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A set of structural properties of liquid GeSe2 are calculated by using first-principles molec-

ular dynamics and including, for the first time, van der Waals dispersion forces. None of

the numerous atomic-scale simulations performed in the past on this prototypical disor-

dered network-forming material had ever accounted for dispersion forces in the expression

of the total energy. To this purpose, we employed either the Grimme-D2 or the maximally

localized Wannier functions scheme. We assessed the impact of the dispersion forces on

properties such as the partial structure factors, the pair correlation functions, the bond an-

gle distribution and the number of corner vs edge sharing connections. The maximally

localized Wannier functions scheme is more reliable than the Grimme-D2 scheme in re-

producing existing first-principles results. In particular, the Grimme-D2 scheme worsens

the agreement with the experiments in the case of the Ge-Ge pair correlation function. Our

study shows that the impact of dispersion forces on disordered chalcogenides has to be

considered with great care, since it cannot be necessarily the same when adopting different

recipes.

PACS numbers: 61.25.Em, 61.20.Ja, 71.15.Pd
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I. INTRODUCTION

The proper account of dispersive (van der Waals, vdW) contributions is a challenging task for

atomic-scale computational material science. In this context, AxB1−x (A = Ge, Si; B = O, Se, S)

disordered network-forming materials are worth investigating, since made of atomic species qual-

itatively prone to be denoted as cations and anions and yet bearing close electronegativities. Such

combination of physical effects results in cohesive forces of iono-covalent nature. The question

arises on whether there might be, as a function of the composition x and for given families of com-

pounds, bonding situations for which dispersion forces cannot be merely neglected by invoking

efficient screening of other predominant bonding contributions.

Based on a well-established series of achievements, it appears that first-principles molecular

dynamics (FPMD) in the framework of density functional theory (DFT) is a reliable tool to gain

insight into the properties of glasses and liquids such as GexSe1−x, GexTe1−x, or their ternary

counterparts1–16. For these systems, the number of results obtained without an explicit account

of dispersion forces largely exceeds those for which such forces have been explicitly considered.

However, it is nowadays widely accepted that the mere use of the available exchange-correlation

(XC) functionals cannot systematically ensure a proper account of long-range electron correlations

responsible for van der Waals contributions. For instance, this was shown to be the case for

liquid Ge15Te85,17 pointing out the need of additional studies extended to other telluride and/or

chalcogenide disordered materials.

Along these lines, and focusing on glassy GeTe4, the impact of dispersion forces and its in-

terplay with the choice of the XC functionals within DFT was carefully analyzed. In Ref. 18,

we compared the levels of agreement on structural properties between experiments and theory

(FPMD), as predicted by a set of different modelling schemes. Four different theoretical recipes

were considered, each one corresponding to a distinct structural model. These were obtained by

selecting either the PBE (Perdew, Burke and Ernzerhof)19 or the BLYP (Becke, Lee, Yang and

Parr)20,21 XC functionals and, for each one of the two, by disregarding or including van der Waals

dispersion forces via the Grimme contribution.22,23 The inclusion of the vdW forces lead to bet-

ter performances and realistic structural predictions in the case of both the PBE and the BLYP

exchange-correlation functionals.

In view of this result, the main motivation of the present work is to assess further the impact of

dispersion forces on a representative case of disordered chalcogenide, liquid GeSe2. The presence
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of a predominant structural unit (the GeSe4 tetrahedron) coexisting with homopolar bonds makes

the atomic structure of liquid GeSe2 challenging to elucidate for both experiments and atomic-

scale modelling.24–31 As shown by FPMD, the description of both short and intermediate range

order of liquid GeSe2 depends on the choice of a specific exchange-correlation functional.32,33 In

particular, generalized gradient approximated (GGA) functionals favoring electronic localization

bring calculations in better agreement with structural data. Substantial improvements were found

when introducing the Perdew-Wang (PW) recipe at the place of the local density approximation

(LDA) and, in a further step, the BLYP scheme at the place of the PW scheme.20,21,32–35 In the

case of liquid GeSe2, the partial structure factors obtained via DFT-FPMD were able to reproduce

experimental data for an extended range of wavevectors in reciprocal space, the same consideration

holding for pair correlation functions in real space.27,33 However, a number of differences between

theory and experiments did persist, as the underestimate of the first sharp diffraction peak (FSDP)

in the Ge-Ge partial structure factor. Such shortcoming is responsible for the absence of the

FSDP in the Bhatia-Thornton concentration-concentration structure factor36 and it was found to

be largely independent on the periodic cell dimensions, as shown by taking a number of atoms N

= 480 instead of N = 120.37 Since the occurrence of such FSDP could not be ascribed to trivial

system size effects, the consideration of other plausible origins for the residual lack of agreement

with experiments is very much in order. Therefore, one of our main motivation is to focus on

the dispersion forces as a missing ingredient in the theoretical description of this chalcogenide.36

Our approach complements available indications on the impact of dispersion forces on Se/S made

disordered chalcogenides, as those rationalized in Ref. 38.

In the present work, we produce a new set of FPMD data on liquid GeSe2 by including dis-

persion forces in the FPMD Kohn-Sham hamiltonian. Two different methodologies are employed.

One consists in following the formalism due to Grimme and, specifically, the D2 formula.22 We

also employed a scheme more profoundly rooted into the density functional theory in the sense that

the electronic structure, obtained within the selected DFT-GGA framework, is used to compute the

maximally localized Wannier functions (MLWF) on which the present van der Waals scheme is

based.39–41

Our results show that the account of dispersion forces does not alter significantly the structural

properties of liquid GeSe2. However, the Grimme scheme is unable to reproduce correctly the

experimental profile of the Ge-Ge pair correlation function, resulting in a perceptible underesti-

mate of the number of corner-sharing connections. The level of agreement is restored when using
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the MLWF formalism, confirming its superior performances in terms of correct reproduction of

physical properties closely related to chemical bonding. We found no impact of vdW forces on

the concentration-concentration structure factor over the full range of wavevectors in reciprocal

space.

This work is organized as follows. Section II provides details on our theoretical model, that

is based on the first-principles molecular dynamics framework. Section III contains structural

information extracted from the partial structure factors in the Faber-Ziman and Bhatia-Thornton

formalisms. Section IV is devoted to the partial pair correlation functions and to a description

of the network topology via the counting of the edge-sharing and corner-sharing connections.

Conclusive remarks are collected in Section V.

II. THEORETICAL MODEL

The theoretical framework of our calculations is identical to the one employed and detailed ex-

tensively in previous papers devoted to liquid GeSe2.27,33 In the present case, FPMD simulations

have been performed at constant volume on a system containing 240 (80 Ge and 160 Se) atoms

positioned in a periodically repeated cubic cell of size 19.76 Å, this value allowing to recover the

experimental density of the liquid42 at the desired temperature (T = 1050 K). N = 240 turns out

to be a suitable system size to obtain reliable structural properties of liquid GeSe2 at both short

and intermediate ranges. This choice is substantiated by our comparative work on system sizes N

= 120 and N = 480, clearly demonstrating that all results obtained in the past with N = 120 were

not significantly altered when moving to N = 480.37 We recall that the electronic structure was

described within density functional theory and evolved self-consistently in time by Car-Parrinello

molecular dynamics (CPMD)43 and the cpmd code.44 The BLYP generalized gradient approxi-

mation was used, based on the exchange energy obtained by Becke20, and the correlation energy

according to Lee, Yang and Parr.21 Valence electrons have been treated explicitly, in conjunction

with norm conserving pseudopotentials of the Trouiller-Martins type to account for core-valence

interactions.45 The wave functions have been expanded at the Γ point of the supercell on a plane

wave basis set with an energy cutoff Ec = 20 Ry. Long-range dispersion forces were accounted for

in two distinct manners. The first consists in using the DFT-D2 formula proposed by Grimme22

and it will be termed vdW1 in what follows. We stress the fact that, although empirical, such a

vdW correction is a thorough DFT-based formulation in which the parameters are self-consistently
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tuned on different functionals, including the one used in this work, and benchmarked on a wealth

of different systems from simple molecules to complex reactive surfaces and chalcogenides.46–48

No experimental parameters are considered in the construction of this specific vdW correction

and its inclusion does not affect at any stage the Kohn-Sham equations,49,50 thus preserving the

first-principle character of all electronic structure calculations. However, the Grimme formalism

does not allow for any update of the vdW interactions as a result of the changes in the electronic

structure that occur during the dynamical evolution. To go beyond this limitation, we employed a

second vdW scheme in which the vdW coefficients are recalculated for each ion of the system, be-

coming explicitly time-dependent.39–41 This scheme (referred to as vdW2 in what follows) makes

use of the electronic wavefunctions via the unitary transformation of the Kohn-Sham orbitals giv-

ing the maximally localized Wannier functions. Such strategy has rapidly acquired an extended

record of reliability for several test cases.41,51,52

In the FPMD approach, a fictitious electron mass of 2000 a.u. (i.e. in units of mea2
0 where me

is the electron mass and a0 is the Bohr radius), and a time step of ∆t = 0.12 fs have been used to

integrate the equations of motion. The control of the temperature has been implemented for both

the ionic and electronic degrees of freedom by using Nosé-Hoover thermostats.53–55 The initial

coordinates have been obtained by selecting from a periodic cell of N = 480 atoms (previously

employed to produce the results of Ref. 37) the positions of the inner 240 atoms. As a first

step, the system has been brought to T = 0 K by structural optimization via forces minimization,

so as to avoid any artifact due to the presence of spurious interactions that might be due to our

initial system construction. FPMD runs lasting in between 30 ps and 100 ps have been produced

at increasing temperatures without accounting for vdW contributions to bring the system at the

production temperature of T = 1050 K in the liquid phase. After collecting statistical averages

over a period of 50 ps, the final configuration is stored to ensure the same initial starting point

for simulations runs involving the vdW1 and vdW2 dispersion forces. In both cases, the liquid

is first cooled at T = 300 K and then heated up over a time interval of 115 ps for vdW1 and 170

ps for vdW2. Statistical averages pertaining to the vdW1 and vdW2 situations were collected

over 30 ps and 42 ps respectively. The different length of time for the collection of the statistical

averages has no special significance, both trajectories being sufficiently extended to access thermal

equilibrium. The statistical errors for the models employed have been found to be very similar.

We make inferences on the impact of the vdW1 and the vdW2 schemes for a set of properties in

reciprocal and direct space. Our references for comparison are the experimental data of Ref. 24
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obtained from isotopic substitution in neutron diffraction and the present FPMD results with no

consideration of dispersion forces (NvdW hereafter). For all sets of calculations, unless otherwise

stated, statistical errors are limited to 5% at most.

III. STRUCTURE FACTORS

A. Partial structure factors: Faber-Ziman and Bhatia-Thornton results

The calculated Faber-Ziman (FZ) partial structure factors for liquid GeSe2 are shown in Fig. 1.

The FPMD sets of results are very close to each other in the case of the partial structure factors

SFZ
GeSe(k) and SFZ

SeSe(k). However, the intensity of the main peak is significantly higher in the vdW1

case for SFZ
SeSe(k). By focusing on the FSDP region around k ∼ 1 Å−1, there is a vanishing impact

of the vdW corrections on the intermediate range properties associated with Ge-Se correlations.

In the case of SFZ
GeGe(k), there are some discernible variations in the peak intensities at k ∼ 1 Å−1.

Such differences are of little relevance in the context of the present investigation since mostly

related to statistical errors comparable to those found when moving from N = 120 to N = 480.

Worth of notice for SFZ
GeGe(k) are the intensities of the maximum and of the minimum located at

k ∼ 2 Å−1 and k ∼ 3 Å−1, respectively. These are more pronounced in the case of vdW1 when

compared to the vdW2 and NvdW models, the three values lying within the experimental statistical

errors. Taken together, it remains true that the analyses of the partial structure factors in the FZ

formalism do not bring any striking evidence on the possible occurrence of structural changes due

to dispersion forces. We recorded some minor effects in SFZ
SeSe(k) and SFZ

GeGe(k).

It is of interest to seek further evidence on the impact of dispersion forces by consider-

ing the Bhatia-Thornton partial structure factors56 SNN(k) (number-number), SNC(k) (number-

concentration) and SCC(k) (concentration-concentration) (Fig. 2).

These can be obtained by linear combinations of the Faber-Ziman partial structure factors as

follows:

SNN(k) = cGecGeSFZ
GeGe(k)+ cSecSeSFZ

SeSe(k)+

2cGecSeSFZ
GeSe(k), (1)

SNC(k) = cGecSe[cGe(SFZ
GeGe(k)−SFZ

GeSe(k))

−cSe(SFZ
SeSe(k)−SFZ

GeSe(k))], (2)
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Figure 1. (Color online) The Faber-Ziman partial structure factors SFZ
GeGe(k) (top panel), SFZ

GeSe(k) (middle

panel) and SFZ
SeSe(k) (bottom panel) for liquid GeSe2 at T = 1050 K. Experimental data from Ref. 24 (crosses

with error bars) are compared to results for the models NvdW (green line), vdW1 (red line) and vdW2 (blue

line). The results of calculations are shown by including (lower curve) and by not including (higher curve)

the experimental results in the comparison.
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Figure 2. (Color online) The Bhatia-Thornton partial structure factors SNN(k) (top panel), SNC(k), (middle

panel) and SCC(k) (bottom panel) for liquid GeSe2 at T = 1050 K. Experimental data from Ref. 24 (crosses

with error bars) are compared to results for the models NvdW (green line), vdW1 (red line) and vdW2 (blue

line). The results of calculations are shown by including (lower curve) and by not including (higher curve)

the experimental results in the comparison.
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SCC(k) = cGecSe{1+ cGecSe[(SFZ
GeGe(k)−SFZ

GeSe(k))

+(SFZ
SeSe(k)−SFZ

GeSe(k))]}. (3)

where cGe and cSe denote respectively the atomic fraction of Ge and Se.

We recall that due to very close values of the coherent scattering length of the chemical

species Ge and Se (bGe = 8.185 fm, bSe = 7.97 fm)57 and to the limited range of variation

of SNC(k) and SCC(k), SNN(k) is a very good approximation of the total structure factor, i.e.

|ST(k)−SNN(k)| < 0.025. Therefore, the considerations developed hereafter on SNN(k) apply

equally well to the total neutron structure factor ST (k).

There are no discernible effects of the dispersion forces on the Bhatia-Thornton partial structure

factors SNC(k) and SCC(k). In particular, one notice the persistent absence (or the large underesti-

mate) of the FSDP in all calculated SCC(k) strongly contrasting with the prominent feature found

in neutron diffraction experiments.24 Given these results, one can safely rule out any impact of

vdW forces on the intensity of the FSDP, thereby adding another piece of information toward pre-

cise understanding of this longstanding open issue. The Bhatia-Thornton partial structure factors

SNN(k) features higher peak intensities at k ∼ 2 Å−1 and k ∼ 3.5 Å−1 when adopting the vdW1

recipe. Although these variations are minimal and within the statistical error of the experimental

measurements, this is in line with the previous observation of the SFZ
GeGe(k) and SFZ

SeSe(k) cases,

indicating that the Grimme approach deviates more from the experimental pattern than the MLWF

scheme.

IV. REAL SPACE PROPERTIES

A. Partial pair-correlation functions

Fig. 3 provides a comparison between the three sets of calculations NvdW, vdW1 and vdW2 of

the pair correlation functions gGeGe(r), gGeSe(r) and gSeSe(r), and the corresponding experimental

results. Integration of the pair-correlation function gGeSe(r) over the first shell of neighbors leads to

coordination numbers n̄GeSe lying within 6 % (n̄GeSe(exp) = 3.5, n̄GeSe(NvdW) = 3.7, n̄GeSe(vdW1)

= 3.7, n̄GeSe(vdW2) = 3.6). These numbers exemplify the lack of sensitivity of Ge-Se correlations

to the presence of dispersion forces, in agreement with the predominant ionic contribution that can

be assumed to be responsible of most of the Ge-Se bonding.

In the case of gSeSe(r) the experimental value for n̄SeSe is n̄SeSe(exp) = 0.23. With our calcula-
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tions we obtain n̄SeSe(NvdW) = 0.20, n̄SeSe(vdW1) = 0.19, n̄SeSe(vdW2) = 0.25. Consideration of

these numbers and visual inspection of Fig. 3 are indicative of a broad level of agreement among

the three sets of data. However, the Grimme recipe (vdW1) stands out as the farthest apart from

the experimental prediction when focusing on the second main peak at about 4 Å.

The case of gGeGe(r) is worth dwelling on in deeper detail. This partial pair correlation func-

tion has been recognized as the one featuring the least satisfactory agreement with experiments,

despite an overall quite acceptable behavior in terms of coordination numbers due to the use of

the BLYP exchange correlation functional.33 The partial pair correlation function gGeGe(r) fea-

tures a three peak structure for r < 4 Å, representative of homopolar bonds, edge-sharing (ES)

and corner-sharing (CS) connections. The pattern corresponding to these marks is reproduced by

all FPMD models, with unequal intensities of the first peak corresponding to homopolar bonds.

These differences are partially compensated by a broad agreement on the values of the coordina-

tion numbers n̄GeGe(NvdW) = 0.18, n̄GeGe(vdW1) = 0.19, n̄GeGe(vdW2) = 0.23 all of them lying

close to the experimental result, 0.25. We recall that sizeable variations on the intensity and width

of the first peak are somewhat expected in view of the extended temporal persistence of Ge-Ge

homopolar bonds that might form on specific trajectories. For the purpose of the present work, it is

of interest instead to focus on the heights of the second and of the third peak of gGeGe(r). The rel-

ative intensities of these peaks is clearly different in the vdW1 case, with a third peak standing out

well beyond any expected statistical error. This corresponds to an overestimate of corner-sharing

connections induced by the Grimme approximation. As a valuable alternative, MLWF succeed in

leaving unaltered the quite acceptable profile of the calculated gGeGe(r), thereby providing a first,

clear-cut evidence of its better performances for this kind of network structures.

B. Bond angle distributions and network topology

In Fig. 4, we show the Se-Ge-Se (θSeGeSe) and Ge-Se-Ge (θGeSeGe) bond angle distributions.

The shapes of θSeGeSe for the three cases are nearly identical and highly symmetrical, pointing

out a predominant tetrahedral arrangement, with angles distributed around the expected value

109◦. In this respect, the dispersion forces do not alter the regularity of the tetrahedral struc-

tures. Turning to θGeSeGe, the two distinct peaks visible at about 80o and 100o can be assigned to

the formation of edge- and corner-sharing tetrahedral connections, respectively.27,28,33 Changes in

the edge-sharing/corner-sharing peak intensities ratio suggest that corner-sharing connections are
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Figure 3. (Color online) The partial pair correlation functions gGeGe(r) (top panel), gGeSe(r) (middle panel)

and gSeSe(r) (bottom panel) for liquid GeSe2 at T = 1050 K. Open small circles are the experimental data

from Ref. 24. They are compared with results for the models NvdW (green line), vdW1 (red line) and

vdW2 (blue line).
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Table I. Percentages of Ge atoms in edge-sharing, corner-sharing and homopolar bonding configurations

NGe(ES) NGe(CS) NGe−Ge

l-GeSe2 (NvdW) 45 36 18

l-GeSe2 (vdW1) 39 43 18

l-GeSe2 (vdW2) 41 36 23

more numerous in the vdW1 case, while the vdW2 scheme has little effect on the relative propor-

tion of these quantities when compared to NvdW results. To quantify these observations we have

calculated the number of Ge atoms belonging to corner-sharing and edge-sharing connections,

NGe(CS) and NGe(ES) respectively, together with the number of Ge atoms found in homopolar

bonds NGe−Ge. To this end we adopted the proposal of Ref. 58, i.e. NGe(CS) = 1−NGe(ES)−

NGe−Ge, which holds in the absence of extended chains.58

By using the values of NGe(CS) and NGe(ES) for the three models NvdW, vdW1, vdW2 (see

Tab. I) one obtains RNvdW
CS/ES = NGe(CS,NvdW)/NGe(ES,NvdW) = 0.8, RvdW1

CS/ES = NGe(CS,vdW1)/NGe(ES,vdW1)

= 1.1 and RvdW2
CS/ES = NGe(CS,vdW2)/NGe(ES,vdW2) = 0.87. The experimental prediction of Ref.

24 points toward close percentages of edge-sharing and corner-sharing connections. Likewise, all

FPMD models produced in the past are in line with values for RCS/ES moderately smaller than 1,

this meaning that the number of CS connection cannot be higher than the number of ES connec-

tions. Even though the values obtained for CS and ES in the vdW1 case are not too dissimilar

when accounting for the statistical uncertainties, it remains true that a tendency to overestimate

the CS/ES ration is noticeable. Therefore, the result corresponding to vdW1 for RvdW1
CS/ES (1.1) is

indicative of an artificial and yet, moderate contribution introduced in the FPMD model by the

Grimme recipe. This contribution favors the CS arrangement and longer Ge-Ge distances for the

inter-tetrahedral connections.

V. CONCLUSION

Liquid GeSe2 is a disordered network-forming material well suited to be exploited as bench-

mark system for model improvements and assessment of performances. In this case, we are in-

terested in the impact of dispersion forces on the structural properties of this network, due to the

existence of such effects in other disordered chalcogenide materials. Also, dispersion forces are

13



a missing ingredient in the theoretical treatment of this prototypical liquid, for which numerous

investigations by using different first-principles atomic-scale models have become available. To

account for van der Waals dispersion forces, we have employed two schemes. In the first, due to

Grimme, the coefficient expressing the intensity of the long range attractive forces does not evolve

(i.e. is not updated) following the temporal evolution of the electronic structure. In the second,

this requirement is met by resorting to the maximally localized Wannier functions. Overall, the

set of structural properties considered here (partial structure factors and pair correlation functions,

as well as standard fingerprints of network topology as the coordination numbers and the kind of

the tetrahedral connections) are not significantly affected by the account of the dispersion forces.

In particular, the maximally localized Wannier scheme leads to structural data very close to those

obtained in the absence of dispersion forces. On the contrary, the Grimme approach introduces

some spurious contributions clearly noticeable at the level of the partial pair correlation functions

and the Ge-Se-Ge bond angle distribution. In terms of structural features, these correspond to a

moderate overestimate of the number of corner-sharing connections at the expenses of the edge-

sharing connections. Our results provide convincing evidence on the superior reliability of the

MLWF scheme in accounting for dispersion forces. It appears of paramount importance to rely

on a methodology that does not modify structural properties when the dispersion forces have a

negligible effect in comparison to other bonding effects. Further studies of this kind for disor-

dered network systems at concentrations differing markedly from the stoichiometric one would be

instrumental to confirm this conclusion.
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