenching process. Glassy

GeSe2 is more chemically ordered than liquid GeSe2Ȯne has 75.6 % of Ge atoms fourfold co-

ordinated and 93.6 % of Se atoms twofold coordinated. Concerning the bonding units, we found

Ge-(Se), Ge-(Se2), Ge-(Se3), Ge-(GeSe3), Ge-(Se4) units for Ge, and Se-(Ge), Se-(Se2), Se-(Ge2),

Se-(Ge3) units for Se. As anticipated above, this picture of Ge-Ge correlations was performed on

a simulation cell at fixed density taken to be equal to the experimental value. Later on, as detailed

in Ref. 22, we were able to demonstrate that a substantial improvement can be obtained by re-

leasing the residual pressure acting on the system (1GPa), while keeping the basic features of the

network unaltered. Finally, when comparing theory and experiments, it is worthwhile to wonder

how chemical disorder establishes in the network, for instance, are there units departing from the

tetrahedral coordination or preference for homopolar bonds? We found that Ge atoms prefer to

form coordination groups other than GeSe4 rather than organizing themselves in Ge-Ge dimers or

chains.

Glassy SiSe2

In 2003 the structure of glassy SiSe2 was investigated in the search of a quantitative counter-

part to neutron diffraction and MAS-NMR data (see Ref. 23). Our main finding was the evidence

provided on glassy SiSe2 being predominantly chemically ordered, with most of the Si atoms in

ES (edge-sharing) connections.

The network can be described as made of Si atoms lying in two, one or zero fourfold rings, re-

spectively labeled Si(2), Si(1) and Si(0), as shown in figure 3.
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Figure 2: (Color online) Partial pair correlation function gαβ(r) for amorphous GeSe2 at the experimental

density: experimental measurements from Ref. 21 (black lines) are compared to the results of FPMD cal-

culations from Ref. 20 (dashed red lines) (with no account of the residual pressure) and to the results from

Ref. 22 (green line, FPMD calculations accounting for the residual pressure).

It is of interest to analyze the sets of neighboring tetrahedron Si(1)-Si(2)-Si(1), since this triad is

the most frequent when considering those forming chains connected in an edge-sharing fashion

only. However, one finds that Si(1) and Si(0) centered triads are even more frequent. The high-

est value corresponds to Si(1)-Si(0)-Si(0) and Si(1)-Si(1)-Si(0), followed by Si(1)-Si(1)-Si(1) and
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Figure 3: (Color online) Configurations showing the inter-tetrahedral connections resulting from sequences

of Si atoms. Si atoms are labeled 2, 1, or 0, according to their belonging to two Si(2), one Si(1), or zero

Si(0) fourfold rings.

Si(1)-Si(0)-Si(1). These configurations involve corner-sharing and edge-sharing connections with

coordination four (for Si) and two (for Se). Concerning the Si(2)-centered motifs, Si(1)-Si(2)-Si(1)

is the most abundant, while crystalline-like Si(2)- Si(2)-Si(2) chains could not be found. When

counting the triads of tetrahedra within the network, we realized that the restriction to only one

kind of inter-tetrahedral connection (the edge-sharing one) is by far not realistic, since both ES

and CS occur in a non-negligible number of configurations. The set of results presented above is

an outstanding example of the added value of the FPMD approach applied to chalcogenide glasses

when one correctly considers them (as it should) as three dimensional structures, as opposed to

methodologies (cluster calculations [24]) not accounting for the actual spatial extension of the

network.

Glassy GeSe4

Glassy GeSe4 is representative of the structure of GexSe1-x disordered networks in the Se-

predominant range of compositions. For this composition, well beyond the stoichiometric one

(x = 0.33) on the Se side, the goal is to pinpoint the modes of connectivity among the GeSe4

tetrahedron and the Se atoms that cannot be bound to it. To this purpose, our calculations are

focused on the relative percentage of Se-Se-Se, Ge-Se-Ge and Ge-Se-Se triads, referred to as BB,

AA and AB units hereafter (Fig. 4).
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Figure 4: (Color online) Ge and Se atoms subunits taken from a FPMD model of GeSe4, in which Ge atoms

are dark (grey) and Se atoms are light (orange). Se atoms located between two Se atoms are labeled BB, Se

atoms between two Ge atoms are labeled AA, Se atoms between one Ge and one Se atom are labeled AB.

One can describe two opposite situations. In the first, the number of AB connections is very small,

consisting with a phase separation between domains having as sub-compositions GeSe2 and Sen.

This situation produces an essentially equal number of AA and BB units and very few (at the limit

zero) AB units. In the second, Ge atoms are kept together via Se dimers (AB configurations). As

a result, AA and BB configurations are lacking since residual Se atoms are not available to be

part of chains longer than Se2 or to connect to nearest neighbors [25]. Therefore, in the case of

glassy GeSe4 one would like to understand whether or not a phase separation (Se units separated

from GeSe2 tetrahedra) can be really observed. As an additional goal to be attained from the

methodological point of view, we are interested in the role played by the exchange-correlation

functional in the context of our modelling choices for the density functional description of the

electronic structure.

As a first step, we were able to consider the importance of the quenching procedure and of

statistical fluctuations on the model created in the Perdew, Becke, Ernzerhof (PBE) [26] and in

the Perdew-Wang (PW) [4] frameworks. We could establish that the differences between the PBE

and the PW results is due to the different exchange-correlation recipes and cannot be ascribed to

statistical fluctuations or to the quenching procedure. This means that some details of the short

range structure in glassy GeSe4 are distinctly different in GGA-PW when compared to the GGA-

PBE scheme (for example, some minimal shifts in the positions of the peaks in gGeGe(r) as well as

higher peaks and lower minima in the PBE case). In addition, the PBE scheme promotes very long
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Sen chains (n = 12), by confirming the general description of a network structure featuring GeSe4

and Sen units intimately connected. Based on the above pieces of evidence, two conclusions can

be drawn on the atomic structure of glassy GeSe4. First, glassy GeSe4 is somewhat sensitive (and,

in particular, the Se environment) to the kind of the bonding description (exchange-correlation

functional) within density functional theory. Second, we could unambiguously affirm that there is

no evidence on the modelling side for a phase separation, this results being demonstrated by the

very high number of AB linkages.

Glassy GeS2

Our work on glassy GeS2 (see Ref. 27) was a benchmark FPMD calculation to be compared

with molecular dynamics results obtained in the past via the non-self-consistent density functional

Harris functional (HFMD) [28–32]. According to the HFMD description, glassy GeS2 contains a

few homopolar bonds and threefold bonded sulfur atoms. It was of interest to perform a detailed

comparison between the HFMD model and the FPMD model of bonding to obtain information on

the similarities and differences between the two approaches. Being HFMD simpler to implement

and yet much less expensive than FPMD, a favorable comparison between the two would have

granted to HFMD the legitimacy of applications to other glassy structures. We have generated

four uncorrelated FPMD trajectories for a model made of 480 atoms. For three trajectories the

quench rates are very high, q(1)FPMD = 5× 1014 K/s, while in the fourth case q(2)FPMD = 3×

1013 K/s, the quench rate is more than ten times smaller. The resulting structural properties are

very close, thereby proving that the dependence on the cooling rate cannot be taken as a crucial

factor affecting the structure of the network, at least for the ranges of values compatible with the

length of our trajectories. Despite a strong resemblance between the FPMD and HFMD sets of

pair correlation functions, differences are found in the short-range environment of the Ge atoms,

strongly tetrahedral within HFMD and highly defective in the FPMD case. By looking at the total

neutron structure factor, S(k), FPMD appears to improve the description of g-GeS2 at intermediate

range distances, as shown by the higher FSDP (figure 5).

One the purposes of this calculation was also to provide information on the bonding nature of

g-GeS2 in comparison to the case of g-GeSe2Ȯverall, we have come to the conclusion that partial

and total coordination numbers are not the adequate tools to gather any insight on specific bonding
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Figure 5: (Color online) a) Left: total neutron structure factor, S(k), for GeS2. HFMD results from Ref. 30

(blue dashed line), experimental measurement by Bytchkov etal. Ref. 33 (red line) and by Zeidler etal.

Ref. 34 (light green line), are compared to the FPMD results q(1) (black dashed line) and q(2) (orange

dashed line). b) Right: zoom on the FSDP region of S(k)

characters differing in the two systems. Therefore, an electronic structure scheme based on the

Wannier functions [35, 36] and centers has been exploited for a set of configurations pertaining

to g-GeS2 and g-GeSe2. This approach was found particularly useful since it demonstrated that

g-GeSe2 is less ionic than g-GeS2 in agreement with trends collected experimentally.

Pressure effects

A large research effort has been devoted to the study of structural changes in glassy network-

forming disordered systems as a result of pressure effects. These investigations have been carried

out in close interaction with the experimental group of P.S. Salmon in Bath, performing in situ

high pressure neutron diffraction experiments. In these experiments, the isotope substitution

method is employed to understand the correlations hidden in a single diffraction pattern.

In the case of glassy GeSe2[37] and for the range from ambient pressure to P ≃ 8.5 GPa the

neutron diffraction results are in very good agreement with the outcome of FPMD calculations.

The comparison is very favorable for difference functions (Fig. 6), the mean nearest-neighbor
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bond distance r̄, the coordination number n̄, and the Se-Ge-Se bond angle (Fig. 7).
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Figure 6: (Color online) The difference functions DFGe(k) (barn) = 0.236(4)[SGeSe(k) − 1] +

0.099(2)[SGeGe(k)− 1] (left panel) and DFSe(k) (barn) = 0.184(3)[SGeSe(k)− 1]+ 0.588(11)[SSeSe(k)− 1]

(right panel) as measured with the diffractometer D4 at ambient pressure (Ref. 21) and at pressures of

3.0(5), 4.7(5), 6.3(5), 7.1(5), and 8.2(5) GPa (vertical error bars on data points). Comparison is carried out

with FPMD results at ambient pressure and at 3.4, 4.88, 7.25, 8.73, and 9.87 GPa, light (green) curves.

The dark (black) curves are the back Fourier transforms of the r-space difference functions obtained via

measurements.

The changes in the structure arising from an increase of the density in GeSe2 are very much

different from those occurring in oxide glasses such as GeO2, B2O3 and SiO2. The case of

GeSe2 features a large number of edge-sharing connections, while in oxide glasses corner-sharing

connections are predominant over the range of densities for which the coordination numbers are

the same as those of ambient-pressure conditions [38–44].

However, when the pressure increases, there is a noticeable divergence between experiments

(diffraction results) and FPMD data, since the diffraction results exhibit a moderate increase in r̄

and n̄. Upon increasing the density, the FPMD model is characterized by the existence of fivefold

and sixfold coordinated Ge atoms. These are responsible for the formation of several ES-made

motifs, together with Se atoms threefold, fourfold, and fivefold coordinated. Interestingly, many

of these highly coordinated Se and Ge atoms are found to form homopolar bonds. Therefore,

one can conclude that homopolar bonds play a major role in driving the structural transformation

at high densities. The opposite occurs in oxides for which at all pressures one observes the

13



Figure 7: (Color online) The ρ/ρ0 dependence of the mean intra-polyhedral Se-Ge-Se (red •) and inter-

polyhedral Ge-Se-Ge (blue �) bond angles as estimated from the measured Ge-Se, Ge-Ge and Se-Se dis-

tances. The experimental results are compared to the mean values 〈θSeGeSe〉 (broken red curve with ◦

symbols) and 〈θGeSeGe〉 (broken blue curve with � symbols) obtained from FPMD.

persistence of chemical order [38–43]. A comment is in order concerning the different behavior of

the neutron diffraction data and the first-principles model. This can be ascribed to the presence of

a barrier to be surmounted allowing for substantial structural changes. Due to this energy barrier,

such changes cannot be observed in compression experiments carried out at room temperature.

However, the opposite can occur when higher temperatures are attained in simulations. More

specifically, having identified one valley in the energy surface for pressures up to ∼ 8.5 GPa

(ρ/ρ0 ≃ 1.42), it is realistic to postulate the existence of two possible branches for larger pressures

leading to two valleys kept apart by an energy barrier readily overcome at temperatures of

the order of 900 K. Overall, we have observed an enhanced stability of ES tetrahedral upon

densification, in line with the fragility of liquids prone to form glasses [45]. In addition our

study has highlighted the impact of homopolar bonds in promoting the structural change toward

higher-coordinated polyhedral.

The structure of glassy GeSe4 at pressures up to ∼ 14.4 GPa was also considered by em-

ploying both neutron diffraction and FPMD [46]. First, it appears that the neutron data agree well

with x-ray diffraction results [47] by showing that there are no important modifications in the

mean coordination number n̄ for pressures smaller than 8.6 GPa. FPMD is consistent with the idea
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that the chemical and topological order are essentially unaltered in glassy GeSe4 over the range

of pressures up to ∼ 8 GPa. On the one hand, edge-sharing Ge(Se1
2)4 tetrahedral motifs have a

high degree of rigidity. On the other hand, Sen chains act within the network to ensure enhanced

flexibility. For these reasons, the main structural motifs are preserved throughout densification.

Figure 8: (Color online) Equation of state pressure/volume for glassy GeSe4 obtained via FPMD calculation

(red up and down triangle). Experimental data under compression are provided as measured by Skinner et

al. [47], and Kalkan et al. [48], green circles with error bars and filled black squares, respectively. We also

present the third-order Birch-Murnaghan fit of experimental data from Ref. 47(blue dashes).

The mean coordination number n̄ ≃ 2.4 reflect the nature of the network rearrangement and

confirms the role played by the Sen chains. For pressures around 13 GPa, a decrease by ≃ 15 %

in the number of Ge(Se1
2 )4 tetrahedral is recorded. Indeed, 5-fold coordinated Ge atoms appear

together with homopolar Ge-Ge bonds. Also, 3-fold coordinated Se atoms are more numerous.

The effect of pressure can also be analyzed on the basis of electronic properties. For instance,

mid-gap states are visible beginning at a pressure 6.73 GPa. These states are due to Se atoms one

fold coordinated at the end of Sen chains, since the pressure is able to break Se-Se homopolar

bonds being part of Sen chains.

Ternary systems

More recently (see Ref. 49), we have devoted interest to chalcogenide ternary systems that are

relevant for applications in the area of phase change materials [50]. Some chalcogenide alloys
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undergo a very rapid and reversible transformation between the crystalline and the amorphous

phases when undergoing a thermal treatment. The materials that can be described as bearing such

property fall in the category of phase change materials (PCMs), largely used in electronic memory

devices and disks memories. It is possible to differentiate the two memory states of PCMs since

the crystalline phase and the disordered phase of the chalcogenide have quite distinct optical and

electrical resistivity. We have selected Ga4Sb6Te3 since it features enhanced high electrical con-

trast, speed of crystallization, and crystallization temperature, this factor being of great importance

for applications at high temperatures. In particular, we have focused on the structural properties

with the intent of providing information on the basic units discernible within the network. Our

models for the amorphous phase were created via the procedure of quenching from the liquid state

at fixed density. The sizes of the systems were taken to correspond to 117 and 299 atoms. When

looking at the different bond identities, we detected a very small number of Sb-Te bonds. Overall,

amorphous Ga4Sb6Te3 is a blend of GaTe and GaSb networks, mostly containing tetrahedra and

coexisting with a sizeable fraction of Sb atoms. If it remains true that a large majority of Ga atoms

are in tetrahedral short-range linkages, we also found Ga-Ga dimers. These are reminiscent of

crystalline GaTe. The case of antimony is quite different. We have two distinct environments, i.e.

for threefold coordinated atoms the pyramidal motif prevails, while for fourfold coordinated atoms

the tetrahedral one is dominant. One observes an important concentration of Sb when compared

to GaSb-GaTe. This results in an incomplete and yet quite substantial segregation of antimony,

leading to clusters having a topological organization reminiscent of the one of crystalline Sb (see

figure 9).

These structural details are very close to those found in amorphous In3SbTe2 [51] which exhibits

very few Sb-Te bonds and local structures bearing resemblance to those present in InTe and InSb.

The structure of glassy GeTe4 and the role of dispersion forces

Interest in amorphous GeTe4 (a-GeTe4) is motivated by its intrinsic thermal and optical proper-

ties [52, 53] and potential applications in memory cells. [54, 55] When referring to phase-change

alloys, one realizes that GeTe4 is quite recurrent in ternary systems including Ge and Te in their

compositions. However, the structure of GexTe1−x at concentrations x ∼ 0.2 remains elusive.

There are also other reasons that motivate first-principles modelling on this glass. Previous re-
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Figure 9: (Color online) Illustration of the clustering of Sb atoms in amorphous Ga4Sb6Te3. The model is

299 atoms large, the atoms of the cluster are show in dark (black), the shape of the cluster is highlighted in

light translucent color (blue) of the Voronoï polyhedra built around the Sb atoms. A 2×2 supercell is shown

with no application of periodic boundary so as to highlight both shape and connectivity of the cluster.

sults suggested that substantial improvements in the structure factor and in the pair correlation

functions of liquid Ge15Te85 can be achieved when the van der Waals (vdW) dispersion forces are

accounted for. [56] It should be underlined that, in what follows and in the context of the study of

glassy GeTe4 [57], the dispersion forces had been first been considered by employing the Grimme

[58] recipe. This is not the only methodology available for including the vdW contributions. In

the second part of this section, (devoted to the test case of liquid GeSe2 and to the most recent

calculations on glassy GeTe4), we shall come back to the predictive power of the Grimme recipe

when compared to other schemes better rooted within the electronic structure of a given system.

As mentioned before in this review and in particularly for GeSe2, the XC functional did play a

major role in determining the basic structural features. This was made explicit by the descrip-

tion of the short-range Ge environment resulting from the adoption of the Becke, Lee, Yang, and

Parr (BLYP) recipe [59–61]. This scheme is capable of attenuating the delocalized behavior of
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the electron density that favors the metallic character by preventing from a correct description of

iono-covalent bonding effects.

In view of these considerations we studied the structural properties of glassy GeTe4 by employ-

ing two different exchange correlation functionals and accounting or not for the vdW dispersion

forces. [57] Accordingly, we have modelled glassy GeTe4 with the XC functional PBE (PBE

hereafter), [26] as XC functional and the presence or the absence of vdW forces, the same combi-

nations being used for the BLYP XC functional. For each model, we have targeted the total pair

correlation function g(r) and the total structure factor S(k) given in figure 10, as well as additional

structural properties (bond angle distributions, partial correlation function, local order parameters

and coordination numbers).

Figure 10: (Color online) Total structure factor S(k) (left panel) and pair correlation function (right panel)

for GeTe4. FPMD models calculated using the BLYP functional (orange dashes) and the PBE (light green

dashes) functional, as well as the BLYP + vdW (blue line) and PBE + vdW (red line) from Ref. 57, are

shown in comparison with experimental data from Ref. 62.
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Focusing on the issue of the vdW contribution, it appears that its inclusion improves the total pair

correlation function and structure factor in the PBE and (to a smaller extent) BLYP cases (see

figure 10). The best agreement with the experimental data is found when applying BLYP used

in combination with the vdW forces. The corresponding network topology features the predomi-

nance of the tetrahedral motifs coexisting with some coordination defects. PBE appears to favor

instead a coexistence of octahedral and tetrahedral units. Therefore, it is important to account for

dispersion forces to properly describe Ge-Te chemical bonding in disordered systems. In partic-

ular, we found that the use of BLYP as exchange-correlation recipe is instrumental to achieve an

optimal reproduction of available experimental properties. The resulting atomic structure is made

of a large majority of tetrahedra coexisting with a small number of defects, thereby differing from

previous predictions based on comparable percentages of tetrahedral and octahedral coordination

structures

Quite recently we have performed a comparative test of the performances of the vdW scheme

due to the Grimme [58] and an alternative methodology derived from the formalism of the maxi-

mally localized Wannier functions (MLWF) [63]. The selected system is liquid GeSe2 (l-GeSe2)

for which FPMD data have already been obtained without accounting for dispersion forces. [15]

We found useful to mention the most important results of this analysis within this review paper,

since the account of dispersion forces is becoming more and more ubiquitous in density functional

approaches. The scheme due to Grimme contains a coefficient related to the intensity of the at-

tractive forces (long range). By construction, this coefficient is not bound to evolve as a function

of the evolution in time of the electronic structure. This occurs instead in the scheme inspired

by the formalism of the maximally localized Wannier functions (MLWF) [63]. Having recalled

the basic difference between the two strategies to account for the dispersion forces, we found that

the topology of the l-GeSe2network was strongly insensitive to the presence or the absence of the

dispersion forces. [64] In particular, the MLWF scheme and the pristine FPMD approach were

found to lie very close in terms of structural data. A surprising effect was observed when using the

Grimme approach. Indeed, the partial pair correlation functions (see figure 11) and the Ge-Se-Ge

bond angle distribution did feature some additional contribution, in apparent disagreement with

the MLWF and no vdW FPMD [64].

When comparing the corresponding networks, the MLWF approach favors the corner-sharing con-

nections over the edge-sharing ones. Therefore, it looks like the different treatments of the vdW
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Figure 11: (Color online) Partial pair correlation functions for l-GeSe2 from Ref. 64. The results obtained

with the different FPMD approaches to treat (or not) van der Waals interactions, BLYP without vdW (green

line), BLYP + Grimme DFT-D2 (red line), BLYP + Wannier MLWF (blue line) are compared to their

experimental counterparts from Ref. 16 (dots). Bottom panel: global overview. Top panel: zoom-in on first

and second peak regions.

contribution are by far not behaving in a unique manner, the less empirical recipe (MLWF for in-

stance) being able to minimize the impact of the dispersion forces when they are expected to play

only a minor role. These conclusions have been substantiated by very recent work carried out on

glassy GeTe4 [65].

In that paper, it appeared that updating the vdW contribution (as in the Wannier approach) as a

result of modifications in the electronic structure occurring during the temporal trajectory led to

results dissimilar from those issued by the Grimme-D2 framework. Interestingly, the Wannier

strategy is characterized by the production of structural features agreeing well with those calcu-

lated when there is no account of dispersion forces. Therefore, it turns out that the Wannier and

the Grimme recipes for the dispersion forces are somewhat quite different in terms of a small and

yet not negligible set of structural properties (figure 12). It remains to be understood whether the
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Figure 12: (Color online) Behavior of the pair correlation function Te-Te of glassy GeTe4. Three results are

reported: without considering the dispersion forces (purple line), by using the Grimme-D2 scheme (green

line) and by using the MLWF scheme for the dispersion forces (orange line).

better agreement with experiments featured by the Grimme-D2 scheme has some real foundations

or it is somewhat fortuitous. Also, it is desirable that all recipes for the dispersion forces could

play a negligible role when their impact is expected to be smaller in comparison to other bonding

contributions. This is not exactly what happens in the cases treated via Grimme-D2, as exemplified

in our recent calculations.

FPMD vs. Classical potential for disordered network forming materials: the case of liquid GeSe2

There is a longstanding quest for atomic-scale methods built on the electronic structure and

yet prone to be formulated in affordable analytical forms. Along these lines, we selected l-GeSe2

as a test case for the construction of a suitable interatomic potential [66]. With the purpose of
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constructing interatomic potentials working realistically, it is appropriate to take advantage of the

notion of ionicity by attributing a charge to each atom. The resulting interatomic potentials con-

tain a two-body part, combined with a description of many-body ionic polarization in addition to

the predominant Coulombic interaction. It is of interest to ascertain whether models constructed

along these criteria can be useful to gather information on the structure of l-GeSe2İt should be

reminded that models employing formal charges and known as rigid-ion models are quite satis-

factory in accounting for the static structures of SiO2 and BeF2 but are much less performing for

ZnCl2, GeSe2 or BeCl2. This is due to the different values (acute or obtuse) taken by the angles

formed by triads of atoms within the system. To improve the performances of these models, the

effective potential can be enriched by including a many-body polarization term, as done in the

context of the polarizable-ion model, PIM. [67] A PIM for l-GeSe2 was devised by Sharma and

Wilson. [68] This model overestimates (Tm = 2900 K) the system melting point (experimental

value of Tm = 1025 K) and does not allow for the occurrence of homopolar bonds. Despite its

intrinsic limitations, the potential is quite effective when it comes to describing intermediate range

order, being well adapted to be the ionic model counterpart of the FPMD modelling of liquid

GeSe2. Given these considerations, we carried out a comparison between the FPMD and the PIM

models for l-GeSe2, by obtaining two distinct structures for l-GeSe2 [66]. In what follows, we

report some conclusions of that work, intended to highlight the intrinsic limitations of the PIM

effective potential scheme when compared to FPMD. The network obtained by using FPMD is

a predominant collection of tetrahedra coexisting with a non-negligible quantity of homopolar

bonds and miscoordinations. The low temperature PIM model instead is highly chemically or-

dered, homopolar bonds being absent and Ge atoms coordinated other than in a fourfold manner

being only a few. When the temperature is increased, PIM and FPMD structures become similar.

However, the absence of homopolar bonds persists in the PIM scheme. Therefore, it remains true

that the PIM potential cannot be taken as a fully reliable model of l-GeSe2, thereby confirming

the need of quantitative, first-principles tools to describe chalcogenide disordered materials. This

statement can be further substantiated by observing that within the PIM approach the experimental

diffusion coefficient recorded at T = 1050 K can be recovered at the quite unrealistic temperature

of T = 7000 K.
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Thermal conductivity of glassy GeTe4

By targeting the thermal conductivity, FPMD can help to elucidate the microscopic origin of

heat transport processes. To this purpose, and for the first time in the case of FPMD studies, molec-

ular dynamics has been combined to a new methodology, termed AEMD (approach-to-equilibrium

molecular dynamics, [69]) in order to obtain the thermal conductivity of glassy GeTe4. AEMD is

based on the establishment and analysis of thermal transients, without requiring a stationary state

to be reached. In fact, all information allowing for the description of the thermal event is available

within the time of decay of the transitory regime. This allows for a gain of one order of magnitude

in computational time with respect to other molecular dynamics approaches. We recall that the

AEMD method consists in imposing a temperature difference between two blocks in which the

system is divided (phase 1). This is followed by a release of such local thermal constraint so as to

induce a transient regime (phase 2), allowing for the temperature of the hot block to decrease and

the temperature of the cold block to increase. Figure 13 shows that this entire process is within the

reach of the time scale accessible to FPMD, at least for the case of GeTe4.

The difference of temperature between the hot block and the cold block follows an exponential

decay during phase 2, reminiscent of the heat conduction problem for a ring [70]. This similarity

provides a route to relate the decay time to the thermal conductivity of the material. We obtain a

thermal conductivity equal to 0.02±0.01 W m−1 K−1 at 130 K for a system containing 185 atoms.

The experimental value resulting from using a parallel temperature conductance technique is 0.14

W m−1 K−1 [71]. This technique leads to an overestimate by 20-25 % of the thermal conductivity

when compared to a measurement “laser flash” [71]. This last experimental framework is closer

to our simulation methodology. As a consequence, we find more appropriate to refer to an exper-

imental value for the thermal conductivity of ≈ 0.1 W m−1 K−1. The above underestimation of

the thermal conductivity obtained by AEMD is due to size effects that have a physical origin. The

sensitivity of AEMD to the system size is intimately related to the existence of extended free paths

of the heat carriers [72]. The latest are expected to be very limited in the present case due to the

disordered nature of the system. However, in order to test this hypothesis, we have performed a

second set of calculations with 370 atoms (dimension doubled in the direction of heat transfer).

The thermal conductivity is increased by more than a factor 2 to ≈0.05 W m−1 K−1, by approach-

ing the experimental data. Therefore, the observed size dependence highlights the existence of
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Figure 13: (Color online) Time evolution of the temperature of the blocks during the two AEMD phases.

propagative modes of heat transport on distances well above the range of structural order in the

material.

A DETAILED EXAMPLE OF A STUDY WITHIN FPMD: THE CASES OF GE2SE3 AND GESE9

Introduction

The following sections of this chapter will present and compare results obtained for glassy

Ge2Se3 and glassy GeSe9Ṫhese two glasses are positioned close to the opposite sides of the com-

position range of the GexSe1-x family. The Ge2Se3 system, with x = 0.4, is the one with the

highest concentration of Ge atoms having the ability to form a glass after quenching. Conversely,

the GeSe9 system, with x = 0.1, is very close to the concentration threshold required to detect the

intermediate range order in the amorphous phase and the first sharp diffraction peak in the struc-

ture factor. The comparison of these two systems is an instructive way to capture more extensively
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the chemical and the physical properties of GexSe1-x glasses.

Theoretical Models

Ge2Se3

To perform the simulations we selected a system with N = 120 (48 Ge and 72 Se) atoms

in a periodic cubic cell of size 15.21 Å, at the experimental density of the glass at 300 K,

ρexp = 4.3271 g/cm3 [73]. For the description of the electronic structure within DFT we selected

as generalized gradient approximation (GGA) the form due to Becke (B) for the exchange energy

and Lee, Yang and Parr (LYP) for the correlation energy [6, 7]. Car and Parrinello FPMD has been

employed throughout [74]. Valence electrons were treated in conjunction with norm conserving

Trouiller-Martins pseudopotentials [75]. The expansion of the wave functions was carried out at

the Γ point of the supercell with an energy cutoff Ec = 20 Ry for the plane waves basis set. The

fictitious electron mass is 2000 a.u. (i.e. in units of mea2
0 where me is the electron mass and a0

is the Bohr radius) and the time step for the integration of the Newton dynamics is ∆t = 0.24 fs.

Temperature control follows the Nosé-Hoover thermostats scheme[76–78].

Ten initial configurations separated by 10 ps were taken from our previous work on liquid

Ge2Se3[79]. For each one of them, the protocol to quench the Ge2Se3 liquid goes as follows:

(a) the density of the liquid configuration at T = 1000 K was modified to take the value of the

glass [73], (b) the Ge2Se3 system was equilibrated at T = 1000 K for 10 ps, and (c) the tempera-

ture of the thermostat was set to T = 900 K, T = 600 K and T = 300 K, with annealing over 20 ps,

30 ps and 50 ps, respectively. Statistical averages were calculated over each sub-trajectory along

a total time interval of 52 ps at T = 300 K. Results were obtained by taking the mean over the sets

of data collected on the ten sub-trajectories.

GeSe9

Calculations were performed on N = 260 (26 Ge and 234 Se) atoms in a periodic cubic cell of

size 19.9 Å at the density of the glass as given by the experiments at 300 K, ρexp = 4.29 g/cm3

[80]. The system size ensures the access to a minimum magnitude of the scattering vector kmin =

0.3157 Å−1, much smaller than the location of the FSDP at kFSDP ≃1 Å−1 for GexSe1-x glasses

[73]. The electronic structure calculation method follows the same guidelines as in the case of
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glassy Ge2Se3reported above. In Ref. 80 several models with different thermal histories were

prepared. For sake of simplicity, the next sections will feature results related to a single one of

these models (model IV in Ref. 80). This was produced according to the following protocol to

quench the GeSe9 liquid: (a) the volume of the initial liquid configuration at T = 1000 K was

modify to match the density of the glass, (b) theGeSe9 system was equilibrated at T = 1000 K for

10 ps, and (c) the thermostat was set to T = 900 K, T = 600 K and T = 300 K, with annealing

over periods of time of 12.5 ps, 25 ps and 30 ps, respectively. Finally, statistical averages were

extracted from each sub-trajectory along an interval of time of 30 ps at T = 300 K.

Total neutron structure factor and total pair correlation function

The total neutron structure factors Sth
T (k) for glassy Ge2Se3 and glassy GeSe9 are presented in

figure 14. In the left panel, the calculated neutron structure factor for g-Ge2Se3 is shown together

with the corresponding experimental data, S
exp
T (k) from Ref. 81. The FPMD data are in very good

agreement with the measurements, both position and intensity of the peaks being well reproduced

over the full range of wavevectors.

In figure 14, right panel, the calculated FPMD total neutron structure factor Sth
T (k) for glassy GeSe9

is shown along with two experimental counterparts: (a) the old measurement S
exp[a]
T (k) by Ramesh

Rao etal from Ref. 82, and (b) the more recent measurements S
exp[b]
T (k) from Ref. 80. Both

measurements exhibit a shoulder at k ≃ 1.3 Å−1, around the FSDP range of values, as expected

for Ge-Se disordered materials. However, there is a difference between the two data sets in the

low wave vector region. In Ref. 80 it was proposed that this large discrepancy stems from issues

related to the background scattering in the neutron diffraction analysis. As illustrated in figure

14, the calculated Sth
T (k) for GeSe9, is in very good agreement with S

exp[b]
T (k) measured in recent

neutron diffraction experiments.

In diffraction experiments ST(k) is usually Fourier transformed to obtain real space information

in terms of the total pair correlation function gT(r). Figure 15 shows the experimental total pair

distribution function, g
exp
T (r), obtained from reciprocal space data via Fourier transformation. The

upper limits of integration are set to kmax = 19.95 Å−1 and kmax = 30.0 Å−1 for, respectively,

g-Ge2Se3 and g-GeSe9. Due to the finite measurement window functions of the diffractometers

used during these experiments, to which kmax corresponds, spurious oscillations are observed at
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Figure 14: (Color online) Left: total neutron structure factor for glassy Ge2Se3 at T =300 K. Experimental

data from Ref. 81, S
exp
T (k) (red circles)are compared to the FPMD calculation result, Sth

T (k) (solid blue

curve). Only a limited number of error bars is given in the reciprocal space.

Right: Total neutron structure factor for glassy GeSe9 at T = 300 K. We present a comparison among the

old experimental data from Ref. 82, S
exp[a]
T (k) (black squares), more recent measurements from Ref. 80,

S
exp[b]
T (k) (blue diamonds) and the FPMD calculation result, Sth

T (k) (solid red curve).

r < 2 Å. In addition, Figure 15 shows gth
T (r) calculated by using the atomic coordinates of the

model and g
th(b)
T (r) calculated by following the experimental procedure (this meaning by Fourier

transforming the calculated total structure factor Sth
T (k) with kmax = 19.95 Å−1 for Ge2Se3 and

kmax = 30.0 Å−1 for GeSe9). In figure 15 the right panel contains the results for g-Ge2Se3, while

the left panel provides the results for g-GeSe9.

For both systems the first main peak of g
th(b)
T (r) is closer to g

exp
T (r) than gth

T (r). The total pair

correlation function gth
T (r) is not altered by the oscillations in the interval 2.5 Å <r < 3.5 Å.

For g-Ge2Se3, (figure 15 right panel), gth
T (r) is very close to experiments when considering the

intensity of the peak at ∼ 4 Å. The small bump at 5.5 Å is very well reproduced by both gth
T (r)

and g
th(b)
T (r). For g-GeSe9, figure 15 left panel, gth

T (r) features few differences with respect to

the experimental data in between 4 and 6 Å, namely the intensity of the peak at ∼ 4 Å is slightly

smaller, and the position of the peak at ∼ 5.75 Å is slightly shifted toward shorter r.

Overall, for both systems, the FPMD data agree well with experiments, confirming the very good

capability of our modeling approach to describe quantitatively disordered GexSe1-x materials.
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Figure 15: (Color online) Left: total pair correlation function for glassy Ge2Se3 at T =300 K. The experi-

mental function g
exp
T (r) is compared to the results from the FPMD calculation g

th(b)
T (r) and gth

T (r). g
exp
T (r)

is calculated by Fourier transforming the reciprocal space data (Sexp
T (k), see figure 14) from Ref. 81 with a

cutoff value kmax = 19.95 Å−1. g
th(b)
T (r) (broken black curve) was calculated using the same procedure to

transform Sth
T (k) (see left panel in fig. 14). gth

T (r) (solid blue curve) is the result of a direct calculation from

the real-space coordinates. The inset corresponds to the region of the first peak, between 2 and 3 Å.

Right: total pair correlation function for glassy GeSe9 at T =300 K. The experimental function g
exp
T (r) is

compared to the results from the FPMD calculation g
th(b)
T (r) and gth

T (r). g
exp
T (r) is calculated by Fourier

transforming the reciprocal space data (Sexp[b]
T (k), see right panel in fig. 14)from Ref. 80 with a cutoff value

kmax = 30.0 Å−1. g
th(b)
T (r) (broken black curve) was calculated using the same procedure to transform Sth

T (k)

(see right panel in fig. 14). gth
T (r) (solid blue curve) is calculated directly from the real-space coordinates.

The inset correspond to the region of the first peak, between 2 and 3 Å.
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Real space properties

FPMD modeling offers the opportunity to gain information extracted directly from the atomic

coordinates. For instance, partial pair correlation functions gαβ(r), the different coordination units

and the bond angle distributions are frequently employed to describe with more precision the

disordered network. 3D representations of two snapshots for glassy Ge2Se3 and glassy GeSe9 are

shown in figure 16.

Partial pair correlation functions

Figure 17 shows the partial pair correlation functions gαβ(r) for g-Ge2Se3 (top) and g-GeSe9

(bottom) calculated from the FPMD trajectories. Concerning the similarities between the two

glasses, for both systems the main peak in gGeSe(r) is quite sharp confirming the predominant

presence of the Ge centered tetrahedron. In addition, gGeGe(r) is characterized by two peaks,

signatures of the presence of the basic building blocks of these networks: edge-sharing (ES) con-

nections (peak at ≃ 3.0 Å) and corner sharing (CS) connections (peak at ≃ 3.75 Å) within the

tetrahedron. Furthermore, the peaks in gSeSe(r) at ≃ 4 Å are typical signatures of the intra tetrahe-

dral Se-Se distances.

When considering g-Ge2Se3 (figure 17 top panel), the partial pair correlation function gSeSe(r)

does not feature any mark at distances typical of Se−Se homopolar bonds. On the other hand,

gGeGe(r) is characterized by a sharp and intense peak at ≃ 2.5 Å, indicative of Ge-Ge homopolar

bonds, a strong signature of the g-Ge2Se3 network.

Turning to g-GeSe9 (figure 17 bottom panel), it appears that gSeSe(r) is characterized by a sharp

and intense peak at ≃ 2.4 Å due to the presence of Se-Se homopolar bonds, while gGeGe(r) does

not show any peak at short Ge-Ge distances.

Interestingly, both systems are characterized by a significant number of homopolar bonds, Ge-Ge

for Ge2Se3 and, the opposite, Se-Se for GeSe9. This can be rationalized by considering that we

are dealing with representative systems with an excess of either Se or Ge atoms with respect to the

composition x = 0.33. In one case, Ge atoms are in excess when all tetrahedra have been formed,

in the other this same topological effect concerns Se atoms that arrange to bound to each other by

forming extended Se chains.
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Figure 16: (Color online) Visual representations of the 3D models for g-Ge2Se3 (left) and g-GeSe9 (right).

Top: standard representation using the atomic species as colormap, Ge atoms are in dark (grey) color, Se

atoms are in light (orange) color. Clones, i.e. atoms and bonds found using periodic boundary conditions

are highlighted using transparency.

Bottom: representation using the partial coordinations as colormap, i.e. each different environment is

highlighted with the colormap being the same for both glasses. For clarity clones are not shown.
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Figure 17: (Color online) Partial pair correlation functions gGeGe(r) (left panel), gGeSe(r) (middle panel)

and gSeSe(r) (right panel) for g-Ge2Se3 (top), and g-GeSe9 (bottom)

Structural units and network topology

The glassy structures of GeSe2 and GeSe9 can be analyzed in more detail by focusing on the

building blocks, i.e. the α-l structural units in which a given atom α (Ge or Se) is l-fold connected

to the nearest neighboring atoms. For a specific unit, n̄α(l), one calculates its mean number with

respect to the total number of atoms of type α. Following the results obtained for the total pair

correlation function, gT(r), we considered that bonds are formed when the distance between a

given pair of atoms does not exceed 2.9 Å that is the first minimum in gT(r). This choice is

consistent with the analysis carried out for other binary chalcogenide systems [12, 83, 84]. The

number percentage of l-fold coordinated atoms and the number occurrence of each specific unit

n̄α(l) in g-Ge2Se3 and g-GeSe9 are presented in figure 18. A visual illustration of this analysis

using the results as colormap superposed to a standard 3D representation of the g-Ge2Se3 and

g-GeSe9 models is made available in figure 16.

The first information to be extracted from figure 18 concerns the proportion of the two main

coordination units for each atomic species in the two glasses. In g-Ge2Se3 the fourfold Ge atoms
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(74.7 %), and the twofold Se atoms (84.7 %) dominate, while in g-GeSe9 both atomic species

Ge and Se are almost exclusively found in their standard coordination (> 99.9 %), fourfold and

twofold respectively. In g-Ge2Se3 the majority of the twofold Se atoms are linked to two Ge

atoms (84 %), the expected conformation for this species. The fourfold Ge atoms are divided

between standard Ge-(Se4) (35.7 %) and miscoordinated Ge-(GeSe3) (33.4 %) atoms. Indeed, the

large number of Ge atoms in g-Ge2Se3 leads to a departure from a perfect tetrahedral network,

almost half of the fourfold Ge atoms being at the center of Se3Ge pseudo-tetrahedra. In g-GeSe9

essentially all of the Ge atoms are found in their tetrahedral Ge-(Se4) conformation. While the Se

atoms are mostly twofold, the proportions of Se-(Se2) and Se-(GeSe) coordination units become

very significant. Also, the proportion of Se-(Ge2) units decreases dramatically.

Figure 18: (Color online) Percentage of l-fold coordinated atoms, also decomposed in term of each specific

unit n̄α(l), for both Ge (top panel) and Se (bottom panel) in g-Ge2Se3 (red) and g-GeSe9 (blue with dashes).
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Bond angles distribution

The tetrahedral nature of these networks is also highlighted by the bond angle distributions

θGeSeGe and θSeGeSe shown in figure 19 (left panel). The quantity θGeSeGe features the expected

peaks around 80◦ ± 3 and 100◦ ± 2, these being signatures of the basic building blocks of the

amorphous network in the GexSe1-x family, namely the ES and CS tetrahedra respectively (see

Fig. 19 right panel) [12]. In g-GeSe9 these two peaks are separated by a well with a vanishing

minimum, i.e. no Ge-Se-Ge angles are found in g-GeSe9 around ≃ 85◦. This is different from the

case of g-Ge2Se3 for which Ge-Se-Ge angles have values spanning the entire 70-140◦ range, as

visible in the left panel of figure 19. An explanation lies in the lack of Ge-Ge homopolar bonds in

g-GeSe9. Indeed Ge-Ge homopolar bonds, that are particularly important in g-Ge2Se3, are likely

to disrupt the geometry of standard tetrahedral Ge(Se4) geometry, in particular in the case of the

Ge(Se3Ge) coordination units.

Accordingly, one finds that θSeGeSe has a peak at 109◦, the expected value of the tetrahedral angle,

for both glasses.

Figure 19: (Color online) Left: Bond-angle distributions for g-Ge2Se3 (red curve) and g-GeSe9 (blue

dashes) θGeSeGe (top panel) and θSeGeSe (bottom panel).

Right: the corresponding coordination units in the GexSe1-x family of disordered materials.

Summary and conclusions

This review has provided an account of accomplishments obtained in the area of first principles

modeling of disordered chalcogenide systems. These materials proved to be particularly challeng-
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ing for atomic-scale approaches due to the non-trivial iono-covalent character of their bonding

and electronic properties. We began by showing how FPMD can be used to contribute to the un-

derstanding of a generic property, by conferring a quantitative character to calculations impacting

an entire class of systems, those featuring intermediate-range order. This led us to focus on the

atomic-scale origins (in direct space) of the first sharp diffraction peak exhibited by certain struc-

ture factors in reciprocal space. Then, we turned to the description of specific cases, each one

bearing an interest both in terms of methodology and of information collected on the atomic struc-

ture of chalcogenide systems. Glassy GeSe2 is a revealing example of stoichiometric network with

a moderate and yet sizeable departure from chemical order, taking the form of a (small) number of

Ge (Se) atoms not being fourfold (twofold) coordinated. The case of glassy SiSe2 was instrumental

to underline the impact of first principles periodic cell calculations (as opposed to cluster calcula-

tions) to achieve quantitative comparison with experimental data concerning the relative weight of

specific structural motifs. As a third case of network system at the stoichiometric concentration,

glassy GeS2 gave us the opportunity to improve upon previous results obtained by using non-self

consistent density functional methods. We also applied to glassy GeS2 a methodology (the Wan-

nier function localization scheme) capable of differentiating systems of equal concentration on the

basis of their degree of ionicity. Our interest in glassy GeSe4 was motivated by a longstanding

debate on its atomic structure, since the presence of Se chains could be compatible, in principle,

with a Sen/GeSe2 phase separation. By using FPMD we were able to demonstrate that such a

phase separation does not occur. In a further section, we have reviewed the behavior of glassy

GeSe2 and glassy GeSe4 under the action of an external pressure causing enhanced densification.

Due to the different topology of the Se sub-network in the absence of pressure, totally different

structures are found when pressure is applied. In the first (glassy GeSe2), one observes a transition

from the tetrahedral to the octahedral arrangement. In the second (glassy GeSe4), the Se chains are

able to adjust to the overall reduction of available volume, by preserving the tetrahedral structure.

We have pursued our review with an example of amorphous ternary system (Ga4Sb6Te3) to mark

our growing interest for phase change materials relevant in the area of memory devices and optical

disks.

In terms of methodology, we found worthwhile to present an example of study, devoted to

glassy GeTe4, based on a set of calculations differing by the inclusion (or the neglect) of disper-

sion forces, combined with different expressions for the exchange-correlation functional. This

specific section ends with a warning on the different performances of two alternative recipes for
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the dispersion forces, adapting in various degrees to changes of the electronic structure. Also on

the methodological side, we report on a comparative classical MD/FPMD study carried out by

taking advantage of an interatomic potential devised for liquid GeSe2. It appears that the classical

description performs reasonably well in terms of structural properties. However, it leads to totally

different diffusive properties, in line with the absence of homopolar bonds that cannot occur since

short nearest-neighbor interatomic distances between atoms of the same kind are not compatible

with their bearing charges of equal sign.

On the side of recent advances in terms of applications, we have reported very recent results

on the calculation of thermal conductivity, by exploiting a scheme well adapted to first-principles

molecular dynamics. We have shown, for the case of glassy GeTe4, under which conditions one

can obtain very realistic values for the thermal conductivity. Finally, the review ends with the

detailed account of the structural properties of two binary chalcogenide glassy materials, GeSe9

and Ge2Se3, located at opposite sides in the concentration range of the GexSe1-x family.

Throughout this review, we showed that first-principles molecular dynamics is a very useful

tool to describe disordered systems (chalcogenide glasses in particular) and gather information

on their structural arrangement. Spectacular increase in computational power and the reliability

of theoretical recipes have made possible the achievement of calculations in excellent agreement

with experiments. However, FPMD calculations do not have to be considered as an accessible and

handy route to be taken inevitably in the search of a plausible atomic-scale description. Experi-

ence collected in the case of chalcogenides has instructed us on the multiples pitfalls one might

encounter when using FPMD without considering properly crucial ingredients. As such we can

mention the adequate length of the equilibrium trajectories, the size of the periodic box in the

presence of intermediate range correlations and of extended phonon paths when describing ther-

mal transport, the kind of exchange-correlation functional, the role of dispersion forces and the

treatment of data when switching from direct to reciprocal space (Fourier transform vs. direct cal-

culation). Users have become more and more aware of these possible drawbacks, thereby granting

to FPMD the rank of technique popular among theoreticians willing to capture with a quantitative

approach the atomic-scale details and mechanisms underlying the properties of materials.
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