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Abstract
Gaussian discriminant analysis is a popular classifica-
tion model, that in the precise case can produce unre-
liable predictions in case of high uncertainty. While
imprecise probability theory offer a nice theoretical
framework to solve this issue, it has not been yet ap-
plied to Gaussian discriminant analysis. This work
remedies this, by proposing a new Gaussian discrimi-
nant analysis based on robust Bayesian analysis and
near-ignorance priors. The model delivers cautious
predictions, in form of set-valued class, in case of lim-
ited or imperfect available information. Experiments
show that including an imprecise component in the
Gaussian discriminant analysis produces reasonably
cautious predictions, in the sense that the number of
set-valued predictions is not too high, and that those
predictions correspond to hard-to-classify instances,
that is instances for which the precise classifier accu-
racy drops.
Keywords: Discriminant Analysis, Robust Bayesian,
Classification, Near-ignorance

1. Introduction

In machine learning, the classification task consists in seek-
ing to identify to which label (among a finite set K of such
labels) a new instance xxx ∈X belongs. The reliability of
this precise prediction may depend heavily on prior beliefs
(e.g., assumptions made by data analysts) and the nature
of training data set (e.g., in small amounts [15, 8] and/or
with high degree of uncertainty). A well-known genera-
tive model used to perform the classification task is the
Gaussian discriminant analysis (GDA) [12, §4.3].

Let X ×K be the space of observations and possible
labels, with X ∈X = Rp a multivariate random variable
and Y ∈K ={m1, ...,mK} the set of labels. The main goal
of GDA is to estimate the theoretical conditional probability
distribution (c.p.d) PY=mk|X of the class Y = mk given the
observation X via Bayes’ theorem as follows

PY=mk|X =
PX |Y=mk

PY=mk

∑ml∈K PX |Y=ml
PY=ml

. (1)

Thus, quantifying PY=mk|X is equivalent to quantify PX |Y=mk
and the marginal distribution PY . In precise probabilistic

approaches, this is typically done by using maximum like-
lihood estimation (MLE) and by making some parametric
assumptions about the probability density PY=mk|X , such as
assuming that they are Gaussian probability distributions
(g.p.d), in order to find a plausible estimate (see Section
3.1). However, such precise estimates usually have trou-
ble differentiating various kinds of uncertainties [19], such
as uncertainty due to ambiguity (mixed classes in some
areas of the input space) and uncertainty due to lack of
knowledge or information (limited training data set induc-
ing biases in estimates [6]). In both cases, it may be useful
to provide set-valued, but more reliable predictions, espe-
cially for sensitive applications where we cannot afford to
make mistakes (see illustration in Figures 1(a) and 1(b) ).

While Bayesian methods may mitigate the impact of
limited information by using prior distributions, such prior
distributions arguably contain themselves a lot of informa-
tion. In order to properly model the absence of prior beliefs,
Walley [22, §4.6.9] proposed to use the generalized notion
of near-ignorance prior, which must respect certain prop-
erties [3, §2] we would expect from an uncertainty model
of ignorance, while allowing one to learn from data.

Applied to classification problems, such approaches re-
sult in Imprecise classifiers that do not aim to do “better”
than their precise counterparts, nor to implement a rejection
option (i.e., not classifying at all) in case of ambiguity [13],
but to highlight those hard cases for which information is
insufficient to isolate a single reliable precise prediction,
and to propose a subset of possible predictions.

In this paper, we propose an extension of GDA model
to a new (cautious1) imprecise classification model, named
Imprecise GDA (IGDA), based on a robust Bayesian and
near-ignorance approach proposed in [3] and concentrating
on the imprecise estimation of the means µ of a set of
g.p.d. In other words, IGDA aims to better describe the
lack of evidence derived from limited information in the
data, resulting in a set of conditional distributions (or credal
set [16]) for every mk, noted PX |Y=mk

, instead of a single
c.p.d PX |Y=mk

.
In the following, we will first provide in Section 2 the

basics of precise classification learning from the point of
view of statistical decision theory [12, §2] and preference

1. Cautious and imprecise are here used interchangeably.
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(b) Cautious decisions-making

Figure 1: Cautious vs precise decision-making. We can remark in the figure (a) that precise model can produce many
mistakes for hard to predict unlabeled instances, in contrast to cautious model (b) where it recognizes such instances and
makes a cautious decision.

ordering of utility theory [4, §2.2], as well as the impre-
cise probabilistic extension of precise decision called the
maximality criterion [21]. In Section 3, we describe the
estimation of the model, both in the precise and imprecise
settings. Integrating this imprecise estimation with maxi-
mality criterion, we will present two variants of our IGDA
model in Section 4.

Finally, in Section 5, we perform some experiments with
different datasets and show a comparative table of results
with precise discriminant analysis model.

2. Preliminaries

In this section, we remind some notions of classical statis-
tical learning and decision-making used to build a precise
classification model, as well as basic notions needed to also
deal with sets of probabilities.

2.1. Classification setting

Let D = {(xxxi,yi)|i = 1, . . . ,N} be a training data set issued
from X ×K . In statistical decision theory, the aim of clas-
sification is to learn a model ϕ : X →K that minimizes
the risk of misclassification with respect to a loss function
L (·, ·) : K ×K → R. Such an optimal predictive model
can be defined as

ϕ̂ := argmin
y∈K

EY |X [L (y,ϕ(X))] (2)

When L is the classical zero-one loss function, where
L0/1(y, ŷ) is equal to 1 if y 6= ŷ (with ŷ := ϕ̂(xxx) obtained by
Equation (2)) and 0 otherwise, Equation (2) comes down
to choose as ϕ̂(·) the class maximizing the conditional
probability of Y given the unlabeled instance xxx /∈D :

ϕ̂(xxx) = argmaxmk∈K P(Y = mk|X = xxx). (3)

An alternative way of looking at this decision-making prob-
lem is to pose it as a problem of inferring preferences
between the labels, as follows:

Definition 1 (Precise ordering [4, pp. 47]) Given a gen-
eral loss function L (·, ·), a conditional probability distri-
bution PY |xxx and a new unlabeled instance xxx, ma is preferred
to mb , denoted by ma � mb, if and only if:

EPY |xxx [L (·,ma)]< EPY |xxx [L (·,mb)] (4)

Definition 1 tells us that exchanging mb for ma would incur
a positive expected loss, due to the fact that expectation
loss of mb is greater than of ma. In the particular case where
we use the loss function L0/1, it is easy to prove that:

ma � mb ⇐⇒ P(Y = ma|X = xxx)> P(Y = mb|X = xxx) (5)

where P(Y = ma|X = xxx) is the unknown conditional proba-
bility of label ma given a new unlabeled instance xxx. There-
fore, given a set of labels K , we can then establish a com-
plete preorder making pairwise comparisons (see figure 2),
and then, picking out the label which is maximal in that
pre-order as a final decision.

Example 1 Given a set of labels K = {ma,mb,mc}, a new
unlabeled instance xxx, and the probability estimates of the
conditional distribution P̂Y |X :

P̂(Y = ma|X = xxx) = 0.3,

P̂(Y = mb|X = xxx) = 0.1,

P̂(Y = mc|X = xxx) = 0.6,

the complete preorder over labels w.r.t. estimated proba-
bilities is mc � ma � mb where mc is the maximal predicted
label dominating all others (Figure 2).

mc ma mb

Figure 2: Graph of complete preorder on labels

Hence, whether we consider Equation (3) or (5), the
main task in precise probabilistic approaches is to estimate
the single conditional distribution PY |X which usually mod-
els the uncertainty in data. Yet, several authors [22, 10]
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have argued that a single distribution cannot always faith-
fully represent all uncertainties, and in particular lack of
information, and recommend using sets of probabilities (or
equivalent models) to represent it. This is the approach we
consider here, in order to derive a partial prediction in the
form of set of labels Ŷ ⊆K instead of a precise label ŷ
when we are unsure about the optimal decision.

2.2. Imprecise probabilities

Imprecise probabilities consist in representing our uncer-
tainty by a convex set PX of probabilities [22, 1], defined
over a space X , rather than by a precise probability mea-
sure PX [20].

Given such a set of distribution PX and any measurable
event A⊆X , we can define the notions of lower and upper
probabilities PX (A) and PX (A), respectively as:

PX (A) = inf
P∈PX

P(A) and PX (A) = sup
P∈PX

P(A) (6)

where PX (A) = PX (A) only when we have sufficient infor-
mation about A.

Estimations of parameters in the context of imprecise
probabilities is usually more complicated as we consider
a set PX of distribution instead of a single distribution
PX . That is why we rely in our case on an efficient infer-
ence model, the generalized Bayesian inference method
proposed by Benavoli and Zaffalon [3] (or robust Bayesian
inference) for exponential families, which we will present
in Section 3.2. For theoretical developments of the next
subsection, we will assume that we already know the set
PY |X of conditional distributions.

2.3. Decision making under imprecise probabilities

In the context of imprecise probabilities, we can find differ-
ent methods extending the decision criterion given in Defi-
nition 1 (for more details, see Troffaes [21]). For classifying
a new instance xxx, we will use the maximality criterion [1,
§8.6] that benefits from strong theoretical justifications [22,
§3.9.5] and often remains applicable in practice [25, 24, 2].
It extends Equation (4) and is defined as follows:

Definition 2 (Partial Ordering by Maximality Crite-
rion [21, §3.2]) Let L (·, ·) be a general loss function, xxx
an observed instance and PY |xxx a set of conditional proba-
bility distributions. ma is preferred to mb according to the
maximility criterion if the cost of exchanging ma with mb
has a positive lower expectation:

ma �M mb⇐⇒ inf
PY |xxx∈PY |xxx

EPY |xxx

[
L (·,mb)−L (·,ma)

]
> 0 (7)

if L (·, ·) is 0/1 loss function, ma �M mb if and only if:

inf
PY |xxx∈PY |xxx

P(Y = ma|xxx)−P(Y = mb|xxx)> 0 (8)

Equation (8) amounts to asking that Equation (4) is true
for all possible probability distributions in PY |xxx. In practice,
�M can be a partial order with several maximal elements,
in which case the prediction becomes imprecise due to high
uncertainty in the model. Note that when N→ ∞, cautious
and precise models will usually coincide. The prediction
ŶM resulting from �M is defined as:

ŶM =
{

ma ∈K
∣∣∣ 6 ∃mb ∈K : mb �M ma

}
(9)

Example 2 If our label space is K = {ma,mb,mc}, a pos-
sible partial ordering could be the following:

B = {ma �M mb,mc �M mb}

where ŶM = {ma,mc} is the predicted set obtained from the
set B of comparisons derived by the criterion of maximality
(Figure 3).

ma

mb

mc

Figure 3: Graph of partial order of set B .

3. Gaussian discriminant analysis model
A classical way, already mentioned in the introduction, to
estimate the distribution PY |X is by using Bayes’ theorem
and by assuming a specific form for PX |Y=mk

, in our case
a normality assumption. Making use of Equality (1), we
will discuss first the precise and then the retained imprecise
approach, respectively in Sections 3.1 and 3.2.

3.1. Statistical inference with precise probabilities

GDA focuses on a parametric estimation assuming that
PX |Y=mk

follows a multivariate Gaussian distribution
N (µmk ,Σmk)with mean µmk and covariance matrix Σmk , i.e.:

Gmk := PX |Y=mk
∼N (µmk ,Σmk) (10)

where their probability density function is written:

P(X = xxx|Y = mk) =
1

(2π)p/2|Σmk |1/2 e−
1
2 (xxx−µmk )

T Σ−1
mk

(xxx−µmk )

The marginal distribution can be defined as πy := PY ,
where P(Y = mk) = πmk . So, under a 0/1 loss function, the
optimal prediction becomes:

argmax
mk∈K

logπmk − log |Σmk |
1
2 − 1

2
(xxxT−µmk )

T
Σ
−1
mk

(xxxT−µmk ) (11)

where Θ = {θmk |θmk = (πmk ,Σmk ,µmk),∀mk ∈ K } is our
parametric space.
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In frequentist inference, usual estimation of parame-
ters of (11) is obtained by MLE using a subset Dmk =
{(xi,k,yi,k=mk)|i= 1, . . . ,nmk}⊆D of observations of train-
ing data. We have π̂mk = nmk/N (frequency of mk) and
µ̂mk = xxxmk (sample mean of Dmk ). Depending on whether
we assume hetero or homoscedasticity, we have respec-
tively Σ̂mk = Ŝmk (sample covariance matrix of Dmk ) or
Σ̂mk = Ŝ (within-class covariance matrix D). They are re-
spectively known as Quadratic and Linear discriminant
model [12, §4.3].

Those estimates do not account for the quantity of data
they are based on, which may be low to start with, and
will vary significantly across classes, especially in case of
imbalanced data sets. To solve this issue, we propose in
the next section an imprecise discriminant model, based on
the use of imprecise probabilities and using results from
Benavoli et al. [3].

3.2. Statistical inference with imprecise probabilities

To estimate PX |Y and PY in the form of convex sets of dis-
tributions, we will use robust Bayesian inference under
prior near-ignorance approach. Before describing our im-
precise estimates, we make three general assumptions for
our imprecise Gaussian discriminant model:

1. Hypothesis of normality of conditional probability
distribution PX |Y=mk

:= Gmk , as in the classical case.

2. A precise estimation of marginal distribution PY := π̂y.

3. A precise estimation of covariance matrix Σmk :=
Σ̂mk = Ŝmk or Ŝ (resp. homo- or hetero- scedastic case)

Relaxing these assumptions (in particular 3) is the matter
of future works.

3.2.1. ROBUST BAYESIAN INFERENCE

The estimation of parameters in Bayesian inference relies
mainly on two components; the likelihood function and the
prior distribution, from which posterior inferences can then
be made about the unknown parameters of the model, in
our case θmk .

In the particular case of PX |y=mk
, the likelihood function

is the product of conditional probabilities ∏
nmk
i Pxi,mk |yi,mk ,θmk

and the prior distribution Pθmk
models our knowledge about

θmk = (Σmk ,µmk). In this paper, we focus on estimating of
mean parameters (i.e. θmk = µmk ), assuming a (precise)
estimation of Σ̂mk . Thus, the posterior on the mean is such
that

P(µmk |Dmk) ∝

nmk

∏
i

P(X =xxxi,mk |µmk ,yyyi,mk
)P(µmk). (12)

To simplify, we will from now on remove the subscript mk,
always bearing in mind that these estimations are related to
a group of observations Dmk of label mk.

To make imprecise estimations in the form of convex set,
we will use a set of prior distribution Pµ , leading to a set
of posterior distributions Pµ|·. Besides, as we do not have
any prior belief about the unknown parameters µ , we will
use a set of prior distributions that represent this absence of
prior knowledge, while still allowing for learning, known
as “near-ignorance” priors.

3.2.2. NEAR-IGNORANCE ON GAUSSIAN
DISCRIMINANT ANALYSIS

Near-ignorance models allow us to provide an “objec-
tive inference” approach, representing ignorance about
unknown parameter and letting the data speak for them-
selves. Benavoli et al in [3] propose a new near-ignorance
model, about a multivariate random variable based on a set
of distribution M , which aims to reconcile two approaches,
namely, re-parametrization invariance and Walley’s near-
ignorance prior. For that, Benavoli et al define four minimal
properties, which must be satisfied whenever there is no
prior information about the unknown parameter, on the set
of distributions M (more details in [3, §2]).

(P1) Prior-invariance. That states that M should be in-
variant under some re-parametrization of the parame-
ter space (e.g. translation, scale, permutation, symme-
try, etc).

(P2) Prior-ignorance. That states that M should be suf-
ficiently large for reflecting a complete absence of
prior information w.r.t. unknown parameter, but not
too large to be incompatible with property (P3).

(P3) Learning from data. That states that M should al-
ways provide non-vacuous posterior inferences, in
other words, it should learn from the observations.

(P4) Convergence. That states that the influence of M on
the posterior inference vanishes when increasing num-
ber of observations, i.e. n→ ∞, requiring consistency
with the precise approach at the limit.

Benavoli et al in [3] provide a set of conjugate priors M
for regular multivariate exponential families [18, §3.3.4]
(FExp) that satisfy the last four properties under quite weak
assumptions. Borrowing from [3], we can define this set of
prior distributions M as follows:

Definition 3 (Prior near-ignorance for k-parameter ex-
ponential families [3, §4, eq. 16]) Let L be a bounded
closed convex subset of Rk strictly including the origin ([3,
lem. 4.5]).

L=
{
` ∈ Rk : `i ∈ [−ci,ci],ci > 0, i = {1, . . . ,d}

}
(13)
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Let W ∈ W = Rk be a random variable with probability
density function, if and only if for all `i 6= 0:

p(w) = exp(`T w)
k

∏
i=1

`i

exp(`iri)
1Wri

(wi), (14)

and

Wri =

{
(−∞,ri] if `i > 0
[ri,∞) if `i < 0

(15)

where `,r ∈ Rk k-real value. Otherwise, for all `i = 0 the
density p(w) becomes a multivariate uniform distribution
with Wri = [−ri,ri]. Given an ` ∈ L, it can be shown that
the following set of prior distributions (c.f. [3, th. 4.6])

M w=
{

w ∈W | p(w) ∝ exp(`T w), `= [`1, . . . , `k]
T∈ L

}
, (16)

satisfies (P1)-(P4) properties as well as conjugacy between
the likelihood and the set of posterior distributions.

Since our g.p.d. PX |y=mk
given by Equation (10) belongs

to FExp, we can use the set of prior distributions M µ of
Equation (16) in order to get a set of posterior distributions
M µ

n having the same functional form (FExp) [5, §5.2]:

M µ
n =

{
µ
∣∣xxxn, ` ∝ N

(
`+nxxxn

n
,

1
n

Σ̂

)}
(17)

where xxxn =
1
n ∑

n
i=1 xi and ` ∈ L. Using posterior expecta-

tions, we can estimate the lower and upper values of the un-
known µ parameters, so for every dimension i ∈ {1, . . . ,d}:

inf
M

µ
n

E[µi |xxxn, `] = E[µi |xxxn, `] =
−ci +nxxxn

n
(18)

sup
M

µ
n

E[µi |xxxn, `] = E[µi |xxxn, `] =
ci +nxxxn

n
(19)

As a result, we will have for each label mk a convex space
of plausible values (or hyper-cube) for the mean µmk which
can be represented by the convex set

Gmk=





µ̂mk∈Rd

∣∣∣∣∣∣∣

µ̂i,mk∈
[−ci +nmk xxxi,nmk

nmk

,
ci +nmk xxxi,nmk

nmk

]

∀i = {1, ...,d}, ci > 0




. (20)

Remark 4 The convergence property (P4) ensures us that
no matter the initial value of our convex space L, when
the number of observations tends to infinity, n→ ∞, their
influence on the posterior inference of µ̂ will disappear,
i.e., µ̂ = `+nxxxn

n −−−→
n→∞

xxxn, and will become the asymptotic
estimator of the precise Gaussian distribution.

On the basis of posterior estimator Gmk previously cal-
culated, we can write the set of conditional probability
distributions PX |y=mk

for every label mk ∈K as follows:

PX |y=mk
=

{
PX |y=mk

∣∣∣PX |y=mk
∼N (µmk , Σ̂mk ),µmk ∈Gmk

}
(21)

In what follows, we study how we can incorporate the
set of distributions PX |y=mk

in Gaussian discriminant anal-
ysis, using maximality (Definition 2) to get our (possibly)
imprecise classification.

4. Imprecise Classification with L0/1 loss
function

We first present our approach to make cautious classifi-
cation by using sets of conditional distribution given by
Equation (21) and obtained from a near-ignorance model.
Using the maximality criterion, to know whether ma �M mb,
we need to solve

inf
PY∈PY

inf
PX |ma∈PX |ma
PX |mb

∈PX |mb

[
P(X = xxx|y = ma)P(y = ma)−

P(X = xxx|y = mb)P(y = mb)
]
> 0

(22)

where the marginal P(X = xxx) = ∑ml∈Y P(X = xxx|Y =
ml)P(Y = ml), which is the same positive constant of nor-
malisation for each probability, can be omitted.

As conditional distributions sets PX |y=mk
are indepen-

dent of each others, we can rewrite Equation (22) as follows
(cf. [25, eq. 4.3]):

inf
PY∈PY

[
P(X = xxx|y = ma)P(y = ma)−

P(X = xxx|y = mb)P(y = mb)
]
> 0

(23)

where P (P) is the infimum (supremum) conditional proba-
bility. Also, applying Assumption 2, where every π̂y > 0,
Equation (23) is reduced to finding the two values

P(xxx|y = ma) = inf
PX |ma∈PX |ma

P(xxx|y = ma), (24)

P(xxx|y = mb) = sup
PX |mb

∈PX |mb

P(xxx|y = mb). (25)

As PX |y=mk
is a set of Gaussian distributions, the solu-

tions of Equations (24) and (25) are respectively obtained
for the following values of the means

µ
ma

= arg inf
µma∈Gma

− 1
2
(xxx−µma)

T
Σ̂
−1
mb
(xxx−µma), (26)

µmb
= argsup

µmb∈Gmb

− 1
2
(xxx−µmb)

T
Σ̂
−1
mb
(xxx−µmb), (27)

where Σ̂−1
mb

is the inverse of the covariance matrix (Assump-
tion 3). Depending on the internal structure of the precise
covariance matrix Σ̂catk , solving (26) and (27) may be more
or less computationally challenging. Here we explore the
most general cases, and omit the cases where Σ̂mk is a diag-
onal matrix due to space limitations.

In particular, we will explore the two following cases:
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Case 1 Imprecise Quadratic discriminant analysis
(IQDA): if we suppose that the covariance structures
of all groups of observations are different, that is
Σ̂mk = Ŝmk ,∀mk ∈K .

Case 2 Imprecise linear discriminant analysis (ILDA): if
we assume that all groups of observations have the same
covariance structure, that is Σ̂mk = Ŝ,∀mk ∈K .

In cases where there exists collinearity or multicollinear-
ity across features of covariance matrices, Σ̂mk will not be
invertible, in which case we use the singular value decom-
position (SVD) method for computing the pseudo-inverse
of the covariance matrix. Before studying the computa-
tional issues of IQDA and ILDA, we will illustrate the last
case (ILDA) in Example 3.

Example 3 The interest of modelling an imprecise mean is
to be able to detect areas where we should be cautious and
predict sets of labels rather than a single one. For example,
in Figure 4, we simulated two groups of observations xma∗
and xmb∗ (i.e. binary case), each with two non-correlated
regressors and different means:

( xma1
xma2

)
∼N (

(
0.25
0.5

)
,
(

1 0
0 1

)
)

( xmb1
xmb2

)
∼N (

(
0.5
−1.0

)
,
(

1 0
0 1

)
)

L=
{
` ∈ R2 : `i ∈ [−ci,ci],ci = 2

}

Figure 4(a) illustrates this example and pictures the fol-
lowing things: groups of observations xma∗ and xmb∗ with
the symbols ? and H, respectively, and the posterior con-
vex estimates G (solid) of the means after injecting the
information of training data.

We also drew (precise) mean of each group, i.e. µma and
µmb , as solid points in the centre of each square, and a
black dot (•) representing a new unlabelled instance xxx as
well as positions of solutions of Equations (26) and (27). In
the Figure 4(b), we observe an area of uncertainty in which
we would predict both classes (in purple on the figure), that
is generated by the imprecise mean and the maximality
criterion.

Let us now discuss the problem of solving Equations (27)
and (26). Expressing Gmb as constraints, the solution µmb
of (27) can be written as

µmb
= argsup −1

2
µ̂

T
mb

Σ̂
−1
mb

µ̂mb +qT
µ̂mb

s.t.
−c j +nx j,n

n
≤ µ̂ j,ma ≤

ci +nx j,n

n
qT =−xxx∗T Σ̂

−1
mb
,∀ j = {1, ...,d}

(BQP)

This optimisation problem is well-known as a box-
constraint quadratic program (BQP) [9], as (1) the con-
straint space Gmk is a convex space, and (2) Σ̂−1

mk
is a positive

(semi)-definite matrix, pending the fact that the covariance
matrix Σ̂mk does not have multicollinearity problems [14].
Computing an optimal global solution of this convex opti-
misation problem in polynomial time is easy using modern
libraries (e.g. CvxOpt python library).

Finding µ̂
ma

in Equation (26) is much more difficult, as
one seeks the optimal value

µ
ma

= arg inf
µ̂ma∈Gma

− 1
2

µ
T
ma Σ̂
−1
ma µ̂ma +qT

µ̂ma (NBQP)

That comes down to maximizing a convex function over
box-constraints Gma , which is known to be NP-Hard [17].
To solve it, we use a brand-and-bound (B&B) algorithm
[7, 23], that employs a finite branching based on the first-
order Karush-Kuhn-Tucker2 conditions and polyhedral
semidefinite relaxation in each node of the B&B tree (more
details in [7]).

5. Experiments setting
In this section, we provide first experimental results to
evaluate the performance of our two different imprecise
Gaussian discriminant models (cf. Section 4).

5.1. How can we choose parameter ci?

The choice of parameters ci determines the amount of
imprecision in our posterior inference. It should be large
enough to guarantee more reliable predictions when miss-
ing information, but small enough so as to provide informa-
tive predictions when possible. Therefore, in the absence
of prior information and for symmetry reasons, we will
consider a symmetric box around 0, as follows:

L
′
=
{
` ∈ Rk : `i ∈ [−c,c],c > 0, i = {1, . . . ,d}

}
. (28)

In order to fix a value of c, there exists different approaches
already mentioned in Section 4.3. of [3]. One can for exam-
ple rely on the rate of convergence of the lower and upper
posterior expectations [22]:

∀i
(
E[µi|xxxn, `]−E[µi|xxxn, `]

)
=

2c
n
−−−→
n→∞

0 (29)

meaning that for small values of c, we would reach a faster
convergence of Equation (29) to a precise posterior in-
ference (as precise models). A value of c ≤ 0.75 is rec-
ommended by [3, §4.3, §8], however since we are in a
classification problem, we will select an optimal value of
c through cross-validation on the training samples. More
precisely, we restrict c to the interval [0.01,5], discretised
into [0.01,0.02, ...,5], with the optimal value decided by
cross validation 10-folds on the training samples. A typical
empirical evolution of the accuracy measures used in the
next sections with the value of c is shown in Figure 5(c).

2. Also known as KKT, this one allows to solve problems of optimisa-
tion subject to non-linear constraints on the form of inequalities.
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Figure 4: Imprecise boundary area and estimation. Figure 4(a) shows an example of imprecise estimation mean µ∗, and
Figure 4(b) shows an imprecise decision area of color purple where the subset Ŷ ={ma,mb} of labels is the imprecise
decision dominating all the others (i.e. {a} or {b}).

5.2. Data sets and experimental setting

We perform experiments on 9 data sets issued from UCI
machine repository [11](cf. Table 1), following 10×10-
fold cross-validation procedure. We aim to compare the
performance of our imprecise Gaussian classifier model
approach with the existing precise models, i.e. Linear and
Quadratic Discriminant Analysis (resp. LDA and QDA).

# name # instances # features # labels
a iris 150 4 3
b wine 178 13 3
c forest 198 27 4
d seeds 210 7 3
e dermatology 385 34 6
f vehicle 846 18 4
g vowel 990 10 11
h wine-quality 1599 11 6
i wall-following 5456 24 4

Table 1: Data sets used in the experiments
Comparing indeterminate predictions given in the form

of a subset of plausible labels Ŷ against just one plausible
label ŷ is a difficult issue that mostly depends on the cir-
cumstances or the context in which a decision-marker may
or may not accept partial predictions (or cautious decision)
instead of unique, possibly risky ones. A good evaluation
should reward cautiousness provided by Ŷ when it allows
to include the true observed label, but not so much as to sys-
tematically privilege imprecision over precision. In other
words, we need an evaluation metric that seeks a compro-
mise between cautiousness and informativeness. To do this,
we adopt the evaluation metric proposed and theoretically
justified in [26], called utility-discounted accuracy, which
makes it possible to reward the imprecision in a more or
less strong way. It is written as follows:

u(y,Y ) =

{
0 if y /∈ Y,
α

|Y | − α−1
|Y |2 else.

(30)

[26] shows that a value α = 1 amounts to not reward cau-
tiousness and to confuse it with randomness, while α → ∞

does not penalize non-informativeness, as the vacuous pre-
diction (i.e. Ŷ = K ) would always get a full, guaranteed
reward. We will use the usual values u65 with α = 1.6 and
u80 with α = 2.2 (as in [24]). To have an intuition about
these measures, let us simply recall that the u65 (u80) mea-
sure rewards a binary correct prediction with 0.65 (0.80),
while a purely random, non-cautious guesser picking one
of the two possible label would reward it with 0.50. It there-
fore gives a “reward” of 0.15 for rightful cautiousness.

5.3. Experimental results

The average results obtained according to u65 and u80 utili-
ties, and the average execution time to predict the label of
a new unlabeled instance are shown in Table 2.

LDA ILDA QDA IQDA Avg.
time (sec.)# acc. u80 u65 acc u80 u65

a 97.96 98.38 97.16 97.29 98.08 97.13 0.56
b 98.85 98.99 98.95 99.03 99.39 99.09 1.49
c 94.61 94.56 94.05 89.43 91.77 88.90 12.14
d 96.35 96.59 96.51 94.64 95.20 94.72 1.50
e 96.58 97.06 96.94 82.47 84.24 84.05 19.24
f 77.96 81.98 79.59 85.07 87.96 86.13 3.10
g 60.10 67.45 62.41 87.83 89.96 88.40 4.95
h 59.25 65.83 60.31 55.62 65.85 60.36 34.85
i 67.96 71.34 66.65 65.87 71.79 69.75 10.77

avg. 83.68 86.05 84.03 80.34 87.16 85.33 10.1

Table 2: Average utility-discounted accuracies (%)

First, we can see that including some cautiousness can
increase our accuracies on most data sets, by picking the
right values of c. This increase is sometimes noticeable,
for example in the vehicle, wine-quality, wall-following
and vowel data sets. All of this, keeping a time execution
reasonable in view of the problems to be solved (e.g. a
non-convex, NP-hard problem), and without an optimized
implementation.
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Figure 5: Figure 5(a) shows how a precise model divides the instance space in three single different zones by label (i.e
{a},{b},{c}), the figure 5(b) shows how an imprecise model divides the instance space in different zones as much as
different combinations of a subset of labels (i.e {a},{b},{c},{a,b},{b,c}, and so on), and the figure 5(c) shows prediction
performance of ILDA model w.r.t. utility-discount accuracy and c tuning parameter on vowel dataset.

In order to highlight the major role of cautiousness of an
imprecise classifier model, we show in Figure 5(b) how, in
the IRIS data set, our ILDA model creates different areas
of decision boundaries (not to be confused with rejection
area), where each area represent a different combination
of subset of labels Ŷ ⊆K , in contrast to precise classifier
model (LDA), in Figure 5(a), where it creates one area for
each distinct label. Besides, in Figure 5(c), we show the
evolution of utility-discounted accuracy (i.e. u65 and u80),
with a standard deviation calculated by cross-validation 10-
fold on the training dataset, according to the imprecision of
estimators µ . As expected we notice that when c reaches a
too high value, the overall model performances decrease, as
it becomes too imprecise and non-informative with respect
to our attitude towards cautiousness (modelled through
utility (30)).
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Figure 6: (a) Correctness of the Imprecise LDA in the case
of abstention versus accuracy of the Precise LDA. (b) Cor-
rectness of the ImpreciseQLDA in the case of abstention
versus accuracy of the Precise QDA. Graphs are given for
the u80 accuracies.

An imprecise classifier should abstain (i.e. by providing
a set of plausible choices) on those hard instances where the

precise classifier makes an usual high amount of mistakes.
In Figure 6, we verify that our two imprecise classifiers fol-
low this desirable behaviour on most data sets, for the u80
measures (conclusions for the u65 are similar). Figure 6(a)
displays the percentage of time the true label is in the pre-
diction of ILDA, given that the prediction was imprecise,
versus the accuracy of LDA on those same instances. The
same graphs for the QLDA method is given by Figure 6(b).
We notice that on those hard instances where the precise
classifiers have a quite lower average accuracy than the
global one (i.e., make more mistakes than on the rest of
the data), our imprecise classifiers successfully overcome
them, getting the ground-truth value into partial predictions
(>80%). This is especially true for the linear case, where
for the dermatology data set (e), the accuracy on the im-
precisely classifier instances drop to 30% for the precise
classifier (with a global average of over 96%!), while the
imprecise classifier always include the true class. Our ap-
proach therefore seems to be able to well robustify the very
simple, linear decision frontiers of the ILDA models. For
instance, Figure 5(b) shows that we go from linear to piece-
wise linear frontiers when going imprecise, showing that
the approach does not simply amount to add a rejection
threshold when probabilities of classes are too similar, as
in this latter case the decision frontiers remain linear.

6. Conclusions

In this paper, we have proposed two new (cautious) impre-
cise classifiers, which generalize the well-known Linear
and Quadratic discriminant classifiers, with the purpose of
getting cautious inference in case of insufficient evidence
in the available information (i.e. datasets).

In future works, we intend to continue exploring other
approaches as well as the complexity of the associated
inferences. For instance, (1) we will study the impacts of
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considering a diagonal structure of the covariance matrix,
which would simplify the optimisation step but will reduce
the model expressivity, (2) we will release Assumption 2
and consider instead a set of marginals, in order to have an
idea of their influence in case of imbalanced datasets and
finally, (3) we will consider using a generic loss function
in order to generalize zero-one loss function (i.e. L0/1).

Another issue that we leave open is the one of estimating
an imprecise covariance matrix that makes computations
affordable, i.e., whose inverses correspond to an easy-to-
estimate and easy-to-deal with convex space of positive
definite matrices.
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