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Abstract. Fetal Heart Rate (FHR) monitoring is used during delivery for fetal

well-being assessment. Classically based on the visual evaluation of FIGO criteria,

FHR characterization remains a challenging task that continuously receives intensive

research efforts. Intrapartum FHR analysis is further complicated by the two different

stages of labor (dilation and active pushing). Research works aimed at devising

automated acidosis prediction procedures are either based on designing new advanced

signal processing analyses or on efficiently combining a large number of features

proposed in the literature. Such multi-feature procedures either rely on a prior feature

selection step or end up with decision rules involving long lists of features. This many-

feature outcome rule does not permit to easily interpret the decision and is hence

not well-suited for clinical practice. Machine-learning-based decision-rule assessment

is often impaired by the use of different, proprietary and small databases, preventing

meaningful comparisons of results reported in the literature. Here, sparse learning is

promoted as a way to perform jointly feature selection and acidosis prediction, hence

producing an optimal decision rule based on as few features as possible. Making

use of a set of 20 features (gathering ”FIGO-like” features, classical spectral features

and recently proposed scale-free features), applied to two large-size (respectively

' 1800 and ' 500 subjects), well-documented databases, collected independently in

French and Czech hospitals, the benefits of sparse learning are quantified in terms

of: i) accounting for class imbalance (few acidotic subjects), ii) producing simple

and interpretable decision rules, iii) evidences for differences between the temporal

dynamics of active pushing and dilation stages, and iv) of validity/generalizability of

decision rules learned on one database and applied to the other one.

Keywords: Intrapartum Fetal Heart Rate, Acidosis prediction, labor Stage, Sparse

learning, scale-free, learning generalization.
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1. Introduction

Intrapartum fetal monitoring. Worldwide, obstetricians routinely monitor, during

delivery, fetal heart rate (FHR) to detect oxygen deprivation in fetuses. Their main

objective is to predict fetal acidosis as early as possible, so as to make timely decisions

for operative deliveries that prevent adverse outcomes (neural development disability,

neonatal encephalopathy, and cerebral palsy) (Chandraharan & Arulkumaran 2007).

Clinical routine for FHR evaluation remains based on visual inspection of FHR, relying

on guidelines issued by the International Federation of Gynecology and Obstetrics

(FIGO) (FIGO 1986, Ayres-de Campos et al. 2015) mostly focusing on decelerations

(number, shape, depth and duration), variability, and baseline levels. This practice,

however, is well known to suffer from substantial inter- and intra-observer variability

(Hruban et al. 2015, Blackwell et al. 2011, Spilka, Chudáček, Jankǔ, Hruban, Burša,

Huptych, Zach & Lhotská 2014) and to induce unnecessary intervention or operative

deliveries, increasing uselessly cesarean section rate, that are a posteriori found to have

been avoidable (False Positive) (Alfirevic et al. 2006). Improving FHR analysis by

having recourse to advanced statistical signal processing tools has thus been the topic

of on-going research efforts.

Related works: feature design. Beyond attempts to automatize the computation

of FIGO features–or generalized versions (cf., e.g., (Parer et al. 2006, Spilka et al. 2012,

Nunes et al. 2017))–frequency-based features were used (Siira et al. 2005), following

standard approaches for adult heart rate variability analysis (Akselrod et al. 1981). Such

features are often referred to as linear since they essentially quantify autocorrelations

in FHR (Gonçalves et al. 2006, Laar et al. 2008, Magenes et al. 2003, Siira et al.

2013). Further, advanced statistical signal processing was involved in FHR analysis.

Notably, complexities in temporal dynamics were quantified using information theoretic

quantities, such as entropy rates (Costa et al. 2002, Echeverria et al. 2004, Porta

et al. 2013, Spilka, Roux, Garnier, Abry, Goncalves & Doret 2014, Granero-Belinchon

et al. 2017), various nonlinear transforms (Magenes et al. 2000, Magenes et al. 2003,

Chudáček, Anden, Mallat, Abry & Doret 2014, Georgieva et al. 2014), or the scale-

free or (multi)fractal paradigm (Francis et al. 2002, Doret, Helgason, Abry, Gonçalvès,

Gharib & Gaucherand 2011, Abry et al. 2013, Doret et al. 2015). Such features are

termed nonlinear as they probe the dependencies in FHR temporal dynamics potentially

beyond mere autocorrelations. For overviews, see e.g. (Spilka et al. 2012, Haritopoulos

et al. 2016).

Related works: feature selection and machine learning. Faced with the

modest acidosis-prediction performance achieved by standalone features, numerous

works combined several features through supervised machine learning strategies (cf., e.g.,

(Bernardes et al. 1991, Costa et al. 2009, Warrick et al. 2010, Georgieva et al. 2013, Spilka

et al. 2012, Czabanski et al. 2012, Warrick et al. 2010, Xu et al. 2014, Frasch

et al. 2014, Dash et al. 2014, Spilka et al. 2017)). Most of these contributions

acknowledge several problematic issues. First, the use of small-size databases (from
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tens to hundreds of subjects) and of a large number of features results in a lack of

robustness and generalizability (Frasch et al. 2014). Second, complicated decision rules

involving too many features are not suited to clinical practice as clinicians often need to

conceptualize what their decision is based on (Spilka et al. 2012, Xu et al. 2014)—feature

selection is thus often performed prior to learning, but without guarantees on the joint

optimality of both procedures. Third, the use on one database of decision rules learned

from another does not always yield satisfactory performance.

Related works: labor stages. FHR analysis is further complicated by the existence

of two distinct stages during labor. The dilation stage (stage I) consists in progressive

cervical dilation and regular contractions. The active-pushing stage (stage II) portrays

a fully dilated cervix combined with maternal pushing efforts. Analyses have been

performed either globally, mixing both stages (Costa et al. 2009, Warrick et al. 2010),

or focusing on stage I only (Spilka et al. 2017). Differences in the dynamics of each stage

remain barely documented (see a contrario (Spilka, Abry, Goncalves & Doret 2014, Lim

et al. 2014, Spilka et al. 2016b, Granero-Belinchon et al. 2017)).

Outline, goals, and contributions. The present contribution aims to assess the

potential benefits, for acidosis prediction, of sparse learning—i.e. the combination

of feature selection and classification into a single procedure. It also aims to show

that decision rules learned for each stage need to be different and based on different

features. Finally, it aims to validate that sparse learning yields decision rules that

satisfactorily generalize—i.e. they remain valid on samples not used for training. To

that end, the Sparse Support Vector Machine (S-SVM)–detailed in Section 3– is applied

to FHR data from two independent large-size databases–described in Section 2. Results,

discussed in Section 4, highlight the benefits of sparse classification rules, and enhance

the evidence for differences between the temporal dynamics of both stages. Further, the

generalization ability of S-SVM is explored through a cross-database evaluation.

The present work complements and strengthens preliminary attempts reported in

(Spilka et al. 2016a, Spilka et al. 2016b, Spilka et al. 2017).

2. Data: databases and datasets

2.1. Databases

Two independent large-size databases are used in the present work. They were

collected—with different technologies and constraints—at academic hospitals in Lyon,

France (LDB), and Brno, Czech Republic (BDB). They share comparable clinical

characteristics in terms of gestational age larger than 36 weeks, cf. Table 1 for details.

For LDB, FHR data were collected at the French public Hospital Femme-Mère-

Enfant, from 2000 to 2010, during routine labor monitoring. The acquisition was

performed using STAN S21 or S31 devices (Neoventa Medical, Molndal, Sweden) via

internal fetal scalp electrodes (12-bit resolution and sampling rate 500 Hz). LDB

contains 3049 recordings, and is documented with relevant clinical information such as
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Table 1. Database and datasets. Clinical data, reported as mean (standard

deviation), for the LDB and BDB databases, and SI and SII datasets. Only operative

deliveries due to fetal distress only are included.

LDB BDB

Acidotic Normal Acidotic Normal

SI

# cases 29 1021 14 330
Umb. cord art. pH 7.01 (0.03) 7.24 (0.07) 7.00 (0.05) 7.26 (0.08)
Apgar score at 5 min 9.38 (0.90) 9.89 (0.53) 7.71 (1.77) 9.26 (0.89)
Birth-weight (g) 3367 (435.31) 3328 (471) 3344 (543.18) 3367 (449)
Male/female (n) 14 (48%) 547 (54%) 10 (71%) 170 (52%)
tII (min) 8.5 (5.2) 6.8 (5.1) 10.3 (4.8) 9.3 (3.9)
# Operative delivery 13 (45%) 213 (21%) – –

SII

# cases 27 735 12 116
Umb. cord art. pH 7.01 (0.04) 7.22 (0.06) 6.99 (0.05) 7.22 (0.07)
Apgar score at 5 min 9.56 (0.80) 9.90 (0.43) 7.67 (1.44) 8.91 (1.04)
Birth-weight (g) 3469 (397) 3365 (444) 3265 (437) 3421.81 (405)
Male/female (n) 13 (48%) 392 (53%) 5 (42%) 61 (53%)
# tII ≤ 15 min (n) 27.9 (9.8) 27.6 (9.8) 25.0 (4.3) 23.7 (4.3)
Operative delivery(n) 13 (48%) 152 (21%) – –

umbilical artery and venous pH after delivery and decision to intervene due to suspected

fetal acidosis, cf. (Doret, Massoud, Constans & Gaucherand 2011) for details.

For BDB, 552 FHR recordings were acquired at the Hospital in Brno, from 2010

to 2012, using STAN S21 or S31 scalp electrodes, or Avalon FM40 or FM50 Doppler-

based devices (Phillips Healthcare, Andover, MA), via either ultrasound probes or scalp

electrodes (12 bit resolution, sampling rate 4 Hz). BDB has been made an open-access

database (Chudáček, Spilka, Burša, Jank̊u, Hruban, Huptych & Lhotská 2014).

Tracings were included in the present study according to clinical and data-quality

criteria (Doret, Massoud, Constans & Gaucherand 2011, Spilka et al. 2017): gestational

age ≥ 37 weeks, maternal age ≥ 18, tracing ending less than 20 minutes before delivery,

after-delivery pH measurement available, less than 50% of missing data in either stage

of the delivery process.

2.2. Datasets

For each database, tracings are split into two datasets, depending on the duration of the

second stage (tII): Set SI is defined as tII ≤ 15 min and corresponds to births during

stage I or in the early phase of the stage II. Set SII corresponds to tII > 15 min and

thus to births during (a possibly long) stage II.

Assessment of the newborn’s health status at delivery is based on pH, measured

from an immediate post-birth umbilical-cord-artery blood sample, and used as a signa-

ture of fetal acidosis in the minutes before delivery (Amer-Wåhlin et al. 2001). Subjects

were hence split into two classes: acidotic defined as pH ≤ 7.05 and normal with

pH > 7.05. Clinical information on the resulting datastets is summarized in Table 1.
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2.3. Data preprocessing, FHR time series, and analysis

Collected tracings consist of a list of R-Peak intervals (RRi) in ms. They were first

corrected for outliers and missing data by a sliding median filter. RRi lists were

resampled using linear spline interpolation to yield regularly-sampled beat-per-minute

(bpm) time series X(t). Sampling frequencies were set to fs = 10 Hz for LDB and

fs = 4 Hz for BDB— due to the different sampling frequencies in both databases.

Because pH measured at delivery can only be reminiscent of the health status of

fetuses in the last minutes of labor, FHR analysis was only conducted in the last 20

min of the first stage for SI , and the last 20 min before delivery for SII , as sketched in

Fig. 1.

XNI
(t)

...
X2(t)

X1(t)

≤ 15 min.
stage IIstage I

I → II

XN2(t)

...

X2(t)

X1(t)
> 15 min.
stage IIstage I

I → II

Figure 1. Stage splitting. Analyzed FHR data are marked by the time windows

framed in rectangles boxes, corresponding to the last 20min of StageI (for StageI

dataset, left) and the last 20 min before delivery for StageII dataset (right).

3. Methods: Feature Design and Sparse Learning

3.1. Feature Design

Following preliminary works reported in (Spilka et al. 2016a, Spilka et al. 2016b, Spilka

et al. 2017), a set of 20 features is used, chosen amongst features either widely used in the

literature (such as automated FIGO-like features), derived from adult heart rate analysis

(such as spectral features), or more recently shown to be relevant for intrapartum fetal

heart rate analysis (such as scale-free features). Table A1 in Appendix A summarizes

the feature lists as well as other acronyms used throughout the manuscript.

3.1.1. Automated FIGO-like features (9). Nine FIGO-inspired features are used:

(β0, β1, LTV, STV,#acc,#dec,MADdt, Tstress, Adec), as devised in (Chudáček et al. 2011,

Spilka et al. 2012). They quantify: baseline B(t) level and evolution as B(t) =

β0 + β1t; long- and short-term variabilities (LTV, STV) (Ayres-de Campos et al. 2015);

accelerations/decelerations (Ayres-de Campos et al. 2015), via their numbers (#acc and

#dec), average depth (MADdt), average duration (Tstress) and average area (Adec).
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3.1.2. Spectral features (5). Spectral estimation is conducted over using the Welch

periodogram (Manolakis et al. 2005). For adults, energies in well-defined frequency

bands are known to be associated with the sympathetic/parasympathetic balance.

Because no widely-accepted equivalent definitions are available for fetuses (Siira

et al. 2013, Doret et al. 2015), the same bands as those for adults are used: very

low frequency EV LF ([0.003, 0.04] Hz), low frequency ELF ([0.04, 0.15] Hz), and high

frequency EHF ([0.15, 0.40] Hz). Further, the ratio LF/HF of ELF and EHF , and the

spectral index α (estimated over LF and HF ), are computed.

3.1.3. Scale-free features (6). Scale-free and multifractal features were recently shown

to offer relevant and robust alternatives to the classical measurements of long- and

short-term variabilities (STV and LTV), cf. (Doret, Helgason, Abry, Gonçalvès, Gharib

& Gaucherand 2011, Abry et al. 2013, Doret et al. 2015). The Hurst parameter H

(cf., e.g, (Samorodnitsky & Taqqu 1994) for a definition) is a linear feature, as it

describes the autocorrelation function or the Fourier spectrum, yet in a scale-free spirit

(Abry et al. 2013, Doret et al. 2015). It has been shown that it can be efficiently

and robustly computed from discrete wavelet transforms (Abry & Veitch 1998, Abry &

Didier 2018). Multifractal parameters (hmin, c1, c2, c3, c4) (cf., e.g., (Wendt et al. 2007)

for a definition) produce an advanced scale-free characterization of a time series’

variability. Indeed, they describe the fluctuations of its regularity along time, based

on the full dependence structure—not just the autocovariance. Efficient and robust

estimators of multifractal parameters are obtained from wavelet leaders, a nonlinear

transform of wavelet coefficients (Wendt et al. 2007). Parameters hmin and c1 remain

mostly driven by the autocorrelation and are hence closely related to H. Conversely,

parameters (c2, c3, c4) convey information not encoded in the autocorrelation and thus

complement H, c1, hmin. They are hence nonlinear features, quantifying the variability,

asymmetry and heavy-tailness in FHR’s temporal dynamics (Wendt et al. 2007, Doret,

Helgason, Abry, Gonçalvès, Gharib & Gaucherand 2011).

3.2. Sparse Learning

3.2.1. Support Vector Machine. A Support Vector Machine (SVM) is a classical

machine learning procedure (Hastie et al. 2009), already used for acidosis classification,

cf., e.g., (Warrick et al. 2010, Xu et al. 2014). Let xn ∈ RP denote P -dimensional feature

vectors for each of the N subjects, and let yn ∈ {−1, 1} be the corresponding class

labels. SVM produces a decision rule d = sgn(wTxn + b) to classify the subjects. The

parameters (w, b̂) are estimated by minimizing a functional that enforces classification

performance through the hinge loss function Fw,b(x, y) = max
(
0, 1− y(wTx + b)

)
:

(ŵ, b̂) ∈ argmin
w∈RP , b∈R

1

2
‖w‖22 + C

N∑
n=1

Fw,b(xn, yn), (1)

where the regularization hyper-parameter C > 0 controls data sparsity. Indeed, when
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solving Eq. (1), only a few samples (the so-called support vectors, whose overall amount

is indirectly induced by C) actually contribute to the design of the decision rule.

While (1) can be easily solved by gradient descent algorithms, SVM suffers from

several documented limitations (cf., e.g., (Warrick et al. 2010)): i) data sparsity

is not well suited to biomedical applications, where feature distributions are often

largely intertwined for the two classes; ii) decision rules involve essentially all proposed

features—ŵp 6= 0, ∀p—thus making their interpretation difficult (a severe impairment for

transfer towards clinical practice) ; iii) While SVM show some robustness to unbalanced

class sizes thanks to potential support vector sparsity, the special context of fetal acidosis

prediction is characterized with extremely unbalanced sizes of the acidotic and healthy

classes, N+/N− � 1, which requires special attention.

3.2.2. Sparse Support Vector Machine. To overcome such issues, feature selection

procedures were envisaged (Xu et al. 2014, Bron et al. 2015, Soguero-Ruiz et al. 2015).

Yet, the concatenation of two phases (feature selection and classification) casts shadows

on their joint optimality. Instead, Sparse Support Vector Machines (S-SVM) aim

to perform both operations jointly (Hastie et al. 2009, Bach et al. 2012, Laporte

et al. 2014, Chierchia et al. 2016). The condition of feature sparsity—involving as

few features as possible—requires trading away the data sparsity. This can be achieved

by imposing an `1-norm to the weights ŵ, a classical method to enforce as many zeros

in ŵ as can be (Blondel et al. 2013, Combettes & Wajs 2005). In turns, to ensure that

the resulting functional can actually be minimized, it is needed to square the hinge

loss function Fw,b(x, y). Theoretical alternative strategies are investigated in (Chierchia

et al. 2016).

Further, to account for the severe imbalanced class sizes in the fetal acidosis

prediction problem, we propose to modify the penalization term, consisting of a sum∑N
n=1 across all subjects in the database, by further splitting it into two weighted

sums according to the class sizes N+ and N−, with the additional introduction of

an hyperparameter λ. Like for hyper parameter C, its tuning (by cross-validation)

is expected to permit to optimize prediction performance.

The functional to minimize to estimate the S-SVM decision rule then reads:

(ŵ, b̂) ∈ argmin
w∈RP , b∈R

‖w‖1 + C
λ

N−

N−∑
n=1

F 2
w,b(xn, yn) + C

(1− λ)

N+

N+∑
n=1

F 2
w,b(xn, yn) (2)

where C controls the tradeoff between feature sparsity and classification performance,

and λ ∈ (0, 1) controls the balance between False Positives and False Negatives. In the

decision rule

d = sgn(wTxn + b) (3)

only few weights wp are non zero at the price though of increased difficulties to obtain

the minimum of (2). Indeed, the non differentiable nature of the `1-norm precludes

the use of gradients and requires that of more involved proximity operators (Blondel

et al. 2013, Combettes & Wajs 2005). For fixed hyper-parameters, (C, λ), Eq. 2 is



Sparse learning for intrapartum fetal heart rate analysis 8

solved in the primal space using a Forward-Backward Splitting Algorithm developed by

ourselves.

3.2.3. Hyper-parameter tuning: Cross validation. The selection of hyper-parameters

C and λ, as well as the assessment of generalization‡ performance, are challenging

issues. Hyper-parameter (C, λ) selection is here done using single-loop cross-validation

(SLCV) (Hastie et al. 2009). Generalization performance is estimated using double-loop

cross-validation (DLCV), nesting and repeating SLCV to obtain realistic and reliable

estimates (Spilka et al. 2017, Jonathan et al. 2000).

Following (Warrick et al. 2010, Dash et al. 2014), the decision rule threshold b is

adjusted to achieve the largest Specificity (SP ) for a Sensitivity (SE) above 0.7, i.e.,

the smallest number of False Positives (FP ) for at least 70% of True Positives (TP ).

4. Results: Sparse Learning, labor stages, cross-database evaluation

Using LDB only, Sections 4.1 and 4.2 first describe the benefits of sparse learning and

assess differences between SI and SII . Then, Section 4.3 quantifies the ability of the

decision obtained from LDB to generalize using the BDB database.

4.1. Single-feature acidosis prediction

4.1.1. Acidosis prediction performance. Table 2 reports acidosis prediction perfor-

mance, for each feature independently and for SI and SII separately, in terms of achieved

SP for a targeted SE above 0.70, balanced error rate BER = (SP+SE)/2, TP, FP, and

Area under Curve (AUC) computed from the Receiver-Operator-Characteristic (ROC)

curves (Fawcett 2006).

For SI , Table 2 shows that features quantifying decelerations achieve the best

performance, notably Adec, Tstress and MADdt (FIGO-like) and EVLF (spectral).

Interestingly, LTV and STV—classically used to assess FHR variability—yield poor

performance, while scale-free features H and c1—robust estimates of FHR variability

(Abry et al. 2013, Doret et al. 2015)—achieve satisfactory performance. This validates

both the importance of variability for acidosis prediction and the intuition that

variability should not be constructed on specific short or long time-scales, but should

rather be based on the scale-free paradigm. Baseline level β0 also yields satisfactory

performance, while baseline trend β1 surprisingly does not. In addition, spectral

features on the LF and HF bands have poor individual power for acidosis prediction—

confirming results in (Doret et al. 2015). Moreover, nonlinear scale-free feature c2 also

has satisfactory individual power, while higher-order non linear features {c3, c4} show

much poorer performance.

For SII , Table 2 yields essentially the same conclusions, yet showing that

decelerations are better accounted for by Tstress—quantifying the percentage of

‡ Performance achieved using data that were never used neither to tune (C, λ) nor to estimate (w, b).



Sparse learning for intrapartum fetal heart rate analysis 9

Table 2. Fetal acidosis prediction: univariate performance

SI SII

Feature: AUC SE SP BER TP FP AUC SE SP BER TP FP

β0 .65 .72 .53 .63 21 477 .51 .70 .18 .44 19 600
β1 .54 .72 .26 .49 21 760 .55 .70 .29 .50 19 523
#acc .50 .72 .17 .45 21 844 .55 .70 .30 .50 19 513
#dec .60 .72 .41 .56 21 608 .50 .70 .29 .50 19 518
Adec .71 .72 .59 .66 21 420 .56 .70 .36 .53 19 468
MADdt .76 .72 .64 .68 21 363 .63 .70 .49 .60 19 371
Tstress .73 .72 .69 .71 21 315 .71 .70 .58 .64 19 306
LTV .53 .72 .28 .50 21 737 .52 .70 .22 .46 19 570
STV .51 .72 .25 .49 21 767 .51 .70 .30 .50 19 517

LF/HF .59 .72 .49 .61 21 516 .50 .70 .30 .50 19 517
EVLF .75 .72 .68 .70 21 329 .62 .70 .51 .60 19 363
ELF .60 .72 .38 .55 21 633 .55 .70 .46 .58 19 394
EHF .50 .72 .28 .50 21 738 .58 .70 .47 .59 19 389
α .58 .72 .45 .59 21 563 .51 .70 .28 .49 19 530

hmin .67 .72 .53 .63 21 481 .62 .70 .47 .59 19 390
c1 .69 .72 .47 .60 21 541 .71 .70 .68 .69 19 236
c2 .66 .72 .54 .63 21 475 .66 .70 .50 .60 19 366
c3 .53 .72 .28 .50 21 731 .50 .70 .22 .46 19 573
c4 .50 .72 .10 .41 21 916 .64 .70 .51 .61 19 358
H .69 .72 .60 .66 22 403 .67 .70 .60 .65 19 295

underwent contractions—suggesting that too many or too close contractions alter the

fetus’ well-being. Also, and interestingly, variability is well accounted for by the

multifractal feature c1, which clearly outperforms the classical LTV and STV FIGO-

like features or any spectral feature.

In summary, Table 2 shows that single-feature performances are satisfactory for a

few FIGO-like features quantifying decelerations, and for scale-free features measuring

variability. Yet, none of the features, used as stand-alone decision rule, yield outstanding

performance, which motivates the investigation of the performance that can be obtained

from joint use of multiple features to construct acidosis prediction rules.

4.1.2. Feature correlations. As a preliminary step, Fig. 2 reports the correlations

amongst features. For SI , it shows that features quantifying decelerations—MADdt,

Adec and Tstress—are strongly correlated. Further, they are strongly correlated with

EV LF , indicating an association of very low frequencies and decelerations. Scale-

free features quantifying variability—H, c1, hmin—are highly correlated, as theoretically

expected (H and hmin are hence removed from multiple-feature analysis). However,

they are only weakly correlated to STV and LTV—thus confirming their different

performance. As expected, energies in frequency bands and LF/HF ratio are correlated

(Doret et al. 2015). Baseline features do not correlate with any other feature, thus

clearly carrying different information. Nonlinear features c2, c3, c4 are weakly correlated
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to linear features.

For SII , observations are essentially identical. Yet, overall correlation is observed

to be lower during SII , than during SI , indicating that during SII features measure

different aspects of FHR dynamics, while they are mostly related in SI .
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Figure 2. Feature correlation. Pairwise correlations for all pairs of features

independently for SI (left) and SII (right).

4.2. Multiple-feature analysis and Sparse learning

4.2.1. Learning setup. Multiple-feature acidosis detection rules are investigated using

the S-SVM methodology described in Section 3. Following preliminary results in (Spilka,

Abry, Goncalves & Doret 2014, Spilka et al. 2016b), three decision rules are estimated

for SI only, for SII only, and for SI and SII jointly. Hyper-parameter selection was done

jointly for (C, λ); their optimal values are shown in Table 3.

Fig. 3 reports, for each setting, the estimated w as a function of the sparsity

parameter log2C. Hyper-parameter selection was achieved jointly for (C, λ), yet, for

ease of exposition, Fig. 3 considers C only. The optimal λ are reported in Table 3 for

the sake of completeness, and shown to be close to 0.5 in both cases, suggesting that the

mere balance of miss-classifications by class sizes N+/N− is sufficient. Fig. 3 illustrates

that the smaller C is, the smaller the number of selected features (i.e., the larger the

number of w set to 0).

At the methodological level, Table 3, comparing SLCV and DLCV performances,

shows that SLCV performances systematically overestimate those of DLCV, since the

same data is used for training and parameter selection.

4.2.2. Stage I. For SI , Fig. 3 (left) and Table 5 (top) show that optimal performance

is achieved involving only a few features: 4 out of the 20 proposed ones. Interestingly,

3 of these are FIGO-like features: MADdt, Tstress and β0—the first two associated with

decelerations. Further, MADdt—characterizing deceleration duration and depth—plays

a central role. Despite having low performance as a standalone feature, baseline level
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Figure 3. S-SVM performance. Feature selection (top row) and classification

performance (bottom row) as function of the regularization parameter C, for each of

the three sparse learning analyses applied to SI only, SII only and both stages jointly.

Table 3. Acidosis prediction performance – LDB Database. Performance are

reported for DLCV (top) and SLCV (bottom) and different pairs of training / testing

datasets.

Tr / Te log2C λ SE SP BER #TP #FN #TN #FP

SI/SI -8 .49 .66 .74 .70 19 10 751 270
SII/SII -6.5 .51 .59 .71 .65 16 11 520 215
S/S -6 .47 .71 .66 .69 40 16 1160 596

SI/SI -8 .48 .71 .73 .72 21 8 743 278
SII/SII -7 .48 .72 .70 .71 20 7 514 221
S/S -6.5 .47 .72 .67 .70 41 15 1179 577

β0 is also involved, showing the relevance of this feature, whose nature is different, to

complement the decision rule. In addition, variability is also involved in the multiple

feature decision rule, yet using the scale-free feature c1 rather than the LTV and STV

ones. Table 5 indicates that acidotic fetuses, compared to healthy ones, are characterized

by larger values of MADdt and Tstress (larger impact of decelerations), by a higher

baseline β0, and a larger c1 (decrease in variability).

Table 3 (line 2) shows that this sparse and optimal decision permits to achieve

a SE of 0.66 for a SP of 0.74 (hence BER = 0.70). Table 4 (top panel) reports

clinical performance by obstetricians, showing satisfactory Specificity (SP) at the price

of a low Sensitivity (SE), and is used as a benchmark. To ease comparisons, Table 4

(mid and bottom panels) also reports S-SVM performance, where the parameter λ has

been tuned to match either the SE or the SP of the clinical benchmark, showing the

nonnegligible benefit of S-SVM. However, this matched-tuning does not correspond to

optimal sparse learning performance, as reported in Table 3. Further comparing Tables 3

and 4 clearly indicates that optimal Sparse Learning yields a substantial increase in the
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Table 4. Fetal acidosis prediction. Performance for SI and SII , computed from

clinical information (top panel, used as benchmark), and compared to those obtained

from S-SVM classifier tuned to match the either the SE or the SP of the clinical

benchmark (middle and bottom panels, respectively).

SE SP BER #TP #FP #FN #TN

Clinical

benchmark

SI .45 .79 .62 13 213 16 808
SII .48 .79 .64 13 152 14 583

S-SVM,

matched SE

SI .45 .89 .67 13 16 912 109
SII .48 .86 .67 13 14 632 103

S-SVM,

matched SP

SI .62 .79 .71 18 11 811 210
SII .56 .79 .68 15 12 586 149

tradeoff between SE and SP for both SI and SII . Interestingly, other works based on

different feature-selection procedures also concluded that a restricted number of well-

selected features were to be preferred to decision rules involving too many features, cf.,

e.g., (Georgoulas et al. 2017).

In summary, classification in SI strikingly selects a sparse decision rule with

two (essentially one) features for decelerations, one for baseline, and one for

variability—the two first being FIGO-like, the second being scale-free—and hence

yielding a decision rule based on the three major pillars in FIGO criteria (baseline,

variability, deceleration). Further and complementary comparisons are shared at

http://people.ciirc.cvut.cz/ spilkjir/Abry2018BPEXresults.html.

4.2.3. Stage I vs. Stage II. Comparing Table 3 to Table 4 indicates that sparse learning

improves on the clinical benchmark also for SII . Further, Fig. 3 (middle) shows that

optimal performance is obtained for a slightly lower level of sparsity (compared to SI),

hence involving 6 parameters, which further differ from those selected in SI (cf. Table 5

(middle)). Decelerations are still involved, but now Tstress and ELF become prominent:

the frequency and closeness of decelerations become discriminative rather than their

depth. A larger Tstress characterizes acidotic newborns, suggesting that too-frequent

maternal pushing in Stage II may have negative consequences for the fetus well-being.

Also, the number of accelerations #acc is selected and shows a decreased value for

acidotic fetuses, confirming that accelerations in FHR remain a sign of good fetal health.

Baseline almost does not contribute to the acidosis prediction in SII (only marginally

via β1). Variability is also strongly selected, but it is now measured both through c1 and

c2: An increased c1 in acidotic fetuses suggests a lower overall variability, whereas an

increased |c2| betrays sporadic burstiness and localized transient decreases of variability,

within the overall decrease.

The fact that different features are selected for SI and SII indicates that temporal

dynamics in each stage are different. Though lower than in SI , acidosis prediction

performance remains satisfactory (cf. Table 3). Interestingly, Table 3 also shows that
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Table 5. Selected feature statistics. Median (maximum absolute deviation) per

class for each selected feature in SI only, SII only, and both decision rules (S).

name w Acidotic Normal

SI

MADdt .90 20.3 (7.1) 10.1 (5.0)
β0 .38 156 (10) 147 (12)
c1 .18 0.65 (0.14) 0.54 (0.11)
Tstress .08 0.63 (0.13) 0.43 (0.20)

SII

Tstress .63 0.59 (0.09) 0.53 (0.13)
c1 .62 0.79 (0.12) 0.64 (0.13)
|c2| .32 0.19 (0.09) 0.16 (0.07)
ELF .30 36.2 (16.1) 39.7 (21.7)
#acc .14 0.0 (0.6) 0.0 (0.9)
β1(·1E5) .05 5.8 (94) -7.5 (94)

S

Tstress .74 0.61 (0.11) 0.49 (0.18)
c1 .36 0.71 (0.14) 0.58 (0.12)
|c2| .30 0.15 (0.08) 0.10 (0.07)
MADdt .27 20.4 (6.7) 13.6 (5.8)
EHF .26 5.14 (3.48) 5.20 (4.29)
β0 .19 153 (13) 147 (12)
ELF .17 25.2 (15.9) 22.5 (19.7)
β1(·1E5) .15 9.9 (74) -2.1 (71)

the decrease in performance when comparing SLCV and DLCV is larger for StageII,

thus suggesting that the learning stage is significantly more difficult, likely caused by a

wider inter-individual variety in FHR temporal dynamics for StageII.

For the analysis of SI and SII jointly, Fig. 3 (right) shows that a much larger number

of features is required, resembling a combination of those selected independently (cf.

Table 5). This confirms that temporal dynamics in SI and SII are actually different,

and that a decision rule that tries to be efficient on both stages somehow mixes them

up, decreasing overall performance (cf. Table 3).

In summary, since clinicians very well know when the second stage started, there is

no reason not to take advantage of that information by using individual, simpler decision

rules that are tailored (learned) for each stage—thus providing a better interpretation.

4.3. Sparse Learning and cross-database evaluation

So far, generalization performance, that is performance that would be achieved if

the learned decision rule was applied to data that were never used for the training,

was evaluated following the classical, yet computationally intensive and practically

demanding, DLCV procedure (Hastie et al. 2009), yielding the performance reported

in Table 3. Access to two independent databases (LDB and BDB) permits here to

evaluate generalization performance in an additional way, by learning the decision

rules on the larger LDB and then applying it to the smaller BDB. Table 6 indicates

that performance measurements thus achieved are comparable to those using DLCV
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on the LDB alone. This indicates that the proposed decision rules have a very good

generalization ability—a remarkable result since both databases differ in several respects

(FHR recording technique, data quality, class imbalance, sampling frequency,. . . cf.

Section 2). This suggests that S-SVM yields generalizable decision rules, and that such

a robustness comes as a by-product of their sparsity (or simplicity). Table 6 further

comforts the relevance of using independent decision rules for both stages: performance

using independent rules is much better than for joint ones.

Table 6. Generalization performance. Learning on the LDB Database,

performance evaluation on the BDB database.

Train/Eval AUC SE SP BER TP FN TN FP

SI/SI .78 .64 .80 .72 9 5 263 67
SII/SII .73 .58 .77 .68 7 5 89 27
S/S .72 .42 .81 .62 11 15 361 85
S/SI .66 .21 .86 .54 3 11 283 47
S/SII .76 .67 .67 .67 8 4 78 38

5. Conclusions and perspectives

The present contribution has quantified the benefits and performance of sparse

learning—as implemented by Sparse Support Vector Machines—for fetal acidosis

prediction through intrapartum FHR analysis. It has shown that, despite the availability

of a large number of features, decision rules only involving a few of them were favored.

Interestingly, decision rules essentially involved features associated to the three

major groups of FHR characteristics underlying FIGO definitions: Baseline level,

decelerations/accelerations, and variability. The present work also shows that FIGO-

like features remain competitive compared to those devised from advanced statistical

signal processing. However, as pointed out in previous works (Doret, Helgason, Abry,

Gonçalvès, Gharib & Gaucherand 2011, Abry et al. 2013, Doret et al. 2015)), scale-free

parameters H or c1 (and to a lesser extent c2) provide a far more robust assessment of

FHR variability than FIGO’s LTV or STV.

Sparse learning also yields decision rules that clearly differ for Stage I and Stage

II—evidencing significant differences in their temporal dynamics. Given that the stage

of delivery is a naturally available clinical information, there is a significant benefit in

using it to design stage-specific decision rules.

Finally, it has been shown that sparse learning achieves very satisfactory generalized

performance, in the sense that decision rules learned from one database can be

satisfactorily applied to another, even if collected in a different hospital, with different

acquisition devices and potentially slightly different clinical practice. This assessment is

permitted by the use of several and really different databases, which is rarely reported

in the scientific literature.
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The satisfactory performances achieved by the proposed sparse learning decision

rules, tailored to each stage and validated on an independent database, open the way

toward prototype implementations aiming at clinical-practice experimentation.

Future works will also include the assessment of both feature automated

computation and acidosis early detection with respect to data quality, notably with

respect to the level of missing data in Stage II. This requires further work to devise

routines that permits the robust computation of features and robust decision strategies

when data quality is poor.

Acknowledgments

Work supported by Grant ANR-16-CE33-0020 MultiFracs.

Access to computing and storage facilities owned by parties and projects

contributing to the National Grid Infrastructure MetaCentrum provided under the

programme Projects of Large Research, Development, and Innovations Infrastructures

(CESNET LM2015042) is greatly appreciated.

References

Abry P & Didier G 2018 Bernoulli 24(2), 895–928.
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Chudáček V, Spilka J, Burša M, Jank̊u P, Hruban L, Huptych M & Lhotská L 2014 BMC Pregnancy
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.

URL: http://dx.doi.org/10.1007/s12553-017-0201-7
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Appendix A. Abbreviation and Symbol list

Table A1. Acronyms and features list

G
en

er
al

FHR Fetal Heart Rate
FIGO International Federation of Gynecology and Obstetrics
SVM Support Vector Machine
S-SVM Sparse Support Vector Machine
LDB Lyon Database
BDB Brno Database
tI Duration of first stage
tII Duration of second stage
S Set of all records in a database
SI Set of records with tII ≤ 15 min
SII Set of records with tII > 15 min

F
ea

tu
re

s F
IG

O

β0, β1 Intercept and slope of linear fit of baseline
LTV Long-term variability
STV Short-term variability
#acc,#dec Number of accelerations and decelerations
MADdt Average depth of decelerations
Tstress Average duration of decelerations
Adec Average area of decelerations

S
p

ec
tr

. V LF , LF , HF Very low-, low-, and high-frequency ranges of FHR
EV LF , ELF , EHF Energy at each frequency range
α Spectral index

M
F H Hurst parameter

hmin, {cm}m=1,...,4 Multifractal features

P
er

fo
rm

an
ce

SLCV Single-Loop Cross-Validation
DLCV Double-Loop Cross-Validation
SP Specificity
SE Sensitivity
FP, TP Number of False and True Positives
BER Balanced Error Rate
AUC Area under ROC curve
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