Transition in a numerical model of contact line dynamics and forced dewetting - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Computational Physics Année : 2018

Transition in a numerical model of contact line dynamics and forced dewetting

J. Buongiorno
  • Fonction : Auteur
A. Guion
  • Fonction : Auteur
Y. Saade
  • Fonction : Auteur
R. Scardovelli
  • Fonction : Auteur
Stéphane Zaleski

Résumé

We investigate the transition to a Landau-Levich-Derjaguin film in forced dewetting using a quadtree adaptive solution to the Navier-Stokes equations with surface tension. We use a discretization of the capillary forces near the receding contact line that yields an equilibrium for a specified contact angle θ , called the numerical contact angle. Despite the well-known contact line singularity, dynamic simulations can proceed without any explicit additional numerical procedure. We investigate angles from 15° to 110° and capillary numbers from 0.00085 to 0.2 where the mesh size is varied in the range of 0.0035 to 0.06 of the capillary length l c. To interpret the results, we use Cox's theory which involves a microscopic distance r m and a microscopic angle θ e. In the numerical case, the equivalent of θ e is the angle θ and we find that Cox's theory also applies. We introduce the scaling factor or gauge function φ so that r m = /φ and estimate this gauge function by comparing our numerics to Cox's theory. The comparison provides a direct assessment of the agreement of the numerics with Cox's theory and reveals a critical feature of the numerical treatment of contact line dynamics: agreement is poor at small angles while it is better at large angles. This scaling factor is shown to depend only on θ and the viscosity ratio q. In the case of small θ e , we use the prediction by Eggers [Phys. Rev. Lett. 93 (2004) 094502] of the critical capillary number for the Landau-Levich-Derjaguin forced dewetting transition. We generalize this prediction to large θ e and arbitrary q and express the critical capillary number as a function of θ e and r m. This implies also a prediction of the critical capillary number for the numerical case as a function of θ and φ. The theory involves a logarithmically small ϵ = 1/ln(l c /r m) and is thus of moderate accuracy. The numerical results are however in approximate agreement in the general case, while good agreement is reached in the small θ and q case. An analogy can be drawn between the numerical contact angle condition and a regularization of the Navier-Stokes equation by a partial Navier-slip model. The analogy leads to a value for the numerical length scale r m proportional to the slip length. Thus the microscopic length found in the simulations is a kind of numerical slip length in the vicinity of the contact line. The knowledge of this microscopic length scale and the associated gauge function can be used to realize grid- independent simulations that could be matched to microscopic physics in the region of validity of Cox's theory.
Fichier principal
Vignette du fichier
Moving-contact-line-final.pdf (2.43 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02349305 , version 1 (13-11-2019)

Identifiants

Citer

S. Afkhami, J. Buongiorno, A. Guion, Stéphane Popinet, Y. Saade, et al.. Transition in a numerical model of contact line dynamics and forced dewetting. Journal of Computational Physics, 2018, 374, pp.1061-1093. ⟨10.1016/j.jcp.2018.06.078⟩. ⟨hal-02349305⟩
27 Consultations
55 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More