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Dear Editor, 

We are pleased to submit our article titled Model Skill And Sensitivity For Simulating Wave 

Processes On Coral Reefs Using A Shock-Capturing Green-Naghdi Solver to be considered for 

publication in the Journal of Coastal Research. This research paper presents a comprehensive 

review of model behaviour, skill and sensitivity for simulating nonlinear wave processes on 

coral reefs in high resolution. Our hope is that this paper opens the door for scientists, 

managers and engineers to use nonlinear phase-resolving models to examine the impacts of 

future environmental change to coral reef landforms.  

We have prepared all figures in greyscale to suit publication in print and online and have no 

conflicts of interest.  

Regards 

Eddie Beetham 

School of Environment,  

University of Auckland 
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ABSTRACT 13 

Wave flume data from published benchmark experiments were used to extensively evaluate 14 

numerical model skill and sensitivity for applying a shock-capturing Green-Naghdi (GN) 15 

model to simulate nonlinear wave transformation processes on complex coral reefs. 16 

Boussinesq-type models that utilise nonlinear shallow water equations (NSWEs) to represent 17 

wave breaking and dissipation hold significant potential for understanding coastal hazards 18 

associated with global environmental change and sea-level rise. These fully nonlinear phase-19 

resolving models typically require a threshold condition to switch from dispersive equations to 20 

shock-capturing NSWEs in areas of active wave breaking. However, limited information exits 21 

regarding how this splitting approach influences the behaviour of different surf-zone processes 22 

that contribute to wave runup and inundation on coral reefs. This paper presents a 23 

comprehensive analysis of model sensitivity to explore how input parameters that control wave 24 

breaking and dissipation influence the behaviour of sea-swell (SS) waves, infragravity (IG) 25 

waves, wave setup, runup and solitary waves on coral reefs. Results show that each wave 26 

process exhibits unique sensitivity to the free-surface slope threshold (B) that is used to 27 

represent areas of active wave breaking by locally switching from the weakly-dispersive GN 28 

equations to the shock-capturing NSWEs. However, accurate representation of all wave 29 

processes can be achieved if the wave-face steepens to at least 35 degrees (B ≥ 0.7) before 30 

breaking is initiated. Results from this research support and encourage the use of nonlinear 31 

phase-resolving wave models as tools for academic research, coastal management, coastal 32 

engineering and hazard forecasting on atoll and fringing reef environments.  33 

ADDITIONAL INDEX WORDS: wave transformation, Green-Naghdi, model 34 

sensitivity, phase-resolving model, infragravity waves, wave setup, runup.  35 

  36 
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INTRODUCTION 37 

Coral reefs are characterised by a steep sloping offshore fore-reef that quickly 38 

transitions into a shallow and near-horizontal reef flat. This abrupt transition results in energetic 39 

wave breaking at the reef edge, where approximately 86% of incident wave energy is dissipated 40 

(Ferrario et al., 2014). Wave energy is further dissipated through friction on the reef flat, with 41 

up to 97% reduction of incident wave energy by the shoreline (Ferrario et al., 2014). The rate 42 

of dissipation through breaking and friction are both influenced by reef depth, leading to 43 

consistent measurements of tidally modulated wave heights at the shoreline (Kench and 44 

Brander, 2006). The dependence of shoreline wave height on reef depth means that sea-level 45 

rise (SLR) is expected to increase wave energy impacting reef fringed landforms, resulting in 46 

widespread flooding and coastal erosion within the 21st century (Storlazzi et al., 2015). 47 

However, incident wave attenuation on coral reefs is associated with a transfer of energy to 48 

free-propagating infragravity waves (Péquignet, Becker, and Merrifield, 2014; Pomeroy et al., 49 

2012) and an increase in reef flat water level through wave setup (Becker, Merrifield, and Ford, 50 

2014; Vetter et al., 2010). The behaviour of these secondary wave motions on coral reefs is not 51 

comprehensively understood and this knowledge gap presents a significant limitation for 52 

process based management and engineering on reef coastlines facing SLR. The significance of 53 

these secondary wave motions is evident in the fact that all documented cases of wave 54 

overtopping on reef landforms identify infragravity waves as the primary process contribution 55 

to flooding (Cheriton, Storlazzi, and Rosenberger, 2016; Ford, Becker, and Merrifield, 2013; 56 

Roeber and Bricker, 2015; Shimozono et al., 2015).  57 

Accurate modeling of wave transformation processes, swash dynamics, runup and 58 

overtopping on coral reefs landforms is critical for understanding the physical vulnerability of 59 

reef coastlines facing SLR and environmental change (Reyns et al., 2013). However, for 60 

models to be an effective hazard management tool, they must accurately represent all the 61 
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nonlinear wave transformation processes that influence runup and inundation (Roeber and 62 

Bricker, 2015). Previous attempts to model the impact of SLR on reef landforms (e.g. Storlazzi 63 

et al., 2015, Storlazzi et al., 2004) rely on phase-averaging techniques that oversimplify energy 64 

transfer from incident waves to secondary surf-zone processes and do not simulate high 65 

frequency water level motions associated with SS waves, runup or overtopping. Recently, 66 

Roeber and Bricker (2015) show that phase-averaging models typically used in coastal hazard 67 

assessments do not resolve nonlinear energy transfers in the surf-zone or wave generated 68 

flooding. A ‘free-surface’ or phase-resolving model is required to directly simulate all surf-69 

zone processes, runup and overtopping motions.  70 

Coral reef morphology creates an inherent challenge for applying phase-resolving wave 71 

models because there is a rapid transition from dispersion dominant processes on the fore-reef 72 

slope to flux dominant processes at the reef edge (Fang, Liu, and Zou, 2016; Roeber and 73 

Cheung, 2012b). The first challenge is to propagate waves through the shoaling zone in a way 74 

that captures the asymmetrical transformation in wave shape and height prior to breaking 75 

(Huntley, 2013). The second challenge is to resolve wave breaking processes in a way that 76 

represents wave shape, dissipation and the generation of secondary wave motions (Roeber and 77 

Cheung, 2012b). To overcome these challenges, recent advances have focused on developing 78 

fully nonlinear Boussinesq-type solvers that apply ‘shock-capturing’ techniques to locally 79 

represent wave breaking using nonlinear shallow water (NSW) equations (Bonneton et al., 80 

2011a; Bonneton et al., 2011b; Lannes and Marche, 2015; Popinet, 2015; Roeber and Cheung, 81 

2012b; Tissier et al., 2012a). A number of recent studies have shown that shock-capturing 82 

Boussinesq-type models can represent incident wave shoaling, breaking and attenuation on 83 

coral reefs, while also replicating the generation of infragravity waves and wave setup 84 

(Beetham et al., 2016; Fang, Liu, and Zou, 2016; Roeber and Cheung, 2012b; Shimozono et 85 

al., 2015; Su, Ma, and Hsu, 2015). These studies are all based on different solutions for the 86 
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Boussinesq and NSW equations and collectively highlight the capability of phase-resolving 87 

models to simulate nonlinear wave processes on complex coral reef environments. Each of 88 

these models also applies a threshold condition for wave instability that is used to locally and 89 

temporarily switch from dispersive equations to shock-capturing equations in areas of active 90 

wave breaking. Complex techniques for switching between source terms include: a momentum 91 

gradient threshold (Roeber and Cheung, 2012b); a Froude number threshold (Su, Ma, and Hsu, 92 

2015); and a wave height to water depth threshold (Shimozono et al., 2015). However, the 93 

simplest approach that represents how wave breaking is physical triggered is a threshold free-94 

surface slope (Beetham et al., 2016; Bonneton et al., 2011b; Fang, Liu, and Zou, 2016; Popinet, 95 

2015). Regardless of the method, the threshold value chosen to initiate wave breaking has a 96 

significant influence on breakpoint location and therefore directly influences the generation 97 

and behaviour of secondary wave processes. However, the exact sensitivity of different surf-98 

zone processes to wave breaking parameterisation remains unknown.  99 

The aim of this research is to quantify the sensitivity of different surf-zone processes 100 

that contribute to wave runup and overtopping on coral reefs to the parameters that influence 101 

wave breaking and dissipation in the open source Green-Naghdi model from Popinet (2015). 102 

The Green-Naghdi (GN) equations are a large amplitude solution of the Boussinesq equations 103 

which makes them particular suitable to coastal reef environments (Fang, Liu, and Zou, 2016). 104 

With the growing application of shock-capturing Boussinesq-type models on coral reef 105 

environments, it is important for users to understand how threshold values chosen to initiate 106 

wave breaking influence the full spectrum of wave transformation processes. This paper 107 

presents results form a comprehensive sensitivity analysis of how the free-surface slope 108 

threshold value (B) influences SS wave dissipation, IG wave behaviour, setup magnitude, 109 

runup elevation and solitary wave dynamics on morphologically complex coral reefs. The 110 

combined influence from friction is accounted for by testing the sensitivity of B when 111 
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combined with different friction coefficient (Cf) values. A series of published benchmark 112 

scenarios were used to undertake this analysis, including: include irregular wave 113 

transformation on a 2D reef (Demirbilek, Nwogu, and Ward, 2007); solitary wave interaction 114 

with a 2D reef (Roeber and Cheung, 2012b); and solitary wave interaction with a 3D reef 115 

(Lynett et al., 2011).  116 

METHODS 117 

This research uses the shock-capturing Green-Naghdi model developed by Popinet 118 

(2015) to simulate laboratory scale scenarios of wave interaction with coral reefs. The Green-119 

Naghdi solution is an attractive option for coral reefs because the weakly-dispersive equations 120 

can be applied to relatively large amplitude waves  1oa h  propagating across nontrivial 121 

variations in topography  1z oB h , where a is the characteristic wave amplitude, ho is water 122 

depth and Bz is the topographic gradient (Popinet, 2015). These characteristics provide a fully 123 

nonlinear solution of wave behaviour in shallow water, but are limited to weakly-dispersive 124 

scenarios relatively close to the shoreline  2 2 1o oh L , where Lo is the offshore wave length 125 

(Bonneton et al., 2011b, Lannes and Marche, 2015, Popinet, 2015). For a description of the 126 

governing equations and numerical scheme of the model used in this paper, the reader is 127 

referred to Popinet (2015) or the Basilisk website (Popinet, 2014), where the documented 128 

source code and a series of examples are freely available.  129 

Wave Breaking 130 

The weakly-dispersive finite-difference solver for wave propagation and shoaling is 131 

locally removed in areas of wave breaking, allowing wave shape and dissipation to be solved 132 

with a finite-volume solution of the NSW equations (Popinet, 2015). Similar approaches to 133 

represent wave breaking are becoming increasingly popular in a new generation of shock-134 



7 

 

capturing GN models (Bonneton et al., 2011a; Bonneton et al., 2011b; Lannes and Marche, 135 

2015; Popinet, 2015; Tissier et al., 2012a; Tissier et al., 2012b). In Popinet (2015), the weakly 136 

dispersive GN equations are used unless the local free-surface slope    exceeds a user 137 

defined threshold (B), which by default is 1 (45°). At each time-step, on all cells where   > 138 

B is true (as calculated by the GN equations), the dispersive function is locally deactivated and 139 

the finite volume NSW solution is applied to resolve wave shape and dissipation throughout 140 

the breaking process. Therefore, the dispersion equations may be re-applied shoreward of the 141 

breakpoint if reef flat water depth can accommodate broken wave heights to a point that the 142 

free-surface slope decreases below the B threshold. This is important for accurately propagating 143 

reformed wave energy across the reef flat, at which point friction becomes the main form of 144 

dissipation. For the simulations presented here, an implicit quadratic bottom friction term (1) 145 

was included as:  146 

 S u u,f fC    (1) 147 

where Cf is a non-dimensional coefficient that influences the rate of dissipation across the reef 148 

flat.  149 

Application to Coral Reefs 150 

Shock-capturing GN models have been used to simulate wave transformation, 151 

infragravity waves and setup on laboratory scale (Fang, Liu, and Zou, 2016) and field scale 152 

(Beetham et al., 2016) coral reefs. Simulations presented in Beetham et al. (2016) show that 153 

the GN model from Popinet (2015) can accurately represent field scale wave transformation 154 

processes. However, the Popinet (2015) model has yet to be evaluated against benchmark data 155 

for wave runup and overtopping on coral reefs. Therefore, the Popinet (2015) GN model was 156 

used in this research to provide a new and comprehensive evaluation of the model skill and 157 
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sensitivity for simulation nonlinear wave transformation processes, runup and overtopping 158 

processes on a range of coral reef environments. Such benchmarking is required for confidently 159 

using the model as a research and coastal hazard management tool.  160 

A visual description of how the shock-capturing GN model represents wave processes 161 

on coral reefs is presented in Figure 1, in the context of irregular wave transformation on an 162 

idealised reef morphology. This example highlights how the shock-capturing scheme is 163 

implemented near the reef edge to produce an asymmetrical wave bore profile on the outer reef 164 

flat, characterised by a vertical face and gradual tail. Figure 1 also highlights how incident 165 

wave attenuation is associated with setup of mean water level on the reef flat (Figure 1a) and a 166 

distinct transfer of energy into the IG wave band (Figure 1d-e). This example shows that 167 

maximum wave runup elevation is a function of remnant SS wave energy, IG wave oscillations 168 

and wave setup.  169 

Outline of Test Cases 170 

Benchmark test one (BM1) simulated wave transformation processes across a ‘typical’ 171 

Guam fringing reef (Figure 2a) from the University of Michigan (UM) wind wave flume 172 

experiment presented by Demirbilek, Nwogu, and Ward (2007). The UM experiment was 173 

initially undertaken to evaluate the Boussinesq model by Demirbilek and Nwogu (2007), and 174 

has subsequently become a standard benchmark for applying wave models to coral reef 175 

environments (e.g. Buckley, Lowe, and Hansen, 2014; Demirbilek and Nwogu, 2007; 176 

Demirbilek, Nwogu, and Ward, 2007; Filipot and Cheung, 2012; Nwogu and Demirbilek, 177 

2010; Sheremet et al., 2011; Shimozono et al., 2015; Su, Sheremet, and Smith, 2011; Zijlema, 178 

2012). Here, the Popinet (2015) GN model was evaluated against fifteen incident scenarios 179 

from the UM dataset. The model was used in 1D, with measured water level from wave gauge 180 

1 (WG1) imported as the wave boundary condition. Model outputs for SS wave height (Hss), 181 
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IG wave height (Hig), wave setup ( ) and maximum runup (Rmax) were compared with flume 182 

data to assess model accuracy and sensitivity. A comprehensive sensitivity analysis was 183 

undertaken to identify how systematic variations in B and Cf influence each output parameter 184 

(Hss, Hig,   and Rmax). Results presented below identify the B and Cf combinations that best 185 

represents the range of processes across the surf and swash zone, out of 14 Cf values and 8 B 186 

values (112 combinations) for the 15 test conditions (1,680 simulations). Pressure sensor data 187 

from the wave flume experiment were retrieved from 188 

http://cirp.usace.army.mil/pubs/techreports.php. 189 

Benchmark test two (BM2) simulated a solitary wave breaking on an emerged 1D reef 190 

crest using nine combinations of B and Cf. These nine combinations were chosen because they 191 

represent the most sensitive and most accurate values form BM1. Data obtained during the 192 

Hawaii reef (HI reef) experiment from the O.H. Hinsdale Wave Research Laboratory at Oregon 193 

State University presented in Roeber and Cheung (2012) were used to evaluate model results. 194 

The HI reef test simulated a 0.75 m solitary wave breaking on an emerged reef crest, with water 195 

plunging into and propagating across a shallow lagoon (Figure 2b). BM2 tested numerical 196 

representations of dispersion, nonlinearity, wave breaking, overtopping and wet/dry dynamics 197 

(Roeber and Cheung, 2012b). Bathymetry and water level data from the wave flume 198 

experiment were downloaded from http://hydraulic.lab.irides.tohoku.ac.jp/app-def/S-199 

102/2014/?page_id=56. 200 

Benchmark test three (BM3) was taken from the National Tsunami Hazard Mitigation 201 

Program benchmarking repository (NTHMP, 2012). BM3 simulated a solitary wave interacting 202 

with a complex 3D shelf that has a triangular extension and an emerged conical island (Figure 203 

2c), from the flume experiments by Lynett et al. (2011). BM3 used the GN model in 2D (depth 204 

averaged) and required solutions for dispersion, shoaling, refraction, diffraction, breaking, 205 

http://cirp.usace.army.mil/pubs/techreports.php
http://hydraulic.lab.irides.tohoku.ac.jp/app-def/S-102/2014/?page_id=56
http://hydraulic.lab.irides.tohoku.ac.jp/app-def/S-102/2014/?page_id=56
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overtopping and wet/dry dynamics. The 3D shelf experiment has become a popular Boussinesq 206 

model benchmark scenario (Fang et al., 2013; Shi et al., 2012; Roeber and Cheung, 2012a; 207 

Yamazaki et al., 2012) with bathymetry and wave gauge data available online 208 

(http://coastal.usc.edu/currents_workshop/problems.html). The same nine combinations of Cf 209 

and B from BM2 were tested again in BM3. 210 

Output Data Analysis 211 

For BM1, time-series data for free-surface water level from the UM wave flume and 212 

numerically modeled water level outputs at each WG location were analysed using the same 213 

techniques. Simulations ran for 900 s, with mean depth across the platform stabilising after 214 

approximately 100 s of wave activity. Data were extracted at 20 Hz (consistent with flume 215 

experiment) and trimmed to only include the final 700 s of wave activity when the wave field 216 

was developed across the reef. A spectral filter with a 0.25 Hz (4 s) cut-off was used to separate 217 

SS and IG wave components. The 0.25 Hz separation is approximately double the peak incident 218 

wave period used in the wave basin experiments. Significant wave heights for SS (Hss) and IG 219 

(Hig) components were then calculated using a zero down-crossing routine in Matlab. Wave 220 

setup ( ) was calculated as the mean free-surface displacement. Wave spectra were calculated 221 

from the raw pressure signal using the first 8192 samples from t = 200 s, with an overlapping 222 

hamming window and 16 degrees of freedom. Maximum runup (Rmax) was calculated from 223 

numerical model outputs using profile data for maximum water level across the reef flat. Rmax 224 

values reported in Demirbilek and Nwogu (2007) were used to evaluate numerical model 225 

outputs.  226 

Model skill was used to quantify how close numerical outputs were to wave flume 227 

measurements in all benchmark tests using equation (2), where Pi is the model value, Oi is the 228 

wave flume value and vertical bars indicate absolute values. 229 

https://mail.auckland.ac.nz/owa/redir.aspx?C=0Jtp_nMBukmjPTmk9SFzFxGJHt7WcdIIKCg0ubyWldjSpZ21PiASY-GHj9Ki58wjOD7iQ7Mieh4.&URL=http%3a%2f%2fcoastal.usc.edu%2fcurrents_workshop%2fproblems.html
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A skill value of one indicates a perfect match between predicted and observed data and a skill 231 

value of zero indicates that there is no agreement between the predicted and the observed (Lowe 232 

et al., 2009). Model skill was calculated individually for each wave statistic (Hss, Hig, setup, 233 

runup) in BM1. Mean skill averaged across these output parameters was then used to 234 

understand overall model accuracy and sensitivity for representing wave processes at the 235 

shoreline. For BM2 and BM3, model skill was calculated using time-series data for the free-236 

surface water elevation, from numerical and wave flume outputs at each wave gauge location. 237 

RESULTS 238 

This section describes the results from each of the benchmark tests and presents a 239 

comprehensive analysis of model behaviour on coral reefs. Collectively, these results identify 240 

values for B and Cf that are suitable for accurately simulating nonlinear wave transformation 241 

processes, runup and overtopping on coral reef environments. 242 

Benchmark Test 1: Wave Transformation and Runup 243 

Model outputs from BM1 show that the shock-capturing GN equations are capable of 244 

replicating flume measurements of SS wave height, IG wave height, setup and runup with 245 

maximum model skill between 0.90 and 0.99 (Table 1). This section outlines the sensitivity of 246 

each individual wave process to variations in B and Cf and identifies values that provide the 247 

most accurate representation of all wave processes at the shoreline, including runup elevation. 248 

Model Sensitivity to the Breaking Slope Threshold (B) 249 

The breaking slope threshold influences the water depth where wave breaking is 250 

triggered and determines whether waves break on the reef slope, reef edge or reef flat. The B 251 
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value therefore influences the rate and mode of incident wave dissipation which has 252 

implications for IG wave behaviour and the magnitude of wave setup on the reef flat. Maximum 253 

model skill for Hss at the shoreline was 0.90, achieved using B = 0.4 (Figure 3a; Table 1). 254 

However, skill = 0.89 was achieved using B values between 0.4 and 1.2, indicating that a range 255 

of values can be used to predict shoreline wave height (Figure 3a). Model outputs for Hss at the 256 

shoreline (WG9) were consistently higher using B = 0.4, with a slight decrease in skill and 257 

wave height observed when B increased from 0.4 to 0.7 (Figure 3a; Figure 4a-i). However, Hss 258 

values were highly variable using these lower B values, with 11% difference in outputs between 259 

B = 0.4 and B = 0.7. In comparison, consistent outputs for Hss were achieved using higher B 260 

values (0.7-1.2), characterised by 0.9% variation (Table 1). Overall, maximum skill was 261 

associated with B = 0.4 but high skill and minimum sensitivity were achieved for Hss using B 262 

≥ 0.7, especially when combined with Cf ≤ 0.008.  263 

Infragravity waves were highly sensitive to B, with a 16.7% difference between 264 

minimum and maximum values for Hig at the shoreline (Figure 3b; Table 1). Interestingly, this 265 

range decreased dramatically to only 1% variability between Hig outputs using B ≥ 0.7. IG 266 

wave height at the shoreline was highest using B = 0.4, with a linear decrease in Hig observed 267 

as B increased to 0.7 and consistent outputs between B = 0.7-1.2 (Figure 4a-i). However, 268 

maximum model skill (0.98) for shoreline Hig was achieved across a range of B values between 269 

0.4 and 0.8 (Figure 3b). Lower B slopes achieved maximum skill when combined with high 270 

friction, compared to higher B values generating maximum skill across a range of low and 271 

moderate friction values (Figure 3b). Overall, it was possible to achieve high model skill using 272 

all B values (depending on friction) but IG behaviour was highly variable using B ≤ 0.6, 273 

compared to consistent Hig predictions with minimal sensitivity associated with B  ≥ 0.7 (Figure 274 

3b).  275 
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Model outputs for setup magnitude at WG9 were highest using B = 0.4, with a 15.1% 276 

decrease in setup observed between B = 0.4 and B = 0.7. Higher B values (≥0.7) produced 277 

consistent setup magnitudes, with minimal variation between B = 0.7 and B = 1.2. Low B values 278 

over-predicted setup and were associated with a 7.5% decrease in model skill. The increase in 279 

setup using low B values explains why Hig and Hss were highest and often over-predicted using 280 

B ≤ 0.6. Maximum skill for wave setup (0.99) was achieved using B = 1 but skill above 0.98 281 

was achieved across a wide range of friction values when combined with B ≥ 0.7 (Figure 3b).  282 

Maximum runup elevation is influenced by the magnitude of Hss, Hig and setup at the 283 

shoreline. Therefore, model outputs for Rmax reflect the combined sensitivity of all surf-zone 284 

processes. Hss, Hig and setup were all largest using B = 0.4, which resulted in significantly over-285 

predicted wave runup outputs (Figure 4j-r) and low skill (Figure 3e), unless unrealistically high 286 

friction values were used. Maximum Rmax skill (0.94) was achieved using B = 0.7 (combined 287 

with Cf = 0.01), with peak skill for most friction coefficients associated with B = 0.7. Runup 288 

skill above 0.92 was achieved across a range of B values between 0.6 and 1.2, with higher 289 

friction required to produce accurate runup results when combined with low B values. Runup 290 

elevation was 20% lower (on average) and much closer to flume measurements when using B 291 

≥ 0.7. 292 

Model Sensitivity to Friction Coefficient 293 

Quadratic bottom friction has a direct influence on wave attenuation across the model 294 

domain and has a significant impact on SS and IG wave transmission across the reef flat. 295 

Maximum model skill for Hss (0.90) was associated with Cf = 0.004, with wave heights 296 

typically over-predicted using lower values and under-predicted using higher values (Figure 297 

4a-i). SS waves were reasonably sensitive to Cf, with an average 14.6% decrease in shoreline 298 

Hss observed as Cf increased from 0.001 to 0.01 (Table 1). Friction values above 0.01 resulted 299 
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significantly under-predicted wave heights (Figure 4) and a substantial decrease in skill (Figure 300 

3a). Maximum model skill for Hig was achieved with Cf = 0.006 (0.98), but skill > 0.95 was 301 

achieved across a range of Cf values between 0.002 and 0.008 (Figure 3b). IG waves were 302 

highly sensitive to Cf, with an average 23.2% decrease in shoreline Hig as Cf increased from 303 

0.001 to 0.01. IG wave transmission across the reef flat was highly influenced by Cf,  with low 304 

friction resulting in shoreward amplification and high friction resulting in shoreward 305 

dissipation. Friction had no influence on wave setup, with only 0.7% variability between 306 

outputs and skill > 0.98 achieved by all Cf values (Figure 3c). Wave runup was highly sensitive 307 

to Cf, with a 31% decrease in Rmax observed when Cf increased from 0.001 to 0.01 (Table 1). 308 

Rmax was typically over-predicted using Cf ≤ 0.06 and under-predicted using Cf ≥ 0.02, with 309 

close predictions of flume runup and high skill (>0.92) achieved using Cf = 0.005 – 0.01 (Figure 310 

4j-r). Runup results reflect how SS waves and IG waves respond to friction, with low friction 311 

associated with slightly larger SS waves and significantly larger IG wave heights at the 312 

shoreline. Runup sensitivity to Cf is primarily associated with how friction influences IG wave 313 

transmission across the reef flat.  314 

Maximum Shoreline Skill 315 

Model skill values calculated for each individual wave processes were most consistent when 316 

using higher B values (0.7 - 1.2) with moderate friction (Cf = 0.002 - 0.008). To quantify the 317 

accuracy and sensitivity of surf-zone processes, mean skill at WG9 was calculated by averaging 318 

skill values for Hss, Hig and setup. The best representation of all wave processes at WG9 (mean 319 

skill = 0.95) was achieved using B = 0.8 and Cf = 0.003, with skill > 0.94 associated with all B 320 

values between 0.6 and 1.2 combined with Cf between 0.001 and 0.006 (Figure 3d). Wave 321 

processes at WG9 were highly sensitive to low B values, with a 14% decrease in the sum 322 

amplitude of Hss, Hig and setup between B = 0.4 and B = 0.7. Higher B values produced 323 

consistent outputs with less than 1% variation between B = 0.7 and B = 1.2. Output sensitivity 324 
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to low B values was most pronounced for IG waves (17%) and setup (16%), with SS waves 325 

observing slightly less variation (12%). Overall, model skill at WG9 was higher and outputs 326 

were more consistent when using B values between 0.7 and 1. Increasing friction from 0.001 327 

to 0.01 had no impact on setup but did force a linear decrease in SS and IG wave height at 328 

WG9 (Figure 4). Friction had a major influence on IG wave behaviour on the reef flat, with a 329 

23% decrease in Hig recorded between Cf =0.001 and Cf = 0.01, compared to a 15% decrease 330 

in Hss (Table 1). Overall, the most accurate representation of all wave processes at WG9 (skill > 331 

0.94) was achieved using Cf values between 0.001 and 0.006, combined with B ≥ 0.7. 332 

Mean skill at WG9 was combined with runup skill to identify input values for Cf and B 333 

that provide the best representation of all shoreline processes that are of key interest to coastal 334 

management applications. Maximum shoreline skill was associated with B = 0.7 and Cf = 0.005, 335 

with consistent outputs and high skill (>0.93) achieved using B = 0.7-1, combined with Cf = 336 

0.004 - 0.007 (Figure 3f). Including Rmax in the assessment of shoreline skill shifted the location 337 

of maximum skill to a lower B value and a slightly higher friction value, compared to maximum 338 

skill at WG9. However, the location of maximum skill at Cf = 0.005 and B = 0.7 is within the 339 

maximum 5% skill contour for each individual wave process (Figure 3f).  340 

Spectral Wave Transformation 341 

Systematic analysis of model skill revealed that the most accurate representation of all 342 

wave processes at the shoreline was achieved using B = 0.7 and Cf = 0.005. However, 343 

calibrating the model to achieve the best representation of shoreline wave processes does not 344 

necessarily confirm that wave processes across the reef platform were accurately represented. 345 

Therefore, wave spectra calculated from numerical model outputs were compared with flume 346 

measurements at different wave gauge locations across the reef to further evaluate the accuracy 347 

of using B = 0.7 and Cf = 0.005 (Figure 5). Spectra results show a generally strong agreement 348 



16 

 

between the numerical model and the wave flume at the reef slope (WG5) and across the reef 349 

flat (WG7-9). These spectral density plots highlight that the GN model adequately represents 350 

the dissipation of SS wave energy across the reef and captures the transfer of energy into long-351 

period IG motions on the reef flat. Further, spectra calculated from GN model outputs show a 352 

close match with wave flume spectra across a wide range of incident wave conditions and reef 353 

depths that represent high tide, mean tide, low tide and dry reef scenarios (Figure 5).  354 

Benchmark Test 2: Solitary Wave Breaking on a 2D Reef 355 

The HI reef benchmark experiment was simulated using three Cf values (0.001, 0.005, 356 

0.01) combined with three B values (0.4, 0.7, 1), a total of nine model runs. These values 357 

encompass the range tested in BM1 and include the combination of B = 0.7 and Cf = 0.005 that 358 

achieved maximum skill at the shoreline. This test requires a solitary wave to pass over a dry 359 

reef crest (WG10) and is therefore a fundamental benchmark scenario for wave overtopping 360 

processes on coral reefs. Skill values reported in this section are based on comparison of free-361 

surface water level between the numerical model and wave flume. 362 

Model Skill and Sensitivity 363 

All combinations of B and Cf were capable of accurately representing wave shape and 364 

timing seaward of the reef crest (WG1-8), with mean skill across the first 8 gauges between 365 

0.96 and 0.99 (Figure 6). Variation in skill throughout the shoaling process was attributed to 366 

friction, with maximum skill associated with Cf = 0.005 and slightly less skill with higher or 367 

lower friction (Figure 6). The value used for B had less influence on offshore skill with B = 0.4 368 

and 0.7 producing near identical wave profiles and skill outputs (Figure 6). B = 1 was associated 369 

with slightly less skill between WG1 and WG8 (Figure 6).  The wave face became vertical at 370 

the upper reef slope (WG9) before breaking on the reef crest (WG10) between t = 12-15 s 371 

(Figure 7). Maximum model skill at WG9 was associated with Cf = 0.005, with skill = 0.99 372 
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achieved by all B values. Skill at WG9 was slightly lower using Cf = 0.01 and much lower 373 

using Cf = 0.001. For all input combinations, model skill decreased between WG9 and WG10 374 

and continued to decrease until WG12, before increasing again at WG13-14 (Figure 6). The 375 

highest skill between WG10 and WG12 was consistently achieved using Cf = 0.005, with skill > 376 

0.9 achieved across all wave gauges, regardless of B. Maximum skill in the lagoon was located 377 

at WG13 and WG14, with skill > 0.95 achieved using Cf = 0.001 and Cf = 0.005 (Figure 6). 378 

The B value associated with maximum skill at each wave gauge in the lagoon was variable, but 379 

mean skill between WG9 and WG14 was slightly higher using B = 0.7 (0.948) compared to B 380 

= 0.4 (0.945) or B = 1 (0.947). Overall, mean skill across all wave gauges was maximum using 381 

Cf = 0.005 and B = 0.7, which is consistent with outputs from BM1.  382 

Model outputs from BM2 show that the shock-capturing GN equations can replicate 383 

the highly nonlinear scenario of at 0.75 m solitary wave breaking on an emerged reef crest. 384 

Using B = 0.7 and Cf = 0.005, skill was calculated separately for the initial forward propagating 385 

wave (t = 0-20 s) and the reflected water level surges (t = 20-60 s). Forward wave propagation 386 

and shoaling between WG1 and WG8 was simulated with skill > 0.997, consistent with the 387 

numerical wave producing a close visual match to time-series outputs form the wave flume 388 

(Figure 7). Numerical representation of wave breaking between WG9 and WG10 was 389 

characterised by skill > 0.988, confirming the models ability to represent wave shape, 390 

amplitude and timing. A significant decrease in forward propagating skill (0.775) was observed 391 

at WG11, where the broken wave initially plunged into the lagoon creating a 0.37 m high spike 392 

in water level that lasted for 0.4 s in the wave flume. Numerical outputs at WG11 did create a 393 

similar surge event but the timing was slightly delayed, the amplitude was higher (0.45 m) and 394 

the spike remained at peak amplitude for longer (0.58 s) compared to flume measurements. 395 

Forward propagating model skill increased again between WG12 and WG14, indicating that 396 

surge timing, amplitude and shape was reasonably well represented before the wave reflected 397 
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off the right boundary at x = 87 m. The reflected bore propagated back across the lagoon 398 

between t = 20-30 s, with the reflected signal characterised by skill > 0.9 at all lagoon sensors 399 

(WG11 - WG14). Less skill (0.87) was observed at WG10 as the surge passed back over the 400 

reef crest, but the timing and amplitude of the modeled reflection remained consistent with 401 

flume measurements. Flume data show that a series of short period oscillations were created as 402 

the reflected wave propagated into deeper water on the upper reef slope. The reflected signal 403 

at WG9 was close to flume measurements (skill = 0.99) showing similar timing and amplitude 404 

for the short period waves and longer period surge. Skill decreased slightly as the reflected 405 

waves propagated towards WG2 (skill = 0.95) but the water level dynamics associated with the 406 

reflected wave propagating seaward were accurately captured in the numerical model (Fig. 7). 407 

Benchmark Test 3: Solitary Wave Breaking on a 3D Reef 408 

The 3D shelf with a conical island experiment from Lynett et al. (2011) is one of the 409 

only published benchmark tests that provide freely available data for evaluating 2D phase-410 

resolving wave models. Benchmark test 3 was simulated using the same nine combinations of 411 

B and Cf that were used in BM2. BM3 is a popular test for fully nonlinear Boussinesq models 412 

because it requires numerical solutions for wave dispersion, shoaling, breaking, diffraction, 413 

refraction, convergence and overtopping on a dry shoreline. Snapshots of the model free-414 

surface show how the solitary wave washes over and refracts around the conical cone before 415 

surging up the beach-face and overtopping the berm (Figure 8).  416 

Model Skill and Sensitivity 417 

Maximum skill for each combination of B and Cf was recorded near the input boundary 418 

(WG1 and WG4) where skill varied between 0.95 and 0.97. Model skill decreased along the y 419 

= 0 m transect (WGs 1, 2, 3, 7), with skill at WG2 (in front of the conical cone) between 0.85 420 

and 0.87 depending on input values (Figure 9). Numerical model outputs at WG2 show the 421 
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timing an shape of the initial wave passing the sensor were close to measurements form the 422 

wave flume and suggest that the decrease in model skill is associated with reflections passing 423 

over the sensor between t = 20-40 s (Figure 10b). Model outputs directly leeward of the conical 424 

cone (WG3) were sensitive to the timing and shape of the initial surges of water passing over 425 

and bending around the cone (Figure 10c). Maximum skill at WG3 was 0.88, associated with 426 

Cf = 0.001 and B = 0.4, with minimum skill (0.77) associated with Cf = 0.01 and B = 1. Leeward 427 

model performance increased further from the cone, with skill at WG7 between 0.86 (Cf = 428 

0.001; B = 1) and 0.90 (Cf = 0.005; B = 0.4). Sensors across the y = 5 m transect (WGs 4, 5, 6, 429 

8) recorded wave processes lateral to the cone and nearly always produced higher skill when 430 

compared against gauges on the y = 0 m transect, especially for forward propagating waves 431 

(Figure 9). Mean skill across all sensors was highest using Cf = 0.005 combined with B = 0.4 432 

(0.882) or B = 0.7 (0.880). High skill values using B = 0.7 and Cf = 0.005 are consistent with 433 

BM1 and BM2 and confirm the use of these values for laboratory scale simulations of wave 434 

dynamics on coral reefs. 435 

Velocity 436 

Velocity data were recorded at WG2 and WG3, capturing flow dynamics on seaward 437 

and leeward sides of the conical island (Figure 11). In front of the island, WG2 recorded the 438 

velocity signal of the steepening solitary wave, with Ux recording a close match to flume 439 

measurements using B = 0.7 and Cf = 0.005 (Figure 11a). Numerical outputs at WG2 also 440 

recorded a similar Ux signal as reflected water level motions initially surged back over the 441 

sensor at t = 7-18 s. Leeward of the island, flume measurements recorded a sharp increase in 442 

Ux as the wave surged over the island at t = 7.5 s (Figure 11b). Model results for Ux at WG3 443 

produced the same plunge, followed by a similar trough, between t = 8.5 and 22 s. Modeled Uy 444 

data at WG2 and WG3 produced low velocities and did not identify the minor oscillations 445 

observed in the flume until t > 22 s (Figure 11d,e). Data from WG10 measured velocity at the 446 
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upper reef slope away from the island, with numerical outputs for Ux and the more significant 447 

variations in Uy showing a reasonable agreement with flume measurements (Figure 11c,f). 448 

Note, skill was not calculated for velocity outputs due to missing sections of data from each of 449 

the wave flume sensors.  450 

DISCUSSION 451 

The three benchmark experiments used to evaluate the Popinet (2015) shock capturing 452 

GN solver collectively show that the model can skilfully represent surf-zone processes, runup, 453 

water level dynamics and overtopping on topographically complex coral reef environments. Of 454 

the three benchmark experiments, BM1 provides a comprehensive assessment for applying the 455 

model to simulate nonlinear wave transformation processes that contribute to wave driven 456 

runup and inundation. BM2 and BM3 provide more detail on how the model represents 457 

nonlinear transformations in wave shape and directly test how the GN equations can be applied 458 

to simulate wave overtopping scenarios. Physical phenomenon that contribute to wave runup 459 

and inundation on atoll islands include: SS waves, IG waves and setup (Merrifield et al., 2014). 460 

Field measurements demonstrate how each of these processes respond differently to incident 461 

wave conditions and reef depth (Becker, Merrifield, and Ford, 2014; Ford, Becker, and 462 

Merrifield, 2013; Kench and Brander, 2006; Pomeroy et al., 2012). Further, these processes 463 

influence the behaviour of each other, complicating a conceptual understanding of how 464 

environmental conditions influence runup on reef fringed coastlines. Recent developments in 465 

numerical modeling (e.g. Popinet, 2015; Roeber and Cheung, 2012b; Su, Ma, and Hsu, 2015) 466 

allow these nonlinear interactions to be simulated under controlled boundary conditions, and 467 

provide a unique tool for exploring how physical processes will respond to environmental 468 

change. However, appropriate and efficient use of these new modeling techniques relies on a 469 

comprehensive understanding of how numerical outputs are influenced by parameters that are 470 

typically used for model ‘tuning’ and calibration (Oreskes et al., 1994). Systematic analysis 471 
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from BM1 revealed how SS attenuation, IG transmission, setup and runup each exhibit 472 

individual sensitivity to breaking and friction parameters. Therefore, a combined assessment 473 

of all parameters is required to achieve a realistic representation of processes that impact the 474 

shoreline. In general, outputs were more sensitive to the fiction coefficient (Cf) than to the slope 475 

threshold used for locally removing dispersion (B). However, the model was highly sensitive 476 

to B = 0.4 (21.8°) because wave breaking was initiated to far offshore. Wave setup was 477 

significantly over-predicted using B = 0.4 which meant that IG waves were not sufficiently 478 

dissipated by friction processes on the reef flat. Model outputs observed minimal sensitivity 479 

and maximum skill using slope thresholds between B = 0.7 (35°) and B = 1.2 (~50°). These 480 

findings are consistent with Buckley, Lowe, and Hansen (2014) where a breaking slope of ~55° 481 

was found to give the best prediction of UM measurements when using the nonlinear phase-482 

resolving model SWASH (SWASH default is 25°). Using a high breaking slope can be 483 

explained physically in this context because of the steep sloping fore-reef on coral reefs 484 

typically produces plunging breakers.  485 

Higher friction values were associated with both SS and IG waves being under-486 

predicted at the shoreline. IG waves were highly sensitive to friction, with Hig over-predicted 487 

at WG9 using low friction but dramatically under-predicted using high friction. However, 488 

skilful predictions for IG wave height were achieved using a Cf range between 0.002 and 0.008. 489 

Model results highlight the role of friction as a primary control for low frequency wave 490 

behaviour on coral reefs. Wave setup was consistently well predicted, with minimal sensitivity 491 

to friction, unless B = 0.4 was used. Accounting for Rmax added an additional level of 492 

complexity when trying to achieve an accurate prediction of all processes at the shoreline. 493 

Maximum runup was highly sensitive to SS and IG dynamics, leading to over-predicted runup 494 

with low friction and under-predicted runup using high friction. However, skilful predictions 495 

were achieved using moderate friction (0.005 to 0.01) and any B value above 0.6. The best 496 
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representation of all processes was found using Cf = 0.005 and B = 0.7. These same input values 497 

were capable of skilfully replicating solitary wave transformation on complex 2D and 3D reef 498 

structures, with a slight decrease in skill observed when using the model in 2DH (two 499 

horizontal dimensions). Collectively, the three benchmark scenarios show that the GN model 500 

is capable of simulating the range of wave frequencies and nonlinear dynamics associated with 501 

wave transformation on coral reef systems. 502 

CONCLUSIONS 503 

A benefit of fully nonlinear free-surface models is that any feedbacks between different 504 

frequency wave processes are directly resolved (Shimozono et al., 2015). For example, the 505 

attenuation of irregular SS waves is associated with the formation of IG motions and setup that 506 

in turn influence the transmission of broken and reformed SS waves across the reef flat. These 507 

feedbacks are critical for accurately representing the range of processes that promote elevated 508 

sea-level and coastal flooding, as recently highlighted by Roeber and Bricker (2015). However, 509 

the interlinked nature of these models also means that the sensitivity of each process needs to 510 

be carefully understood before being applied to real world scenarios. Simulations presented 511 

here are the first step towards applying the GN solution to study the complex interplay of 512 

processes associated with wave transformation on coral reef coastlines. Results suggest that the 513 

combination of weakly dispersive Green-Naghdi equations and nonlinear shallow water 514 

equations implemented in Popinet (2015) and other model packages have significant potential 515 

for simulating detailed wave processes on reef environments. Consequently, this type of 516 

modeling can become a powerful research tool to explore wave dynamics on reef systems in 517 

context of future environmental change. 518 



23 

 

ACKNOWLEDGEMENTS 519 

This research was part of a PhD theses completed by Edward Beetham at the School of 520 

Environment, University of Auckland (UoA) and was supported by a UoA Doctoral 521 

Scholarship.  522 

LITERATURE CITED 523 

Becker, J.; Merrifield, M., and Ford, M., 2014. Water Level Effects on Breaking Wave Setup 524 

for Pacific Island Fringing Reefs. Journal of Geophysical Research: Oceans, 119 (2), 525 

914-932.   526 

Beetham, E P.; Kench, P S.; O'Callaghan, J., and Popinet, S., 2016. Wave Transformation and 527 

Shoreline Water Level on Funafuti Atoll, Tuvalu. Journal of Geophysical Research: 528 

Oceans, 121 (1), 311-326.   529 

Bonneton, P.; Barthelemy, E.; Chazel, F.; Cienfuegos, R.; Lannes, D.; Marche, F., and Tissier, 530 

M., 2011a. Recent Advances in Serre-Green Naghdi Modelling for Wave 531 

Transformation, Breaking and Runup Processes. European Journal of Mechanics B-532 

Fluids, 30 (6), 589-597.   533 

Bonneton, P.; Chazel, F.; Lannes, D.; Marche, F., and Tissier, M., 2011b. A Splitting Approach 534 

for the Fully Nonlinear and Weakly Dispersive Green–Naghdi Model. Journal of 535 

Computational Physics, 230 (4), 1479-1498.   536 

Buckley, M.; Lowe, R., and Hansen, J., 2014. Evaluation of Nearshore Wave Models in Steep 537 

Reef Environments. Ocean Dynamics, 64 (6), 847-862.   538 

Cheriton, O.; Storlazzi, C D., and Rosenberger, K., 2016. Observations of Wave 539 

Transformation over a Fringing Coral Reef and the Importance of Low-Frequency 540 

Waves and Offshore Water Levels to Runup, Overwash, and Coastal Flooding. Journal 541 

of Geophysical Research: Oceans, 121 (5), 3121-3140.   542 

Demirbilek, Z., and Nwogu, O G., 2007. Boussinesq Modeling of Wave Propagation and 543 

Runup over Fringing Coral Reefs, Model Evaluation Report. U.S. Army Engineer 544 

Research and Development Center, 101p. 545 

Demirbilek, Z.; Nwogu, O G., and Ward, D L., 2007. Laboratory Study of Wind Effect on 546 

Runup over Fringing Reefs. Report 1. Data Report. U.S. Army Engineer Research and 547 

Development Center, 70p. 548 

Fang, K.; Liu, Z., and Zou, Z., 2016. Fully Nonlinear Modeling Wave Transformation over 549 

Fringing Reefs Using Shock-Capturing Boussinesq Model. Journal of Coastal 550 

Research, 32 (1), 164-171.   551 

Fang, K.; Zou, Z.; Dong, P.; Liu, Z.; Gui, Q., and Yin, J., 2013. An Efficient Shock Capturing 552 

Algorithm to the Extended Boussinesq Wave Equations. Applied Ocean Research, 43, 553 

11-20. 554 

Ferrario, F.; Beck, M W.; Storlazzi, C D.; Micheli, F.; Shepard, C C., and Airoldi, L., 2014. 555 

The Effectiveness of Coral Reefs for Coastal Hazard Risk Reduction and Adaptation. 556 

Nature Communications, 5, doi: 10.1038/ncomms4794.   557 

Filipot, J-F., and Cheung, K F. 2012., Spectral Wave Modeling in Fringing Reef Environments. 558 

Coastal Engineering, 67 (0), 67-79.   559 



24 

 

Ford, M.; Becker, J., and Merrifield, M., 2013. Reef Flat Wave Processes and Excavation Pits: 560 

Observations and Implications for Majuro Atoll, Marshall Islands. Journal of Coastal 561 

Research, 29 (3), 545-554. 562 

Huntley, D A., 2013. Waves. In: Sherman, D J, ed. Coastal Geomorphology, Academic Press, 563 

San Diego, pp. 39-73. 564 

Kench, P S., and Brander, R W., 2006. Wave Processes on Coral Reef Flats: Implications for 565 

Reef Geomorphology Using Australian Case Studies. Journal of Coastal Research, 22 566 

(1), 209-223.   567 

Lannes, D., and Marche, F., 2015. A New Class of Fully Nonlinear and Weakly Dispersive 568 

Green–Naghdi Models for Efficient 2D Simulations. Journal of Computational 569 

Physics, 282, 238-268.   570 

Lowe, R J.; Falter, J L.; Monismith, S G., and Atkinson, M J., 2009. Wave-Driven Circulation 571 

of a Coastal Reef-Lagoon System. Journal of Physical Oceanography, 39 (4), 873-893.   572 

Lynett, P J.; Swigler, D.; Son, S.; Bryant, D., and Socolofsky, S., 2011. Experimental Study of 573 

Solitary Wave Evolution over a 3D Shallow Shelf. Proceedings of the 32nd 574 

International Conference on Coastal Engineering (Shanghai, China), doi: 575 

https://doi.org/10.9753/icce.v32.currents.1.  576 

Merrifield, M.; Becker, J.; Ford, M., and Yao, Y., 2014. Observations and Estimates of Wave-577 

Driven Water Level Extremes at the Marshall Islands. Geophysical Research Letters, 578 

41 (20), 7245-7253.   579 

NTHMP Contributers., 2012. Proceedings and Results of the 2011 National Tsunami and 580 

Hazard Mitigation (NTHMP) Model Benchmarking Workshop, NOAA Special Report, 581 

Boulder, Colorado, U. S., 436p. 582 

Nwogu, O., and Demirbilek, Z., 2010. Infragravity Wave Motions and Runup over Shallow 583 

Fringing Reefs. Journal of Waterway, Port, Coastal, and Ocean Engineering, 136 (6), 584 

295-305.   585 

Oreskes, N.; Shraderfrechette, K., and Belitz, K., 1994. Verification, Validation, and 586 

Confirmation of Numerical-Models in the Earth-Sciences. Science, 263 (5147), 641-587 

646.   588 

Péquignet, A C.; Becker, J M., and Merrifield, M A., 2014. Energy Transfer between Wind 589 

Waves and Low-Frequency Oscillations on a Fringing Reef, Ipan, Guam. Journal of 590 

Geophysical Research: Oceans, 119 (10), 6709-6724.   591 

Pomeroy, A.; Lowe, R.; Symonds, G.; Van Dongeren, A., and Moore, C., 2012. The Dynamics 592 

of Infragravity Wave Transformation over a Fringing Reef. Journal of Geophysical 593 

Research: Oceans, 117, C11022.   594 

Popinet, S., 2014. A Solver for the Green-Naghdi Equations, http://www.basilisk.fr/src/green-595 

naghdi.h. 596 

Popinet, S., 2015. A Quadtree-Adaptive Multigrid Solver for the Serre–Green–Naghdi 597 

Equations. Journal of Computational Physics, 302, 336-358.   598 

Reyns, J.; Ap van Dongeren, D R.; Lowe, R.; Falter, J., and Boruff, B., 2013. Vulnerability of 599 

Coral Reef Protected Coastlines in a Changing Environment. White Paper: A report to 600 

the Asian Development Bank within the framework of the ADB ‐ UNESCO ‐ IHE 601 

Knowledge Partnership, Department of Water Science and Engineering UNESCO ‐ 602 

IHE Institute for Water Education, pp. 100. 603 

Roeber, V., and Bricker, J D., 2015. Destructive Tsunami-Like Wave Generated by Surf Beat 604 

over a Coral Reef During Typhoon Haiyan. Nature Communications, 6, doi: 605 

10.1038/ncomms8854. 606 

Roeber, V., and Cheung, K F., 2012a. BOSZ In: Program, NTHMP (ed.) Proceedings and 607 

Results of the 2011 National Tsunami and Hazard Mitigation (NTHMP) Model 608 

Benchmarking Workshop, NOAA Special Report, Boulder, Colorado, U. S., 361-406. 609 



25 

 

Roeber, V., and Cheung, K F., 2012b. Boussinesq-Type Model for Energetic Breaking Waves 610 

in Fringing Reef Environments. Coastal Engineering, 70, 1-20.   611 

Sheremet, A.; Kaihatu, J M.; Su, S F.; Smith, E R., and Smith, J M., 2011. Modeling of 612 

Nonlinear Wave Propagation over Fringing Reefs. Coastal Engineering, 58 (12), 1125-613 

1137.   614 

Shi, F.; Kirby, J T.; Harris, J C.; Geiman, J D., and Grilli, S T., 2012. A High-Order Adaptive 615 

Time-Stepping Tvd Solver for Boussinesq Modeling of Breaking Waves and Coastal 616 

Inundation. Ocean Modelling, 43, 36-51.   617 

Shimozono, T.; Tajima, Y.; Kennedy, A B.; Nobuoka, H.; Sasaki, J., and Sato, S., 2015. 618 

Combined Infragravity Wave and Sea-Swell Runup over Fringing Reefs by Super 619 

Typhoon Haiyan. Journal of Geophysical Research: Oceans, 120 (6), 4463-4486.   620 

Storlazzi, C D.; Elias, E P L., and Berkowitz, P., 2015. Many Atolls May Be Uninhabitable 621 

within Decades Due to Climate Change. Scientific Reports, 5, doi: 10.1038/srep14546.   622 

Storlazzi, C D.; Ogston, A S.; Bothner, M H.; Field, M E., and Presto, M K., 2004. Wave- and 623 

Tidally-Driven Flow and Sediment Flux across a Fringing Coral Reef: Southern 624 

Molokai, Hawaii. Continental Shelf Research, 24 (12), 1397-1419.   625 

Su, S-F.; Ma, G., and Hsu, T-W., 2015. Boussinesq Modeling of Spatial Variability of 626 

Infragravity Waves on Fringing Reefs. Ocean Engineering, 101 (0), 78-92.   627 

Su, S-F.; Sheremet, A., and Smith, J M., 2011. Parametric Wave-Breaking on Steep Reefs. 628 

Proceedings of the 32nd International Conference on Coastal Engineering (Shanghai, 629 

China), doi: https://doi.org/10.9753/icce.v32.waves.16. 630 

Tissier, M.; Bonneton, P.; Marche, F.; Chazel, F., and Lannes, D., 2012a. A New Approach to 631 

Handle Wave Breaking in Fully Non-Linear Boussinesq Models. Coastal Engineering, 632 

67 (0), 54-66.   633 

Tissier, M.; Bonneton, P.; Ruessink, B.; Marche, F.; Chazel, F., and Lannes, D., 2012b. Fully 634 

Nonlinear Boussinesq-Type Modelling of Infragravity Wave Transformation over a 635 

Low-Sloping Beach. Proceedings of the 33rd International Conference on Coastal 636 

Engineering (Santander, Spain), doi: https://doi.org/10.9753/icce.v33.currents.28. 637 

Vetter, O.; Becker, J M.; Merrifield, M A.; Péquignet, A C.; Aucan, J.; Boc, S J., and Pollock, 638 

C E., 2010. Wave Setup over a Pacific Island Fringing Reef. Journal of Geophysical 639 

Research: Oceans, 115, C12066.   640 

Yamazaki, Y.; Cheung, K F.; Kowalik, Z.; Lay, T., and Pawlak, G., 2012. NEOWAVE. In: 641 

Program, NTHMP (ed.) Proceedings and Results of the 2011 National Tsunami and 642 

Hazard Mitigation (NTHMP) Model Benchmarking Workshop, NOAA Special Report, 643 

Boulder, Colorado, U. S., 239-302. 644 

Zijlema, M., 2012. Modelling Wave Transformation across a Fringing Reef Using SWASH. 645 

Proceedings of the 33rd International Conference on Coastal Engineering 646 

(Santander, Spain), doi: https://doi.org/10.9753/icce.v33.currents.26.   647 

https://doi.org/10.9753/icce.v33.currents.26


26 

 

Tables 648 

Table 1. Summary of numerical model skill and sensitivity when compared to flume measurements of 649 
SS wave height, IG wave height, setup and runup at the shoreline. Values assigned to the WG9 column 650 
represent the mean skill across all wave process (Hss, Hig and setup) at the shoreline and shoreline skill 651 
is the average skill from all wave processes at WG9 and runup. A statistical summary of model skill is 652 
first presented, based on all simulations, to provide an indication of how variable outputs are when 653 
inputs are modified. To quantify model sensitivity, the percent difference between minimum and 654 
maximum values were calculated for all Cf values, all B values and the higher and lower range of Cf 655 
and B values. B and Cf values associated with maximum skill are presented as recommended values for 656 
predicting each wave process. The range of B and Cf combinations that can be used while maintaining 657 
model skill within 5% of maximum skill are shown as the minimum and maximum B and Cf values that 658 
make up this range. 659 

 Hss Hig Setup WG9 (Mean) Runup Shoreline 

Model skill       

  Maximum 0.901 0.977 0.988 0.949 0.944 0.936 

  Max 5% range 0.856 0.928 0.938 0.902 0.896 0.889 

  Mean 0.858 0.887 0.973 0.906 0.798 0.879 

  SD 0.057 0.141 0.025 0.065 0.14 0.07 

  Minimum 0.668 0.419 0.902 0.692 0.419 0.664 

Output sensitivity: range between minimum and maximum values 

  B (0.4-1.2) 11.9% 16.7% 15.9% 14.8% 20.0% 16.1% 

  B (0.4-0.7) 11.1% 16.7% 15.1% 14.3% 20.0% 15.7% 

  B (0.7-1.2) 0.9% 1.7% 1.0% 1.2% 1.2% 1.2% 

  Cf (0.001-0.01) 14.6% 23.2% 0.7% 12.8% 30.1% 17.2% 

  Cf (0.001-0.005) 7.6% 12.2% 0.3% 6.7% 19.4% 9.9% 

  Cf (0.006-0.01) 6.1% 10.0% 0.3% 5.5% 10.8% 6.8% 

Recommended B values     

  Maximum skill 0.4 0.5 1 0.8 0.7 0.7 

  5% range: minimum 0.4 0.5 0.5 0.5 0.6 0.6 

  5% range: maximum 1.2 1.2 1.2 1.2 1.2 1.2 

Recommended Cf values     

  Maximum skill 0.004 0.006 0.0001 0.003 0.01 0.005 

  5% minimum 0.0001 0.002 0.0001 0.0001 0.005 0.002 

  5% maximum 0.008 0.008 0.04 0.01 0.01 0.01 

 660 

  661 
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Figure Captions 662 

Figure 1. Example of model capability for simulating irregular wave transformation (Hs = 2.6 663 

m, Ts = 10.5 s) on an idealised coral reef (hr = 1 m) with a 1:6 fore-reef slope and 1:14 beach 664 

slope. (a) Across reef variations in free-surface water level (wave profile), mean water level 665 

(setup) and maximum water level. (b-e) Water level time-series outputs at different locations 666 

across the model domain showing the raw signal and the low pass filtered (0.04 Hz) infragravity 667 

wave signal. 668 

Figure 2. Model bathymetry for each benchmark test showing the location of wave gauge (WG) 669 

sensors used to compare numerically modeled outputs with measured wave basin data. (a) 670 

Benchmark 1 is the idealised Guam reef from a series of flume experiments undertaken in the 671 

University of Michigan wave laboratory (Demirbilek, Nwogu, and Ward, 2007). (b) 672 

Benchmark 2 is the Hawaii Reef (HI reef) bathymetry used in the O.H. Hinsdale Wave Flume 673 

(Roeber and Cheung, 2012b). (c) Benchmark 3 uses the model in 2D with a complex reef 674 

bathymetry that has a steep slope, a triangular shelf and a conical island (Lynett et al., 2011).  675 

Figure 3. Model skill contour lines are presented in grey to show how B and Cf values influence 676 

the accuracy of wave processes at the shoreline, individually and collectively, from BM1. 677 

Shoreline skill at WG9 is presented for (a) SS wave height, (b) IG wave height and (c) setup at 678 

the shoreline. (d) Mean skill at WG9 is the average of individual skill values for Hss, Hig and 679 

  at the shoreline. (e) Rmax skill. (f) Shoreline skill as the average skill from Hss, Hig,   at 680 

WG9 and Rmax. Maximum skill is identified with a black marker and the associated Cf and B 681 

value is written inside each plot. Black contour lines indicate Cf and B combinations that 682 

produce a skill value within 5% of the maximum skill. Note, the x-axis is a log scale. 683 

Figure 4. (a-i) Measured (wave flume) outputs for SS wave height (Hss), IG wave height (Hig) 684 

and wave setup are compared to numerical model outputs using a selection of different Cf and 685 

B values for the 15 UM test scenarios. (j-r) Numerical model outputs for runup elevation are 686 

compared to wave flume measurements for the same selection of B and Cf values. The dashed 687 

line represents a perfect fit (y = x) and can be used to visually identify how close model outputs 688 

are to flume measurements. Skill values written in plots a-i represent mean skill at WG9, with 689 

runup skill presented in plots j-r.  690 

Figure 5. Wave spectra calculated from the GN model outputs using Cf = 0.005 and B = 0.7 691 

(black) are compared to wave spectra calculated from wave flume data (grey) at the upper reef 692 
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slope (WG5), outer reef flat (EG7), central reef flat (WG8) and the shoreline (WG9). Eight of 693 

the fifteen UM scenarios are presented to show how the model behaves under different incident 694 

wave conditions under high tide (rows 1-2), mean tide (rows 3-4), low tide (rows 5-6) and dry 695 

reef (rows 7-8) conditions. Note that the x and y axes are both log scale. 696 

Figure 6. Across reef variation in free-surface water level skill at the 14 wave gauge locations 697 

from BM2, using different B values (represented using different line symbols) and friction 698 

values. (a) Cf = 0.001, (b) Cf = 0.05 and (c) Cf = 0.01. (d) Wave flume bathymetry and wave 699 

gauge locations are presented to highlight the spatial influence variation in skill across the reef.      700 

Figure 7. (a-l) Free-surface water level across the model domain at different time snapshots are 701 

presented to show wave propagation, breaking and plunging processes from the GN model 702 

(black line), using Cf = 0.005 and B = 0.7, compared with wave flume measurements at each 703 

wave gauge location (grey circles). (m-x) Comparison of time-series water level measurements 704 

from the GN model (black) and wave flume (grey) using B = 0.7 and Cf = 0.005. 705 

Figure 8. Snapshots of free-surface water level at different times during the 3D shelf simulation 706 

for BM3, using B = 0.7 and Cf = 0.005.  707 

Figure 9. Comparison of model skill for representing free-surface water level at different wave 708 

gauge locations, relative to distance from the incident boundary for the y = 0 m (WGs 1, 2, 3, 709 

7), y = 5 m (WGs 4, 5, 6, 8) at y = 10 m (WG9) transect, for each combination of Cf and B. 710 

Mean skill value across all WG locations is presented inside each subplot. 711 

Figure 10. Time-series outputs for free-surface water level at each wave gauge location from 712 

the GN model using Cf = 0.005 and B = 0.7 (black) are compared to water level measurements 713 

from the wave flume (grey).  714 

Figure 11. Modeled velocity outputs from the GN model using Cf = 0.005 and B = 0.7 (black) 715 

are compared to wave flume measurements (grey) at WG2 (seaward of conical cone), WG3 716 

(leeward of conical cone) and WG10 (lateral to conical cone). 717 
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