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A vector eld method for massless relativistic transport equations and applications

In this article, we present a vector eld method for the study of solutions to massless relativistic transport equations. Compared to [10], we remove the Lorentz boosts of the commutation vector elds and we prove a new functional inequality in order to derive pointwise decay estimates on the solutions. It makes our method more suitable for the study of systems coupling a massless Vlasov equation with an equation which has a dierent speed of propagation. We also believe that our approach can be adapted more easily to the context of curved backgrounds.

In the second part of this paper, we apply our method in order to derive sharp decay estimates on the spherically symmetric small data solutions of the relativistic massless Vlasov-Poisson system. No compact support assumption is required on the data and, in particular, the initial decay in the velocity variable is optimal. In order to compensate the slow decay rate of the particle density near the light cone, we take advantage of the null structure of the equations.

Introduction

The purpose of this article is to provide a methodologie for the study of massless relativistic transport equations which does not rely on the full Lorentz invariance of the operator 1 T := |v|∂ t +v i ∂ i . More precisely, our goal is to present a modication of the vector eld method developped by Fajman-Joudioux-Smulevici in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], which consists in 1. Commuting the equations by the vector elds of the set K 0 , which are • ∂ t , the translation in time, and ∂ k , for 1 ≤ k ≤ 3, the translations in space.

• S := t∂ t + r∂ r , the scaling vector eld in (t, x).

• S v := v i ∂ v i , the scaling vector eld in v.

• Ω ij := x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i , for 1 ≤ i < j ≤ 3, the complete lift 2 of the rotational vector eld Ω ij := x i ∂ j -x j ∂ i .

• Ω 0k := x k ∂ t + t∂ k + |v|∂ v k , for 1 ≤ k ≤ 3, the complete lift of the Lorentz boost Ω 0k := x k ∂ t + t∂ k .

2. Prove boundedness on L 1 norms of the form w p Z β f L 1 x,v , where Z β ∈ K |β| 0 is a combination of |β| vector elds of K 0 , p ∈ N and w ∈ k 0 is a weight preserved by T. The set k 0 is composed of

• v µ |v| , 0 ≤ µ ≤ 3. • s := t -x i vi
|v| , the scaling. • z ij := x i v j |v| -x j v i |v| , for 1 ≤ i < j ≤ 3, the rotations.

• z 0k := x k -t v k |v| , for 1 ≤ k ≤ 3, the Lorentz boosts.

3. Obtain pointwise decay estimates on

R 3 v
|f |dv through Klainerman-Sobolev type inequalities, such as

∀ (t, x) ∈ [0, T [×R 3 , R 3 v |g|(t, x, v)dv 1 (1 + t + r) 2 (1 + |t -r|) |β|≤3 Z β ∈ K0 Z β f (t, •, •) L 1 x,v , (1 
) which strongly relies on the use of the Lorentz boosts (see Theorem 6 of [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF]).

The vector eld method was introduced by Klainerman [START_REF] Klainerman | Uniform decay estimates and the Lorentz invariance of the classical wave equation[END_REF] in the context of wave equations. In order to apply it to the study of coupled wave equations with dierent speed of propation, Klainerman-Sideris adapted it in [START_REF] Klainerman | On almost global existence for nonrelativistic wave equations in 3D[END_REF] to a smaller set of vector elds V := {∂ t , ∂ 1 , ∂ 2 , ∂ 3 , S, Ω 12 , Ω 13 , Ω 23 } , which do not contain the Lorentz boosts Ω 0k := t∂ k + x k ∂ t . Recently, Fajman-Joudioux-Smulevici extended this method in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] to massless and massive relativistic transport equations. This leads in particular to the proof of the stability of Minkowski spacetime as a solution to the massive Einstein-Vlasov system [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] (see also [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF]). The aim of this paper is, as [START_REF] Klainerman | On almost global existence for nonrelativistic wave equations in 3D[END_REF] for the wave equation, to reduce the set of the commutation vector elds used in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] for the study of massless relativistic transport equations. More precisely, we will not use the complete lifts of the Lorentz boost vector elds Ω 0k = t∂ k + x k ∂ t + |v|∂ v k and we will commute the transport equations by

V := ∂ t , ∂ 1 , ∂ 2 , ∂ 3 , S, S v , Ω 12 , Ω 13 , Ω 23 = K 0 \ Ω 01 , Ω 02 , Ω 03 .
As a consequence, we cannot use the Klainerman-Sobolev inequality [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF] anymore in order to derive sharp asymptotics on the solutions as it requires a good control of Ω 0k f L 1 x,v . Instead, we prove and use the following functional inequality (see Proposition 2.11), which holds for all suciently regular function g,

R 3 v |g|(t, x, v)dv 1 (1 + |x|) 2 (1 + |t -|x||) |β|≤2 Ω β ∈ V |β| {t}×R 3 y R 3 v r Ω β (T(g)) dv |v| dy + |ξ|≤3 Z ξ ∈ V |ξ| {t}×R 3 y R 3 v 1 + t -x i v i |v| Z ξ g dvdy . (2) 
This modication of the vector eld method developped in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] is then adapted to the study of systems coupling a massless relativistic transport equation with a wave equation which has a dierent speed of propagation or with an elliptic equation. Moreover, our method is also more likely to be adapted to massless Vlasov equations on a curved background such as Schwarzschild spacetime, in the spirit of [START_REF] Dafermos | The red-shift eect and radiation decay on black hole spacetimes[END_REF] for the wave equation. In this perspective, let us mention that we only use the translations in space as commutators in order to deal with the domain r ≤ 1 and that we could avoid the use of the weights3 z 0k ∈ k 0 . Note that [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF] proved, using a vector eld method, an integrated decay result for solutions to massless relativistic transport equations on slowly rotating Kerr spacetime. Subsequently, we will apply our method in order to derive the asymptotic behavior of the spherically symmetric small data solutions of the relativistic massless Vlasov-Poisson system

|v|∂ t f + v j ∂ j f + σ|v|∇ i φ • ∂ v i f = 0 (3) ∆φ = v∈R 3 v f dv, (4) 
where

• σ ∈ {-1, 1}. If σ = 1
we are in the repulsive case and if σ = -1, we are in the attractive case.

• The particle density f depends on (t, x, v) ∈ R + × R 3 × (R 3 \ {0}). In view of its physical meaning, f is usually supposed non negative but since its sign play no role in this article, we do not restrict its values to R + .

• The potential φ depends on (t, x) ∈ R + × R 3 .

In the attractive case σ = -1 and for spherically symmetric solutions, the classical Vlasov-Poisson system, for which the transport equation ( 3) is replaced by

∂ t f + v j ∂ j f -∇ i φ • ∂ v i f = 0,
can be obtained in a weak eld and low velocity limit of the physically relevant Einstein-Vlasov system [START_REF] Rendall | The Newtonian limit for asymptotically at solutions of the Vlasov-Einstein system[END_REF].

No similar results are known for the massless and the massive 4 relativistic Vlasov-Poisson systems, although they are expected to be obtained as a weak eld limit of the Einstein-Vlasov system. Let us mention that when this supposed approximation does not hold, i.e. for strong eld, nite-time blow up phenomena are known [START_REF] Glassey | On symmetric solutions of the relativistic Vlasov-Poisson system[END_REF].

Our result can be stated as follows.

Theorem 1.1. Let > 0, N ≥ 12 and f 0 : R 3

x × R 3 v → R be a spherically symmetric function satisfying

|α|+|β|≤N +3 R 3 x R 3 v (1 + |x|) |α|+5 (1 + |v|) |β| ∂ α x ∂ β v f 0 dxds ≤ and |v| ≤ 2 ⇒ f 0 (•, v) = 0 .
Then, there exists 0 > 0 depending only on N such that, if ≤ 0 , then the unique classical solution (f, φ) of the relativistic massless Vlasov-Poisson system (3)-( 4) exists globally in time and satises the following properties.

• The particle density f vanishes for small velocties, i.e.

|v| ≤ 1 ⇒ f (•, •, v) = 0.
• Energy bounds for f :

∀ t ∈ R + , z∈k0 |β|≤N Z β ∈ V |β| R 3 x R 3 v |z| 2 Z β f (t, x, v)dvdx .
• Pointwise decay estimates on the velocity averages of f and its derivatives,

∀ (t, x) ∈ R + × R 3 , |β| ≤ N -3, R 3 v Z β f (t, x, v)dv (1 + |t -|x||) 2 (1 + |x|) 2 .
• Boundedness for the potential,

∀ t ∈ R + , |γ|≤N Z γ ∈V |γ| ∇ x Z γ φ L 2 (Σt) √ 1 + t
• Pointwise decay estimates for the potential,

∀ (t, x) ∈ R + × R 3 , |γ| ≤ N -3, |∇ x Z γ φ|(t, x) (1 + t)(1 + |x|) .
Remark 1.2. A similar result holds if we merely assume that f 0 vanishes for all |v| ≤ R, with R > 0. In that case, 0 would also depend on R.

Remark 1.3. Better estimates hold on the potential in certain cases. More precisely, if

Z γ φ is chargeless 5 , then ∇ x Z γ φ L 2 (Σt) (1 + t) -1 and if Z γ φ is spherically symmetric (and |γ| ≤ N -3), then |∇ x Z γ φ| (1 + t + |x|) -2 .
Remark 1.4. We start with optimal decay in v on the particle density in the sense that we merely require f 0 (x, •) to be integrable in v, which is a necessary condition for the source term of the Poisson equation [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d Vlasov-Maxwell system with small data[END_REF] to be well dened.

To our knowledge, no results are known on the asymptotic behavior of the solutions of the relativistic massless Vlasov-Poisson system. In [START_REF] Lemou | Stable self-similar blow up dynamics for the three dimensional relativistic gravitational Vlasov-Poisson system[END_REF], Lemou-Méhats-Raphaël proved the existence of a family of nite time blow-up self similar solutions to (3)-( 4) as well as the stability of their blow-up dynamic under radially symmetric pertubations. Concerning the classical system, the rst results in that direction were obtained by Bardos-Degond in [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF] where they proved global existence as well as optimal decay rates for R 3 v f dv and ∇φ. The optimal decay estimates for the derivatives were established later by [START_REF] Hwang | Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data[END_REF]. The study of the small data solutions of the relativistic massive Vlasov-Poisson system was initiated by Glassey-Schaeer [START_REF] Glassey | On symmetric solutions of the relativistic Vlasov-Poisson system[END_REF]. They proved global existence for non negative spherically symmetric solutions compactly supported in v in the repulsive case (σ = 1). In the attractive case (σ = -1), global existence is only guaranted under a smallness assumption and they proved that the solutions blow-up if the conserved energy

E 0 := R 3 x R 3 v f m 2 + |v| 2 dvdx + σ 2 R 3 x |∇ x φ| 2 dx, (5) 
where m > 0 is the mass of the particles, is initially negative. We point out that their blow-up result also holds for the massless Vlasov-Poisson system 6 (m = 0). Later, Kiessling and Tahvildar-Zadeh precised these results in [START_REF] Kiessling | On the relativistic Vlasov-Poisson system[END_REF] by providing critical norms beyond which there exists spherically symmetric initial data which give rise to solutions which blow-up. Recently, Wang proved in [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] global existence and sharp asymptotics on the small data solutions of the classical and relativistic Vlasov-Poisson system. Finally, let us also mention the anterior work [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] of Smulevici, which has been improved recently by Duan [START_REF] Duan | Sharp decay estimates for the vlasov-poisson and vlasov-yukawa systems with small data[END_REF], concerning the classical system. The asymptotic behavior of the solutions is derived using vector eld methods for both the particle density and the potential. We refer to [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF], [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] and [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for similar results on other massless Vlasov systems.

Main diculties

Recall that the central identity of the proof of7 ( 1) is

(t-r)∂ r = t t + r x i r Ω 0i - r t + r S, leading to (1+|t-|x||) ∂ r R 3 v |f |dv Z∈ K0 R 3 v |f | + | Z β f | dv.
The key step for obtaining (2) then consists in proving such an inequality without using any Lorentz boost. Instead we use the commutators of V, the weight s and the vector eld T, which makes our estimate adapted to the study of massless relativistic transport equations (see Proposition 2.8).

Remark 1.5. Note however that we do not fully recover in [START_REF] Bardos | Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data[END_REF] the decay rate of (1) for, say, t ≥ 2r. This issue can be solved by considering stronger weighted norms than the ones of (2) (see Proposition 2.11).

In the second part of this article, we study the small data solutions to the massless relativistic Vlasov-Poisson system. In contrast with the classical system, the Vlasov equation and the Poisson equation are of dierent nature. More concretely, [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] commute the Laplace operator with the uniform motions t∂ k and the (classical) transport operator ∂ t + v i ∂ i with t∂ k + ∂ v k . The relativistic transport operator T do not commute with t∂ k + ∂ v k but with the complete lift of the Lorentz boosts Ω 0k = t∂ k + x k ∂ t + |v|∂ v k which are much dierent from t∂ k . For this reason, we study the system (3)-( 4) by using a smaller set of commutation vector elds and we then crucially use our new decay estimate for massless Vlasov eld.

Another diculty arises from the small velocities (recall that v → f (t, x, v) is dened on R 3 \{0}). Indeed, the characteristics (X, V ) of the Vlasov equation (3) satisfy

Ẋ = V |V | and V (t) = ∇ x φ(t, X(t)),
so that the velocity part V can reach the value v = 0 in nite speed. We encounter a similar problem for the study of the massless Vlasov-Maxwell system in [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] and [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] and we proved that if the particle density f does not initially vanish for small veloties, then the system do not admit a local classical solution (see Proposition 8.1 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]). To circumvent this problem, we will then suppose that the velocity support of the Vlasov eld is initially bounded away from 0 and an important step of the proof will consist in proving that this property is propagated in time.

Finally, a crucial point of the proof consists in dealing with the weak decay rate of the solutions. In order to improve an energy bound on, say, Sf L 1

x,v , where S is the scaling vector eld, we will be led to control

I := t 0 R 3 x R 3 v ∇ x Sφ • ∇ v f dvdxds.
The problem is that, even for a smooth spherically symmetric solution (g, ψ) to

T(g) = |v|∂ t g + v i ∂ i g = 0, (6) ∆ψ 
= v∈R 3 gdv, (7) 
∂ v g essentially behaves as r|∇ x g| + Z∈ V | Zg| and ∇ x Sψ decay as (1 + t + r) -2 , which leads to

t 0 R 3 x R 3 v |∇ x Sψ • ∇ v g| dvdxds Z∈ V t 0 1 1 + s Zg(s, •, •) L 1 x,v ds log(1 + t).
In our case, this logarithmical growth on Sf L 1 x,v would give a slightly worse decay rate on ∇ x Sφ than the one on ∇ x Sψ, leading to

|I| Z∈ V t 0 log(1 + s) 1 + s Zf (s, •, •) L 1 x,v ds log 2 (2 + t) Z∈ V sup 0≤s≤t Zf (s, •, •) L 1 x,v
and preventing us to close the energy estimates. To circumvent this diculty, we take advantage of the null structure of the system (see Lemma 6.1) in order to get

|I| k<l Z∈ V t 0 R 3 x R 3 v |Ω kl Sφ|| Zf |dvdxds + w∈k0 Z∈ V t 0 R 3 x R 3 v |∇ x Sφ||w Zf |dvdxds.

Since

• the second term on the right hand side is uniformly bounded in time provided that w Zf L 1 x,v does not grow too fast,

• Ω kl Sφ vanishes since Sφ is spherically symmetric, one can expect to prove boundedness for Sf L 1

x,v and, more generally,

Z β f L 1 x,v .
Remark 1.6. It is the combination of three diculties which explains why our proof does not work for non spherically symmetric solutions. In order to expose them, let us return to our simplied system (6)- [START_REF] Dafermos | The red-shift eect and radiation decay on black hole spacetimes[END_REF]. The rst problem is related to the weak decay rate of

R 3 v
gdv and its derivatives near the light cone, leading, through standard elliptic estimate, to

∇ x ψ 2 L 2 (R 3 ) (t) q -1 ψ L 2 (R 3 ) (t) q R 3 gdv L 2 (R 3 ) (t), (8) 
where q is a well chossen function of (t -|x|, t + |x|). One can then obtain8 ∇ x ψ L 2 (R 3 ) (1 + t) -1 2 by applying a Hardy type inequality such as the one of Appendix B of [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] and by taking advantage of the strong decay rate in t -|x| of the Vlasov eld. This would lead, using a Klainerman-Sobolev type inequality, to the following pointwise decay estimate on ψ,

|∇ x ψ|(t, x) 1 (1 + |x|) √ 1 + t ,
which is much worse than the one obtained by our method in the spherically symmetric case. A second diculty arises from the terms such as Ω kl Sψ, which do not vanish anymore. One way to deal with these issues could be

• to use that (1 + |t -r|) -1 Ω kl Sψ behaves better than r∇ x Sψ and absorb the |t -r| weight in a Vlasov energy norm.

• To prove boundedness on the Vlasov eld using modication of the commutation vector elds of V and certain hierarchies in the commuted equations in the spirit of [START_REF] Fajman | The Stability of the Minkowski space for the Einstein-Vlasov system[END_REF] for the Einstein-Vlasov system and [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d Vlasov-Maxwell system with small data[END_REF] for the Vlasov-Maxwell system.

Unfortunately, at the top order, we cannot fully use the null structure of the system since we do not control

j<k Ω jk Z γ φ, where |γ| = N and N is the maximal order of commutation. This additional diculty then prevents us to close the energy estimates, even with the renement of our method mentioned above.

Basic notations

In this paper we work on the 3 + 1 dimensionsal Minkowski spacetime (R 3+1 , η). We will use two sets of coordinates, the Cartesian (x 0 = t, x 1 , x 2 , x 3 ), in which η = diag(-1, 1, 1, 1), and polar coordinates (t, r, ω 1 , ω 2 ), which are dened globally on R 3+1 apart from the usual degeneration of spherical coordinates and at r = 0. The hypersurface of constant t, for t ≥ 0, will be denoted by

Σ t := {(s, x) ∈ R + × R 3 / s = t}.
In order to measure the decay rate of the velocity average of the Vlasov eld, it will be convenient to use the weights τ + := 1 + (t + r) 2 and τ -:= 1 + (t -r) 2 .

We denote by (e 1 , e 2 ) an orthonormal basis on the spheres and by / ∇ the intrinsic covariant dierentiation on the spheres (t, r) = constant. Capital Latin indices (such as A or B) will always correspond to spherical variables.

The velocity vector (v µ ) 0≤µ≤3 is parametrized by (v i ) 1≤i≤3 and v 0 = |v| since we study massless particles. We denote the spherical coordinates of the velocity vector by (v 0 , v r , v ω1 , v ω2 ) and we denote by / v its spherical projection. We then have

T = v µ ∂ µ , v r = x i v i , v ωi =< v, e i > and |/ v| 2 = v ω1 v ω1 + v ω2 v ω2 = v A v A .
We also introduce a spherical frame in v

(∂ |v| , ∂ θ 1 v , ∂ θ 2 v ).
Let us consider an ordering on each of the sets V and V, so that

V = {Z i , 1 ≤ i ≤ |V|} and V = { Z i , 1 ≤ i ≤ |V|}.
For multi-indices γ ∈ 1, |V| p and β ∈ 1, | V| q , with (p, q) ∈ N 2 , we dene Z γ and Z β such as

Z γ := Z γ1 ...Z γp and Z β := Z β1 ... Z βq .
If Z ∈ V \ {S}, we will denote by Z ∈ V the complete lift of Z, i.e.

∂ µ = ∂ µ and Ω ij = x i ∂ j -x j ∂ i + v i ∂ v j -v j ∂ v i = Ω ij . (9) 
The subset

V S := {∂ t , Ω 12 , Ω 13 , Ω 23 , S} (respectively V S := {∂ t , Ω 12 , Ω 13 , Ω 23 , S, S v } )
of V (respectively V) contains the commutation vector elds which preserve the spherical symmetry of a function of x (respectively (x, v)). We refer to Subsection 3.4 for more details.

Remark 1.7. We point out that even if we denote by Z β a combination of |β| vector elds of V, S and S v are not the complete lifts of a vector eld X µ ∂ µ . We make this choice of notation for simplicity. For more details on the commutation properties between the complete lifts of Killing vector elds and Vlasov equations, we refer to [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], Section 2.7 and Appendix C. For the purpose of this article, the informations given by ( 9) will be sucient.

As the Vlasov eld will be dened on [0, T [×R 3 × R 3 v \ {0} , we will use the notations R 3

x and R 3 v to denote respectively R 3 and R 3 \ {0}. We will also need to use χ : R → [0, 1], a cuto function satisfying

χ = 0 on ] -∞, 1 2 ] and χ = 1 on [1, +∞[. (10) 
The notation D 1 D 2 will be used for an inequality such as D 1 ≤ CD 2 , where C > 0 is a constant depending only on N ∈ N, the maximal order of commutation, and δ > 0, a small number. We will raise and lower indices using the Minkowski metric η. For instance, x µ = x ν η νµ so that x 0 = -t and x 1 = x 1 . Finally, for all suciently regular function φ : [0, T [×R 3

x → R, we introduce the operator T φ dened for all suciently regular function f

: [0, T [×R 3 x × R 3 v → R by T φ : f → v µ ∂ µ f + σv 0 ∇ x φ • ∇ v f.

Structure of the paper

In section 2, we present our vector eld method for massless relativistic transport equations which does not rely on the Lorentz invariance of the operator T. Section 3 contains the required energy estimates and commutation formula for our study of the massless relativistic Vlasov-Poisson system. We also present our strategy in order to deal with the problems caused by the small velocities and a non zero total charge. In Section 4, we set up the bootstrap assumptions and present the strategy of the proof. In Section 5, we prove pointwise decay estimates as well as L 2 estimates on the potential φ and then that the particle density vanishes for small velocities. Finally, the bootstrap assumptions, which only concern the Vlasov eld, are improved in Sections 6 and 7.

2 Pointwise decay estimates 2.1 Improved decay properties given by the weights preserved by T

As mentioned earlier, the use of the weights x iv i v 0 t could be avoided (see also Remark 2.14) and we then introduce the set k := k 0 \ {z 0k , 1 ≤ k ≤ 3}. For convenience, let us also introduce the weight z dened by

z 2 := w∈k0 w 2 . ( 11 
)
We start by a result which illustrates the good interactions between the weights of k 0 and the operator T or the commutation vector elds of V.

Lemma 2.1. The following properties hold.

1. For all w ∈ k 0 , w is preserved by T. More precisely, T(w) = 0.

2. k is preserved by the action of V. More precisely, for all

Z ∈ V and w ∈ k, Z(v 0 w) ∈ ±v 0 k ∪ {0}. Similarly, for all Z ∈ V and w ∈ k 0 , Z(v 0 w) ∈ ±v 0 k 0 ∪ {0}.
Proof. This follows from straightforward computations. For instance,

T(s) = v µ ∂ µ t -x i v i v 0 = v 0 -v i v i v 0 = 0 and S v (s) = v i ∂ v i t -x j v j v 0 = -x i v i v 0 + x j v j v i v i |v 0 | 3 = 0.
The following properties will be useful in order to gain decay using the weights of k 0 .

Lemma 2.2. We have

∀ t ≥ |x|, τ -≤ 1 + |s|, ∀ t ≤ |x|, τ -≤ 1 + 3 i=1 |z 0i | and τ + |/ v| v 0 1 + |s| + 1≤i<j≤3 |z ij |.
Proof. The rst two inequalities ensue from

s = t -x i v i v 0 ≥ t -|x| and 
3 i=1 |z 0i | ≥ x -t v v 0 ≥ |x| -t.
For the last one, we have

|/ v| 2 = v A v A and rv A =< v, re A >= C i,j A < v, Ω ij >= C i,j A z ij , where C i,j
A are bounded functions depending only on the spherical variables (ω 1 , ω 2 ). Consequently,

|/ v| ≤ v 0 , |/ v| ≤ 1 r i<j |z ij | and |/ v| ≤ i<j s t |z ij | r + x k v k trv 0 |z ij | |s| t + i<j |z ij | t .
Remark 2.3. Note also that the Morawetz weight m := (t 2 + r 2 ) v0 v 0 + 2tx i vi v 0 satises also T(m) = 0. We will not use it in this article but we point out that it can be used to derive strong improved decay estimates in the null direction as

v 0 - x i r v i v 0 (t + r) 2 |m|.
In [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF] or [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF], we only used the inequality v 0 -x i r v i v 0 t+r z.

These two lemmas directly imply that Lemma 2.4. T(z) = 0. Moreover,

∀ ( Z, p) ∈ V × R + , | Z(z p )| z p and ∀ (t, x) ∈ R + × R 3 , τ -≤ z.
In Section 5 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF], we proved that

Y ij := v i ∂ j -v j ∂ i is a null form.
The purpose of the following lemma is to recover this result without using the Lorentz boosts. Proposition 2.5. Let u : [0, T [×R 3

x → R be a suciently regular function and 1 ≤ i < j ≤ 3. We have

|Y ij u| = v i v 0 ∂ j u - v j v 0 ∂ i u 1 τ + k<l |Ω kl u| + w∈k |w∇ x u| .
Proof. Without loss of generality, we suppose that

(i, j) = (1, 2). Let us x (t, x) ∈ [0, T [×R 3 and note that the inequality is straightforward if t + |x| ≤ 1. Now, remark that v 1 ∂ 2 -v 2 ∂ 1 = 1 x 3 -v 1 Ω 23 + v 1 x 2 ∂ 3 + v 2 Ω 13 -v 2 x 1 ∂ 3 = 1 x 3 -v 1 Ω 23 + v 2 Ω 13 -v 0 z 12 ∂ 3 , v 1 ∂ 2 -v 2 ∂ 1 = 1 x 1 v 1 Ω 12 + v 1 x 2 ∂ 1 -v 2 x 1 ∂ 1 = 1 x 1 v 1 Ω 12 -v 0 z 12 ∂ 1 , v 1 ∂ 2 -v 2 ∂ 1 = 1 x 2 v 2 Ω 12 -v 2 x 1 ∂ 2 + v 1 x 2 ∂ 2 = - 1 x 2 v 2 Ω 12 -v 0 z 12 ∂ 2 .
As there exists 1

≤ k ≤ 3 such that x k ≥ 1 √ 3 |x|, we obtain v 1 v 0 ∂ 2 u - v 2 v 0 ∂ 1 u 1 r k<l |Ω kl u| + |z kl ∇ x u| . (12) 
Finally, the decay in the variable t can be obtained combining [START_REF] Hwang | Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data[END_REF] with

z kl r = sz kl tr + rv r z kl rtv 0 ≤ 2 |s| t + |z kl | t and Ω kl r u = sΩ kl tr u + rv r Ω kl rtv 0 u ≤ 2 |s||∇u| t + |Ω kl u| t .

Decay estimates for velocity averages

In this section we prove a functional inequality adapted for solutions to massless relativistic transport equations. We consider two suciently regular functions g : [0,

T [×R 3 x × R 3 v → R and φ : [0, T [×R 3
x → R and we start by proving a commutation property between our vector elds and the averaging in v.

Lemma 2.6.

∀ Z ∈ V \ {S}, Z R 3 v |g|dv ≤ R 3 v | Zg|dv and S R 3 v |g|dv ≤ R 3 v |Sg|dv.
Proof. Consider for instance

Ω ij = Ω ij -v i ∂ v j + v j ∂ v i .
We have, integrating by parts in v,

Ω ij R 3 v |g|dv = R 3 v Ω ij (|g|)dv - R 3 v v i ∂ v j -v j ∂ v i (|g|)dv = R 3 v Ω ij (|g|)dv
and it remains to note that Ω ij (|g|) = g |g| Ω ij g and to use the triangle inequality.

The next Lemma contains two analogous formulas. The rst one is simpler whereas the second one seems to be easier to adapt in the context of a curved background such as the Schwarzschild spacetime since no spatial translation are involved.

Lemma 2.7. We have

v i v 0 ∂ i (g) - v r v 0 ∂ r (g) 1 r i<j |z ij | |∇ x g| , R 3 v v i v 0 ∂ i (|g|) - v r v 0 ∂ r (|g|)dv 1 r i<j R 3 v |g| + | Ω ij g|dv.
Proof. For the rst formula, Lemma 2.2 gives us

v i ∂ i (g) -v r ∂ r (g) = v A e A (g) v 0 r i<j |z ij | • |∇ x g|.
For the second one, recall that rv

A = C i,j A v 0 z ij and re A = C i,j A Ω ij , with C i,j
A bounded functions depending only on the sperical variables (ω 1 , ω 2 ). Hence,

R 3 v v i v 0 ∂ i (|g|) - v r v 0 ∂ r (|g|)dv = R 3 v v A v 0 e A (|g|)dv 1 r i<j k<l R 3 v z ij r Ω kl (|g|)dv 1 r 3 i=1 k<l R 3 v v i v 0 Ω kl (|g|)dv + 1 r 3 i=1 k<l R 3 v v i v 0 (v k ∂ v l -v l ∂ v k )(|g|)dv .
It remains to integrate by parts in the last integral, use the triangle inequality and notice that

∂ v l v i v k v 0 1.
Recall that the proof of the Klainerman-Sobolev (1) crucially relies on the equality

(t -r)∂ r = - r t + r S + tx i (t + r)r Ω 0i .
The purpose of the following Lemma is to obtain a similar identity which does not involves any Lorentz boosts Ω 0i .

Lemma 2.8. We have,

τ -∂ r R 3 v |g|dv r R 3 v |T φ (g)| dv v 0 + R 3 v |s∇ t,x g|dv + R 3 v |g|dv + Z∈ V R 3 v | Zg|dv.
Proof. Start by noticing that

(t 2 -r 2 )∂ t g = ts∂ t g + tr v r v 0 ∂ t g -r 2 ∂ t g = ts∂ t g + r v r v 0 Sg -r 2 v r v 0 ∂ r g + ∂ t g = ts∂ t g + r v r v 0 Sg - r 2 v 0 T(g) + r 2 v i v 0 ∂ i g - v r v 0 ∂ r g .
We then deduce, using Lemmas 2.6 and 2.7, that

τ -∂ t R 3 v |g|dv ∂ t R 3 v |g|dv + 1 τ + R 3 v g |g| ts∂ t g + r v r v 0 Sg - r 2 v 0 T(g) + r 2 v i v 0 ∂ i g - v r v 0 ∂ r g dv r R 3 v T(|g|) dv v 0 + R 3 v |s∂ t g|dv + R 3 v |g|dv + Z∈ V R 3 v | Zg|dv. (13) 
To conclude the proof, remark that

R 3 v T(|g|) dv v 0 ≤ R 3 v T φ (|g|) dv v 0 + R 3 v -σ∇ x φ • ∇ v |g|dv ≤ R 3 v |T φ (g)| dv v 0 , (t -r)∂ r g = s∂ r g + r v r v 0 ∂ r g -r∂ r g = s∂ r g + v r v 0 -1 Sg + 1 - v r v 0 t∂ t g = s∂ r g + v r v 0 -1 Sg + s∂ t g + (r -t) v r v 0 ∂ t g.
and use Lemma 2.6 as well as |v r | ≤ v 0 and (13).

Remark 2.9. Note that we only used the space translations in order to control ∂ r g in the region r ≤ 1. If r ≥ 1, we could take advantage of the relation

∂ r = S r - t r ∂ t = S r - s r ∂ t + v r v 0 ∂ t .
Before proving pointwise decay estimates for

R 3 v
|g|dv, let us recall two classical Sobolev inequalities for velocity averages (on R 3

x and on the sphere S 2 ).

Lemma 2.10. Let H : R 3

x × R 3 v → R and h : S 2 × R 3 v → R be suciently regular functions. Then, with Ω β ∈ { Ω 12 , Ω 13 , Ω 23 } |β| , R 3 v |H|dv L ∞ (R 3 x ) ≤ R 3 v |∂ 1 ∂ 2 ∂ 3 H| dv L 1 (R 3 x ) , R 3 v |h|dv L ∞ (S 2 ) |β|≤2 R 3 v Ω β h dv L 1 (S 2 )
.

Proof. We refer to Lemma 3.5 of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for a proof of the second inequaly. For the rst one, use successively three times a one dimensional Sobolev inequality and then Lemma 2.6 in order to get

R 3 v |H|(x, v)dv = x 1 -∞ ∂ 1 R 3 v |H|(y 1 , x 2 , x 3 , v)dv dy 1 ≤ x 1 -∞ R 3 v |∂ 1 H|(y 1 , x 2 , x 3 , v)dvdy 1 = x 1 -∞ x 2 -∞ ∂ 2 R 3 v |∂ 1 H|(y 1 , y 2 , x 3 , v)dv dy 2 dy 1 ≤ x 1 -∞ x 2 -∞ R 3 v |∂ 2 ∂ 1 H|(y 1 , y 2 , x 3 , v)dvdy 2 dy 1 = x 1 -∞ x 2 -∞ x 3 -∞ ∂ 3 R 3 v |∂ 2 ∂ 1 H|(y 1 , y 2 , y 3 , v)dv dy 3 dy 2 dy 1 ≤ R 3 y R 3 v |∂ 3 ∂ 2 ∂ 1 H|dvdy.
We are now ready for the main result of this section.

Proposition 2.11. For all (t, x) ∈ [0, T [×R 3 and p ≥ 0, we have, with

Ω β ∈ { Ω 12 , Ω 13 , Ω 23 } |β| and Z ξ ∈ V |ξ| , R 3 v |g|(t, x, v)dv 1 (1 + |x|) 2 τ -   |β|≤2 Σt R 3 v r Ω β (T φ (g)) dv v 0 dx + |ξ|≤3 Σt R 3 v (1 + |s|) Z ξ g dvdx   , R 3 v |g|(t, x, v)dv 1 (1 + |x|) 2 τ 1+p -   |β|≤2 Σt R 3 v r z p Ω β (T φ (g)) dv v 0 dx + |ξ|≤3 Σt R 3 v z p+1 Z ξ g dvdx   .
Proof. We x p ≥ 0, (t, x) ∈ [0, T [×R 3 and we start by considering the case where |x| ≤ 1. Then, as

τ -≤ 1 + |s| by Lemma 2.2 and using the L 1 (R 3 ) -L ∞ (R 3 ) Sobolev inequality on R 3
x of Lemma 2.10, we have

τ 1+p - R 3 v |g|dv R 3 v |g| + |s 1+p g|dv |β|≤3 Σt R 3 v (1 + |s|) 1+p |∂ β x g|dvdx.
Otherwise, |x| ≥ 1 and Lemma 2.8 allows us to obtain

τ 1+p -|x| 2 R 3 v |g|(t, |x|ω, v)dv = -|x| 2 +∞ r=|x| ∂ r τ 1+p - R 3 v |g|(t, rω, v)dv dr +∞ r=|x| R 3 v τ p -|g|dv + τ 1+p - ∂ r R 3 v |g|(t, rω, v)dv r 2 dr +∞ r=0 τ p -   r R 3 v |T φ (g)| dv v 0 + R 3 v |s∇ t,x g|dv + |κ|≤1 R 3 v | Z κ g|dv   r 2 dr.
It remains to apply the L 1 (S 2 ) -L ∞ (S 2 ) Sobolev inequality of Lemma 2.10 to 1 v 0 T φ (g), g, s∇ t,x g as well as Zg and then to use the inequality τ p -≤ z p which comes from Lemma 2.4.

Remark 2.12. We could precise these estimates as follows. In the rst one, the proof gives that the weight s only hits derivatives Z ξ g composed of at least one translation and a similar observation can be done for the second estimate. These properties can be useful in order to exploit certain hierarchies in the commuted equations when one studies a Vlasov system (see [START_REF] Bigorgne | Sharp asymptotic behavior of solutions of the 3d Vlasov-Maxwell system with small data[END_REF] and [START_REF] Bigorgne | Asymptotic properties of the Vlasov-Maxwell system in the exterior of a light cone[END_REF]) but will not be used in this paper.

Remark 2.13. If one wants to fully recover the decay rate given by a standard Klainerman-Sobolev inequality as [START_REF] Andersson | Hidden symmetries and decay for the Vlasov equation on the Kerr spacetime[END_REF], which relies on Lorentz boosts, for a function f solution so T(f ) = 0, one needs to take p = 2 and then assume more decay initially on f (two powers of |x|).

Remark 2.14. The boosts x i -t v i v 0 are used here to gain decay in t -r in the region r ≥ t. We could prove a similar result without using them by propagating weighted L 1 norms in the region r ≥ t with the multiplier τ p -∂ t . Note that it would not required stronger initial decay on f and we then choose to work with z 0i for simplicity.

3 Preliminaries for the study of the relativistic massless Vlasov-

Poisson system

We consider, for all this section, (f, φ) a suciently regular solution to (3)-( 4) dened on [0, T [.

Commutation properties and energy estimates

In order to use a vector eld method to study the Vlasov eld, we will have to commute both equations.

Proposition 3.1. Let Z ∈ V \ {S}. We have

∆Zφ = R 3 v Zf dv, ∆Sφ = R 3 v Sf dv + 2 R 3 v f dv
and

T φ ( Zf ) = -σv 0 ∇ x Zφ • ∇ v f.
For the scaling in (t, x) and the one in v, we have

T φ (Sf ) = -σv 0 ∇ x Sφ • ∇ v f + 2σv 0 ∇ x φ • ∇ v f and T φ (S v f ) = 3σv 0 ∇ x Zφ • ∇ v f.
Proof. To commute the Poisson equation, we use that [∆, Z] = 0, [∆, S] = 2∆ as well as 

∂ µ R 3 v f dv = R 3 v ∂ µ f dv, S R 3 v f dv = R 3 v Sf dv and Ω ij R 3 v f dv = R 3 v Ω ij f dv,
S v v 0 ∇ x φ • ∇ v f = v i ∂ v i (v 0 )∇ x φ • ∇ v f + v 0 ∇ x φ • ∇ v S v f -v 0 ∂ v i (v i )∇ x φ • ∇ v f = v 0 ∇ x φ • ∇ v S v f -2v 0 ∇ x φ • ∇ v f.
Iterating this Proposition, one obtains Proposition 3.2. Let Z γ ∈ V |γ| and Z β ∈ V |β| . Then, There exists integers C γ ξ and C β κ,α such that

[T φ , Z β ](f ) = T φ ( Z β f ) = |κ|+|α|≤|β| C β κ,α v 0 ∇ x Z κ φ • ∇ v Z α f, ∆Z γ φ = |ξ|≤|γ| C γ ξ R 3 v Z ξ f dv.
In order to control the L 1

x,v norm of the derivatives of f , we will apply several times the following approximate conservation law. Proposition 3.3. Let g : [0, T [×R 3

x × R 3 v → R be a suciently regular function. Then,

∀ t ∈ [0, T [, g(t, •, •) L 1 x,v ≤ g(0, •, •) L 1 x,v + t 0 Σs R 3 v |T φ (g)| dv v 0 dxds.
Proof. Using the denition of T φ and integration by parts in x and in v, one has

t 0 Σs R 3 v T φ (|g|) dv v 0 dxds = t 0 Σs R 3 v ∂ t |g|dvdx + R 3 v Σs v i v 0 ∂ i |g|dvdx + σ Σs ∂ i φ R 3 v ∂ v i |g|dvdx ds = t 0 ∂ t Σs R 3 v |g|dvdxds = Σt R 3 v |g|dvdx - Σ0 R 3 v |g|dvdx.
It remains to use the triangle inequality and that

|T φ (|g|)| = g |g| T(g) ≤ |T φ (g)|.

The problem caused by the small velocities

In order to circumvent any problem with the characteristics of the operator

T φ reaching the value v = 0 / ∈ R 3 v , we introduce T χ φ : g → v µ ∂ µ g + χ(|v|)σv 0 ∇ x φ • ∇ v g
, where χ is the cuto function dened by [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF], and we will rst dene our solution (f, φ) as a solution to the system

T χ φ (f ) = 0, (14) ∆φ 
= R 3 v f dv. (15) 
We will suppose that f (0, •, v) vanishes for all |v| ≤ 2 and one step of the proof will consist in proving that

∀ |v| ≤ 1, f (•, •, v) = 0, so that T φ (f ) = T χ φ (f ) = 0. ( 16 
)
For this, we will study the characteristics (X, V ) of the operator T χ φ , which satisfy

Ẋ(t) = V (t) |V |(t) , V (t) = χ |V |(t) ∇ x φ (t, X(t)) .
In view of the denition of χ, none of the characteristics of

T χ φ can reach v = 0 since V = 0 if |V | < 1.
Consequently, we can use the method of the characteristics to express f (t, •, •) in terms of f (0, •, •). More precisely, for each (t, x, v) ∈ [0, T [×R 3

x × R 3 v , there exists a characteristic (X, V ) of T χ φ which is well dened on [0, t], which takes its value in R 3

x × R 3 v and such that (X(t), V (t)) = (x, v), so that

f (t, x, v) = f (t, X(t), V (t)) = f (0, X(0), V (0)). ( 17 
)
The problem of the operator T φ is that certain of its characteristics can reach v = 0 and because of that,

• if the initial data do not vanish for small velocities, the massless relativistic Vlasov-Poisson could fail to admit a local C 1 solution (see Section 8 of [START_REF] Bigorgne | Asymptotic properties of small data solutions of the Vlasov-Maxwell system in high dimensions[END_REF]).

• We cannot prove directly that (16) holds using the characteristics (X, V ) of the operator T φ . Indeed, if V reaches the value v = 0 / ∈ R 3 v , no formula such as (17) holds for (X, V ) since the characteristic would not be well dened for t = 0.

The problem caused by the non zero total charge

The total charge of the plasma

Q := R 3 x R 3 v f dvdx
is a conserved quantity in time. If Q = 0, i.e. if the plasma is not electrically neutral, the potential φ has restricted decay properties. Indeed, denoting by S t,r the sphere of radius r centered in the origin of Σ t , the divergence theorem gives

Q φ (t) := lim r→+∞ St,r ∂ r φdS t,r = Σt R 3 v ∆φdvdx = Q,
which implies that ∇ x φ cannot decay faster than r -2 if Q = 0. Consequently, one cannot expect to prove a better L 2 estimate than

∇ x φ L 2 (Σt) √ 1 + t .
In contrast, if the total charge Q ψ of a suciently regular function ψ : [0, T [×R 3 → R is equal to zero, one can expect ∇ x ψ to decay faster than r -2 . This will allow us to prove that the L 2 (Σ t ) norms of the chargeless derivatives of the potential φ decay as (1 + t) -1 . The following lemma is then particularly interesting.

Proposition 3.4. For all Z γ ∈ V |γ| , we have

• Q Z γ φ = (-1) |γ| Q φ if Z γ = S |γ| , • Q Z γ φ = 0 otherwise. Proof. Let Z ∈ V \ {S}.
Then, by the commutation formula of Proposition 3.1 and the divergence theorem,

Q Zφ (t) = Σt R 3 v ∆Zφ dvdx = Σt R 3 v Zf dvdx. If Z = ∂ k , 1 ≤ k ≤ 3 (respectively Z = Ω ij , 1 ≤ i < j ≤ 3), integration by parts in x (respectively x and v) gives Q Zφ (t) = 0. If Z = ∂ t , then, using T φ (f ) = 0, we get Σt R 3 v ∂ t f dvdx = - R 3 v v i v 0 Σt ∂ i f dvdx -σ Σt ∇ x φ • R 3 v ∇ v f dvdx = 0. (18) 
Applying Proposition 3.1, integrating by parts in x and using [START_REF] Lindblad | Global stability of Minkowski space for the EinsteinVlasov system in the harmonic gauge[END_REF], we get

Q Sφ (t) = Σt R 3 v t∂ t f + x i ∂ i f + 2f dvdx = - Σt R 3 v f dvdx.
The general case can be treated similarly making an induction on |γ| and using the commutation formula of Proposition 3.2) (we refer to the Appendix C of [START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for a more detailed proof in the context of the Vlasov-Maxwell system).

Derivatives preserving the symmetries of the solutions

Denition 3.5. Let g : [0, T ] × R 3 x × R 3 v → R and ψ : [0, T ] × R 3
x → R, with T ≥ 0, be suciently regular function. We say that g (respectively ψ) is spherically symmetric if

∀ 1 ≤ i < j ≤ 3, Ω ij g = 0
(respectively Ω ij ψ = 0 ). In that case, ψ does not depend on the spherical variables (ω 1 , ω 2 ) and g is a function of (t, |x|, |v|, x • v). We say that (f, φ) is a spherically symmetric solution to (3)-( 4) if f and φ are both spherically symmetric.

The following properties will be useful for the remaining of this paper. Proposition 3.6. If f (0, •, •) is spherically symmetric, then (f, φ) is a spherically symmetric solution to (3)-(4). Moreover,

• for all Z β ∈ V |β| S , Z β f is spherically symmetric provided that it is well dened. • For Z γ ∈ V |γ|
S , Z γ φ is spherically symmetric provided that it is well dened. Proof. According to Proposition 3.2, we have, for Ω a rotational vector eld,

T( Ωf ) = -σv 0 ∇ x Ωφ • ∇ v f and ∆Ω = R 3 v Ωf dv.
We then deduce that Ωf and Ωφ vanish since it is initially true, which imply that (f, φ) is spherically symmetric. The last two points of the Proposition then ensue from

[Ω, S] = [Ω, ∂ t ] = [ Ω, S] = [ Ω, S v ] = [ Ω, ∂ t ] = 0.
4 Bootstrap assumptions and strategy of the proof

In view of Propostion 2.11, we introduce for all (M, n) ∈ N × N * the following energy norms

E n M [g](t) = |α|+|β|≤M Σt R 3 v rz n-1 Z β T φ Z α g dv v 0 dx + |ξ|≤M Σt R 3 v z n Z ξ g dvdx.
The goal of the remaining of this article is to prove Theorem 1.1. We then consider f 0 a function satisfying the assumptions of Theorem 1.1 and (f, φ) the maximal solution to the modied massless relativistic Vlasov-Poisson system ( 14)-( 15) such that f (0, •, •) = f 0 . Note that there exists C > 0 such that9 E 5 N [f ](0) ≤ C and, considering possibly = C , we can suppose without loss of generality that C = 1. We x for all the remaining of the proof 0 < δ ≤ 1 4 and we consider T ≥ 0 the largest time such that

∀ t ∈ [0, T ], E 5 N -3 [f ](t) ≤ 3 (1 + t) δ , (19) 
∀ t ∈ [0, T ], E 3 N [f ](t) ≤ 3 (1 + t) δ , (20) 
∀ t ∈ [0, T ], E 2 N [f ](t) ≤ 3 , (21) 
∀ |β| ≤ N, ∀ t ∈ [0, T ], R 3 v Z β f dv L 2 (Σt) ≤ C L 2 1 + t , (22) 
where C L 2 > 0 is a suciently large constant which will be xed in Section 7. In view of standard wellposedness arguments and the smallness assumptions on the particle density f , we have T > 0. Theorem 1.1 will then follow if we improve these boostrap assumptions, for small enough, independently of T . Using Proposition 2.11, one immediately obtains from ( 19) and ( 21) that

∀ (t, x) ∈ [0, T ] × R 3 , |β| ≤ N -6, v∈R 3 v z 3 | Z β f |(t, x, v)dv (1 + t) δ τ 2 -(1 + r) 2 , (23) 
∀ (t, x) ∈ [0, T ] × R 3 , |β| ≤ N -3, v∈R 3 v | Z β f |(t, x, v)dv τ 2 -(1 + r) 2 (24) 
The remaining of the proof is divided in three parts. First, we prove boundedness and pointwise decay estimates on the potential φ, allowing us to prove that f vanishes for all |v| ≤ 1. Then, we improve the bootstrap assumptions ( 19)-( 21) concerning the L 1 norms of the particle density. Finally, we improve the boostrap assumption [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] on the L 2 norms of f .

Estimates for the potential

The purpose of this section is to prove the following result.

Proposition 5.1.

Let Z γ ∈ V |γ| . • If |γ| ≤ N , then ∀ t ∈ [0, T [, ∇ x Z γ φ L 2 (Σt) √ 1 + t .
Moreover, if the total charge Q Z γ φ is equal to 0, then

∀ t ∈ [0, T [, ∇ x Z γ φ L 2 (Σt) 1 + t . • If |γ| ≤ N -3, then ∀ (t, x) ∈ [0, T [×R 3 , |∇ x Z γ φ| (t, x) (1 + t)(1 + |x|) . Moreover, if Z γ φ is spherically symmetric, i.e. if Z γ ∈ V |γ| S , then ∀ (t, x) ∈ [0, T [×R 3 , |∇ x Z γ φ| (t, x) (1 + t + |x|) 2 .
Remark 5.2. Recall from Proposition 3.4 that

Q Z γ φ = (-1) |γ| Q φ if Z γ = S |γ| and Q Z γ φ = 0 otherwise.
Proposition 3.2 gives us that, for all |γ| ≤ N , there exists C γ ξ such that

∆Z γ φ = R 3 v g γ dv, with g γ := |ξ|≤|γ| C γ ξ Z ξ f. (25)
Hence, by the bootstrap assumptions ( 21) and ( 22) as well as the pointwise decay estimate (24), we have

∀ t ∈ [0, T [, Σt R 3 v z 2 |g γ |dvdx (26) ∀ t ∈ [0, T [, R 3 v |g γ |dv L 2 (Σt) 1 + t (27) ∀ (t, x) ∈ [0, T [×R 3 , R 3 v |g γ |(t, x, v)dv (1 + t + |x|) 2 , if |γ| ≤ N -3. ( 28 
)

The spherically symmetric derivatives

We derive here global bounds and pointwise decay estimates for the cases where Z γ ∈ V |γ| S , so that, according to Proposition 3.6, Z γ φ is spherically symmetric and (25) then becomes

∆Z γ φ = 1 r 2 ∂ r r 2 ∂ r Z γ φ = R 3 v g γ dv. ( 29 
) Proposition 5.3. If Z γ ∈ V |γ| S and |γ| ≤ N -3, we have ∀ t ∈ [0, T [×R 3 , |∇ x Z γ φ|(t, x) (1 + t + |x|) 2 .
Moreover, this estimate also holds for the higher order derivatives N -2 ≤ |γ| ≤ N in the region |x| ≥ 1.

Proof. Let |γ| ≤ N . Start by integrating (29) between 0 and r in order to get

r 2 ∂ r Z γ φ = r ρ=0 R 3 v g γ dvρ 2 dρ. ( 30 
)
Let us consider several cases.

• If r ≤ 1 and |γ| ≤ N -3, (28) gives |∂ r Z γ φ| (t, r) 1 r 2 r 0 (1 + t) 2 ρ 2 dρ r 3 (1 + t) 2 r 2 ≤ (1 + t) 2 .
• If r ≥ 1 and t ≥ 2r, we get by Lemma 2.4 and (26),

|∂ r Z γ φ| (t, r) 1 r 2 r 0 R 3 v |g γ |dvρ 2 dρ r 0 R 3 v z 2 1 + (t -ρ) 2 |g γ |dvρ 2 dρ 1 1 + t 2 r 0 R 3 v z 2 |g γ |dvρ 2 dρ 1 (1 + t) 2 Σt R 3 v z 2 |g γ |dvdx (1 + t) 2 .
• Otherwise, r ≥ 1 and r ≥ t 2 , so that 4r 2 ≥ (1 + r) 2 . One then gets, using again (26),

|∂ r Z γ φ| (t, r) 1 r 2 r 0 R 3 v |g γ |dvρ 2 dρ 1 (1 + r) 2 Σt R 3 v |g γ |dvdx (1 + r) 2 .
We now prove the following L 2 bounds.

Proposition 5.4.

Let Z γ ∈ V |γ| S with |γ| ≤ N . Then, ∀ t ∈ [0, T [, ∇ x Z γ φ L 2 (Σt) 1 + t if Q Z γ φ = 0, ∀ t ∈ [0, T [, ∇ x Z γ φ L 2 (Σt) √ 1 + t otherwise.
Proof. We x Z γ ∈ V |γ| S with |γ| ≤ N and we rst consider the region r ≤ 1. Multiplying (29) by r 4 ∂ r Z γ φ and integrating between 0 and r, we get

r 4 |∂ r Z γ φ| 2 = r ρ=0 R 3 v g γ dv • ∂ r Z γ φ • ρ 4 dρ ≤ r ρ=0 ρ 2 R 3 v g γ dv 2 ρ 2 dρ r ρ=0 |∂ r Z γ φ| 2 ρ 2 dρ 1 2 . ( 31 
)
Integrating in the variable r between 0 and 1, we obtain

∂ r Z γ φ 2 L 2 (|x|≤1) 1 r=0 ρ 2 r 2 R 3 v g γ dv L 2 (ρ≤r) ∂ r Z γ φ L 2 (ρ≤r) dr R 3 v g γ dv L 2 (Σt) ∂ r Z γ φ L 2 (|x|≤1) .
Using (27), we nally get

∂ r Z γ φ L 2 (|x|≤1) 1 + t . ( 32 
)
Now, recall from Proposition 5.3 that |∂ r Z γ φ|(t, x)

(1 + t + |x|) -2 for all |x| ≥ 1. Hence, ∂ r Z γ φ 2 L 2 (|x|≥1) +∞ r=1 r 2 (1 + t + r) 4 dr +∞ r=0 dr (1 + t + r) 2 1 + t .
This implies the result in the general case, which will be sucient for us to improve all the bootstrap assumptions. Let us now improve the decay rate for the chargeless derivatives of the potential, i.e. we suppose that Q Z γ φ = 0. According to (32), we only need to consider the regions 1 ≤ r ≤ t and r ≥ max(1, t), so that |Z γ φ|(t, x)

(1 + t + |x|) -2
. By (30) and using τ -≤ z (see Lemma 2.4), we have

∀ r ≥ 1, r 2 |∂ r Z γ φ| 2 ≤ r ρ=0 R 3 v g γ dvρ 2 dρ • ∂ r Z γ φ (1 + t) 2 r 0 R 3 v z 2 (1 + |t -ρ|) 2 g γ dvρ 2 dρ.
Integrating the last inequality between r = 1 and t, we obtain, using (26),

t r=1 |∂ r Z γ φ| 2 r 2 dr (1 + t) 2 t r=1 1 (1 + t -r) 2 r 0 R 3 v z 2 g γ dvρ 2 dρdr 2 (1 + t) 2 t r=0 dr (1 + t -r) 2 .
(33) Finally, note that, as Z γ φ is chargeless and spherically symmetric,

lim r→+∞ r 2 ∂ r Z γ φ = 1 4π lim r→+∞ St,r ∂ r Z γ φdS t,r = Q Z γ φ = 0.
Hence, multiplying (29) by r 2 and integrating between r ≥ t and +∞, we get

r 2 |∂ r Z γ φ| 2 = - +∞ ρ=r R 3 v g γ dvρ 2 dρ • ∂ r Z γ φ (1 + t) 2 +∞ ρ=r R 3 v z 2 (1 + |t -ρ|) 2 |g γ |dvρ 2 dρ.
Integrating the last inequality between r = t and +∞, one obtains, using (26),

+∞ r=t |∂ r Z γ φ| 2 r 2 dr (1 + t) 2 +∞ r=t 1 (1 + r -t) 2 +∞ r R 3 v z 2 g γ dvρ 2 dρdr 2 (1 + t) 2 +∞ r=t dr (1 + r -t) 2 . Then, ∇ x Z γ φ L 2 (Σt)
(1 + t) -1 follows from the last estimate, (33) and (32).

The other derivatives

If there is at least one space translation composing Z γ , the function Z γ φ is not spherically symmetric and we cannot make the same computations as in the previous subsection in order to prove estimates on it. Instead, we take advantage of the fact that for ψ solution to ∆ψ = F, with F a suciently regular function, ∇ x ∇ x ψ has a better behavior than ∇ x ψ. More precisely, applying the Calderón-Zygmund equality and then using the estimate ( 27), one has

∀ |α| ≤ N, ∇ x ∇ x Z α φ L 2 (Σt) = R 3 v g α dv L 2 (Σt) 1 + t , (34) 
which will allow us to prove the following result.

Proposition 5.5. Let Z γ ∈ V |γ| , with 1 ≤ |γ| ≤ N and which is composed of at least one space translation

∂ i , i ∈ {1, 2, 3}. Then, ∀ t ∈ [0, T [, ∇ x Z γ φ L 2 (Σt) 1 + t , (35) 
∀ (t, x) ∈ [0, T [×R 3 , |∇ x Z γ φ| (t, x) (1 + t)(1 + r) if |γ| ≤ N -2. ( 36 
)
Proof. Note rst that, for all i ∈ {1, 2, 3} and Z ∈ V,

[Z, ∂ i ] = 0 or ∃ k ∈ {1, 2, 3}, [Z, ∂ i ] = ±∂ k . (37) 
Consequently, if Z γ satises the hypotheses of the proposition, we have

|∇ x Z γ φ| |α|≤|γ|-1 |∇ x ∇ x Z α φ| (38) 
and the L 2 estimate is then implied by (34). We now focus on the pointwise decay estimates and we assume, without loss of generality (in view of (38)), that Z γ = ∂ k Z α , with |α| ≤ N -3 and k ∈ {1, 2, 3}. Fix also (t, x) = (t, |x|ω) ∈ [0, T [×R 3 . Applying a standard L 2 -L ∞ Sobolev inequality and using the energy bound (35), we get

|∇ x ∇ x Z α φ|(t, x) |β|≤2 ∇ β x ∇ x ∇ x Z α φ L 2 (Σt) |κ|≤N -1 ∇ x ∇ x Z κ φ L 2 (Σt) 1 + t ,
which gives us the expected decay rate in the region |x| ≤ 1. Otherwise, we have

|∇ x ∇ x Z α φ| 2 (t, rω) = -2 +∞ ρ=|x| ∂ r ∇ x ∇ x Z α φ • ∇ x ∇ x Z α φdρ ≤ 2 +∞ ρ=|x| |∂ r ∇ x ∇ x Z α φ| • |∇ x ∇ x Z α φ| ρ 2 |x| 2 dρ 2 |x| 2 +∞ ρ=0 |∇ x ∇ x ∇ x Z α φ| 2 + |∇ x ∇ x Z α φ| 2 ρ 2 dρ. Now, apply to ω → ∇ x ∇ x Z α φ and ω → ∂ r ∇ x ∇ x Z α φ the following L 2 Sobolev inequality on the unit sphere S 2 , v L ∞ (S 2 ) v L 2 (S 2 ) + / ∇v L 2 (S 2 ) + / ∇ / ∇v L 2 (S 2 ) .
Then, note that

• r / ∇ = (∂ ω1 , ∂ ω2
) on the sphere |x| = r and the angular derivative ∂ ωi , for i ∈ {1, 2}, satises

∂ ωi = k≤1<l≤3 C k,l (ω)Ω kl ,
where C k,l are bounded functions on the sphere S 2 .

• [Ω ij , ∂ k ] = δ i k ∂ j -δ j k ∂ i for all 1 ≤ i < j ≤ 3 and 1 ≤ k ≤ 3. Thus, we deduce that |∇ x ∇ x Z α φ| 2 (t, |x|ω) 1 |x| 2 |κ|≤N +∞ ρ=0 ω∈S 2 |∇ x ∇ x Z κ φ| 2 (t, ρω)dωρ 2 dρ ≤ 1 |x| 2 |κ|≤N ∇ x ∇ x Z κ φ 2 L 2 (Σt) ≤ (1 + t) 2 (1 + |x|) 2
by (34) and since |x| + 1 ≤ 2|x|.

This concludes the proof.

The Vlasov eld vanishes for small velocities

The purpose of this section is to prove that

|v| ≤ 1 ⇒ ∀ (t, x) ∈ [0, T [×R 3 , f (t, x, v) = 0. (39) 
This implies in particular the following result.

Proposition 5.6. The particle density f vanishes for all |v| ≤ 1, so that

T χ φ (f ) = T φ (f ) on [0, T [×R 3 x × R 3 v . Consequently, (f, φ) is a solution to the massless relativistic Vlasov-Poisson system (3)-(4) on [0, T [. Let x ∈ R n , |v| ≥ 2 and (X, V ) be the characteristic of the transport operator T χ φ satisfying (X(0), V (0)) = (x, v). We have in particular dV ds (s) = ∇ x φ(s, X(s)),
which implies, using the pointwise decay estimate on φ given by Proposition 5.1,

d(|V |) ds (s) = 2 ∇ x φ(s, X(s)), V |V | (s) ≤ 2 |∇ x φ| (s, X(s)) (1 + s) 2 .
Consequently, there exists C 0 > 0 independant of v such that

∀ t ∈ [0, T [, |V |(t) = |v| + t 0 d(|V |) ds (s)ds ≥ 2 - t 0 C 0 (1 + s) 2 ds ≥ 2 -C 0 +∞ 0 ds (1 + s) 2 .
By taking suciently small, we obtain inf [0,T [ |V | ≥ 1. In view of [START_REF] Lindblad | The global stability of Minkowski space-time in harmonic gauge[END_REF] and that f (0, •, w) = 0 for all |w| ≤ 2, we nally deduce that (39) holds.

6 Improvement of the boostrap assumptions [START_REF] Rendall | The Newtonian limit for asymptotically at solutions of the Vlasov-Einstein system[END_REF], [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF] and [START_REF] Taylor | The global nonlinear stability of Minkowski space for the massless Einstein-Vlasov system[END_REF] Recall from Proposition 3.3 that, for p ∈ N and |ξ| ≤ N ,

z p Z β f (t, •, •) L 1 x,v ≤ z p Z β f (0, •, •) L 1 x,v + t 0 Σs R 3 v T φ (z p Z β f ) dv v 0 dxds ≤ z p Z β f (0, •, •) L 1 x,v + t 0 Σs R 3 v z p T φ ( Z β f ) + pz p-1 T φ (z) Z β f dvdxds, (40) 
since 1 v 0 ≤ 1 on the support of f (see Proposition 5.6). Using the crude inequality10 r ≤ τ -+ t ≤ z(1 + t), which ensues from Lemma 2.4, as well as 1 v 0 ≤ 1 on the support of f , we have

Σt R 3 v rz p-1 Z β T φ ( Z α f ) dv v 0 dx (1 + t) Σt R 3 v z p Z β T φ ( Z α f ) dvdx. (41) 
As T(z) = 0 by Lemma 2.4 and according to commutation formula of Proposition 3.2, we then have, for

Q ≤ N , E p Q [f ](t) -E p Q [f ](0) t 0 Σs R 3 v |γ|+|κ|≤Q |κ|≤Q-1 z p ∇ x Z γ φ • ∇ v Z κ f + |β|≤Q |∇ x φ • ∇ v z| z p-1 Z β f v 0 dvdxds + |γ|+|κ|≤Q |κ|≤Q-1 (1 + t) Σt R 3 v z p ∇ x Z γ φ • ∇ v Z κ f v 0 dvdx. (42) 
The following lemma will then be useful. Lemma 6.1. Let Z γ ∈ V |γ| and g : [0, T [×R 3

x × R 3 v → R be a suciently regular function. Then,

v 0 |∇ x Z γ φ • ∇ v g| z r 1 + t + r |∇ x Z γ φ| |∇ x g| + |α|≤|γ| Z∈ V |∇ x Z α φ| | Zg|.
Proof. Start by expanding the scalar product

∇ x Z γ φ • ∇ v g in the spherical frame in v (∂ |v| , 1 |v| ∂ θ 1 v , 1 |v| ∂ θ 2 v ), so that v 0 ∇ x Z γ φ • ∇ v g = v 0 v i |v| ∂ i Z γ φ • v i |v| ∂ v i g + 2 i=1 v 0 |v| 2 (∇ x Z γ φ) θ i v (∇ v g) θ i v .
Note now that

v 0 v i |v| ∂ i Z γ φ • v i |v| ∂ v i g ≤ |∇ x Z γ φ| • v i ∂ v i g . Since v i ∂ v i ∈ V,
the right hand side of the previous inequality has the requested form. To deal with the remaining term, we use that

1 |v| ∂ θ i v = 1≤k<l≤3 C i k,l (θ 1 v , θ 2 v ) v k v 0 ∂ v l - v l v 0 ∂ v k ,
where C i k,l are bounded functions (on the sphere |v| = 1). Consequently,

v 0 |v| 2 (∇ x Z γ φ) θ i v (∇ v g) θ i v v 0 1≤k<l≤3 v k v 0 ∂ l Z γ φ - v l v 0 ∂ k Z γ φ 1≤k<l≤3 v k v 0 ∂ v l g - v l v 0 ∂ v k g 1≤k<l≤3 v k v 0 ∂ l Z γ φ - v l v 0 ∂ k Z γ φ 1≤k<l≤3 Ω kl g + x k ∂ l g -x l ∂ k g . 1≤k<l≤3 |∇ x Z γ φ| Ω kl g + r 1≤k<l≤3 v k v 0 ∂ l Z γ φ - v l v 0 ∂ k Z γ φ |∇ x g| .
The rst term on the right hand side of the last inequality has the requested form. For the second one, apply Lemma 2.5 in order to get

r 1≤k<l≤3 v k v 0 ∂ l Z γ φ - v l v 0 ∂ k Z γ φ |∇ x g| rz 1 + t + r |∇ x Z γ φ| |∇ x g| + 1≤k<l≤3 r 1 + t + r |Ω kl Z γ φ| |∇ x g| .
(43) Again, the rst term on the right hand side of the previous inequality has the requested form. To deal with the last one, remark that

• if Z γ ∈ V |γ| S ,
which means that there is no space translation in Z γ , then by Proposition 3.6, Z γ φ is spherically symmetric and 1≤k<l≤3 |Ω kl Z γ φ| = 0.

• Otherwise, Ω kl Z γ is composed of at least one space translation. Using the commutation properties between ∂ k and the vector elds of V (see (37)), we have

1≤k<l≤3 |Ω kl Z γ φ| |∇ x g| |α|≤|γ| |∇ x Z α φ| |∇ x g| ,
which concludes the proof.

We then deduce the following result, which, in view of (42), will clearly be useful in order to improve the energy estimates on the Vlasov eld.

Corollary 6.2. Let p ∈ {2, 3, 5} and Z β ∈ V |β| such that |β| ≤ N -3 if p = 5 and |β| ≤ N otherwise. Then,

t 0 Σs R 3 v v 0 |∇ x φ • ∇ v z| z p-1 Z β f dvdxds 2 .
Proof. Applying Lemma 6.1 with |γ| = 0 and g = z gives us 19)-( 21), we have

t 0 Σs R 3 v v 0 |∇ x φ • ∇ v z| z p-1 Z β f dvdxds t 0 Σs |∇ x φ| R 3 v z p-1   z|∇ x z| + Z∈ V Z(z)   Z β f dvdxds t 0 ∇ x φ L ∞ (Σs) R 3 v z p Z β f dv L 1 (Σs)
∇ x φ L ∞ (Σs) (1 + s) -2 and R 3 v z p Z β f dv L 1 Σs) (1 + s) δ , so that, as δ ≤ 1 4 , t 0 Σs R 3 v v 0 |∇ x φ • ∇ v z| z p-1 Z β f dvdxds t 0 (1 + t) 2 (1 + t) δ ds 2 +∞ 0 ds (1 + s) 3 2 2 .
Motivated by (42) and Lemma 6.1, let us introduce, for p ∈ N and multi-indices γ, κ, the following integrals

I p γ,κ (s) := Σs R 3 v z r 1 + t + r + 1 |∇ x Z γ φ| z p | Z κ f |dvdx.
The remaining of this section will be devoted to the proof of the following propositions. Then, for all t ∈ [0, T [,

I 5 γ,κ (t) 2 
(1 + t) Then, for all t ∈ [0, T [,

I 3 γ,κ (t) 2 
(1 + t) Then, for all t ∈ [0, T [,

I 2 γ,κ (t) 2 (1 + t) 5 4 
.

Since E 5 N [f ](0) ≤ , the combination of the energy inequality (42), Lemma 6.1, Corollary 6.2 and Proposition 6.3 (respectively 6.4 and 6.5) imply that, for all t ∈ [0, T [ and if is small enough, Using successively z 1 + t + r, the pointwise estimate on ∇ x Z γ φ given by Proposition 5.1 and then the bootstrap assumption [START_REF] Rendall | The Newtonian limit for asymptotically at solutions of the Vlasov-Einstein system[END_REF], we obtain

E 5 N -3 [f ](t) ≤ 2 (1 + t) δ (respectively E 3 N [f ](t) ≤ 2 (1 + t) δ and E 2 N [f ](t) ≤ 2 ).
I 5 γ,κ (t) (1 + r)∇ x Z γ φ L ∞ (Σt) R 3 v z 5 | Z κ f |dv L 1 (Σt) 1 + t E 5 N -3 [f ](t) 2 (1 + t) 1-δ , (44) 
which concludes the proof of Proposition 6.3. We now turn on Proposition 6. • If |γ| ≤ N -3, then, following the computations of (44) but using this time the bootstrap assumption (20), we get

I 3 γ,κ (t) 1 + t E 3 N [f ](t) 2 (1 + t) 1-δ .
• Otherwise, |γ| ≥ N -2 so |κ| ≤ 3 ≤ N -6. Hence, the pointwise decay estimate (23) and Proposition 5.1 gives us

∀ t ∈ [0, T [, R 3 v z 3 | Z κ f |dv L ∞ (Σt) (1 + t) 2-δ and Z γ φ L 2 (Σt) √ 1 + t .
Thus, using the Cauchy-Schwarz inequality in x and then in v, we obtain

I 3 γ,κ (t) Σt |∇ x Z γ φ| R 3 v z 4 Z κ f dvdx ∇ x Z γ φ L 2 (Σt) R 3 v z 4 Z κ f dv L 2 (Σt) √ 1 + t R 3 v z 3 Z κ f dv 1 2 L ∞ (Σt) R 3 v z 5 Z κ f dv 1 2 L 1 (Σt) 2 (1 + t) 3-δ 2 E 5 N -3 [f ](s)ds 2 (1 + t) 3 2 -δ 2 (1 + t) 1-δ . (45) 
6.2 Proof of Proposition 6.5

Let t ∈ [0, T [ and γ, κ be multi-indices satisfying

|γ| + |κ| ≤ N + 1, |γ| ≤ N and |κ| ≤ N. • If |γ| ≥ N -2, then I 2 γ,κ (t) ≤ I 3 γ,κ (t) 2 (1 + t) -5
4 by (45).

• Otherwise |γ| ≤ N -3 and we have, as τ -1 -≤ z by Lemma 2.4,

I 2 γ,κ (t) Σt R 3 v z r 1 + t + r + z τ - |∇ x Z γ φ| z 2 Z κ f dvdx.
Note now, according to Proposition 5.1, that for all (t, x) ∈ [0, T [×R 3 ,

r 1 + t + r + τ -1 - |∇ x Z γ φ| (t, x) r 1 + t + r + 1 1 + |t -r| (1 + t)(1 + r) (1 + t) 2 .
Consequently, using also the bootstrap assumption [START_REF] Smulevici | Small data solutions of the Vlasov-Poisson system and the vector eld method[END_REF], we nally get

I 2 γ,κ (t) (1 + t) 2 E 3 N [f ](s)ds 2 (1 + t) 2-δ 2 (1 + t) 5 4 
.

21
7 L 2 estimate for the velocity average of the Vlasov eld

The purpose of this section is to prove the following result.

Proposition 7.1. There exists C > 0, a constant depending only on N , such that

∀ |β| ≤ N, ∀ t ∈ [0, T [, R 3 v Z β f dv L 2 (Σt) ≤ C 1 + t .
This improves in particular the bootstrap assumption [START_REF] Wang | Propagation of regularity and long time behavior of the 3D massive relativistic transport equation II: Vlasov-Maxwell system[END_REF] provided that C L 2 is choosen larger than C + 1. Note rst that, using the Cauchy-Schwarz-inequality in v and then the pointwise decay estimate (24) as well as the bootstrap assumption (21), we have, for all |β| ≤ N -3 and t ∈ [0, T [,

R 3 v Z β f dv 2 L 2 (Σt) R 3 v Z β f dv L ∞ (Σt) R 3 v Z β f dv L 1 (Σt) (1 + t) 2 E 2 N [f ](t) 2 (1 + t) 2 .
It then remains to prove such an inequality for the higher order derivatives. For this, we proceed as in [START_REF] Fajman | A vector eld method for relativistic transport equations with applications[END_REF] (subsection 4.5.7) and we introduce

I := {β multi-index / N -5 ≤ |β| ≤ N } = {β 1 , ..., β |I| }, I := {ξ multi-index / |ξ| ≤ N -6} = {ξ 1 , ..., ξ |I| }.
Let also R and W by two vector valued elds of respective length |I| and |I| such that

R i = Z β i f and W i = Z ξ i f.
The goal now is to control the L 2 norm of

R 3 v |R|dv.
We put the derivatives of order N -5, N -4 and N -3 in I instead of J since our proof requires a pointwise decay estimate on

R 3 v z 3 |W |dv. Denition 7.2. We call good coecient any function c ∈ C ∞ (R 3 v , R) such that ∀ k ∈ N, ∃ C k > 0, |v| k ∇ k v c(v) L ∞ (R 3 v ) ≤ C k .
Note in particular that if c is a good coecient, such as v µ v 0 , and

Z β ∈ V |β| , then Z β (c) is uniformly bounded in v ∈ R 3 v .
Let us now rewrite the Vlasov equations satised by the components of R and W . We recall that the vector elds Y pq are dened by

Y pq = v p v 0 ∂ q - v q v 0 ∂ p , 1 ≤ p < q ≤ 3.

Proposition 7.3. There exists three matrix-valued functions

A : [0, T [×R 3 x × R 3 v → M |I| , B : [0, T [×R 3 × R 3 v → M |I|,|I| (V) and D : [0, T [×R 3 × R 3 v → M |I| (R) such that T φ (R) + AR = BW and T φ (W ) = DW. Moreover, if i ∈ 1, |I| , T φ (R i ) is a linear combination of terms of the form c γ j (v) • ∂ l Z γ φ • R j , c γ,p,q j (v) • x n • Y pq Z γ φ • R j , with |γ| ≤ N -6 and j ∈ 1, |I| , c α k (v) • ∂ l Z α φ • W k , c γ,p,q k (v) • x n • Y pq Z α φ • W k , with |α| ≤ N, k ∈ 1, |I| , (l 
, n, p, q) ∈ 1, 3 4 and where c γ j , c α k , c γ,p,q j , c α,p,q k are good coecients. Similarly, the matrix D is such that T φ (W k ) can be bounded by a linear combination of terms of the form

|∇ x Z γ φ • W k | , zr 1 + t + r |∇ x Z γ φ • W k | , with |γ| ≤ N and k ∈ 1, |I| .
The matrix valued eld W satises the following pointwise decay estimates,

∀ (t, x) ∈ [0, T [×R 3 , R 3 v z 3 |W |dv (1 + t) 2-δ and R 3 v |W |dv (1 + t) 2 . Proof. Let i ∈ 1, |I| so that R i = Z β i f , where |β i | ≥ N -5.
According to the commutation formula of Propositon 3.2, T φ (R i ) can be written as a linear combination of terms of the form

v 0 ∇ x Z γ φ • ∇ v Z β f, with |γ| + |β| ≤ N and |β| ≤ N -1.
Expanding it in the orthonormal spherical frame in v as in Lemma 6.1, we obtain terms such as

v m v 0 ∂ m Z γ φ • v m ∂ v m Z β f, c p,q (v) • Y pq Z γ φ • Ω ab Z β f, c p,q (v) • x n • Y pq Z γ φ • ∂ l Z β f, (46) 
where c p,q (v) is a good coecient and (n, l, a, b, p, q) ∈ 1, 3 6 .

• If |β| ≥ N -6, then ∃ j 1 , j 2 , j 3 ∈ 1, |I| , R j1 = v m ∂ v m Z β f, R j2 = Ω ab Z β f, R j3 = ∂ l Z β f and |γ| ≤ N -|β| ≤ 6 ≤ N -6.
• Otherwise, |β| ≤ N -7 and

∃ k 1 , k 2 , k 3 ∈ 1, |I| , W k1 = v m ∂ v m Z β f, W k2 = Ω ab Z β f, W k3 = ∂ l Z β f.
Hence, all the terms of (46) have the requested form. The construction of the matrix D directly follows from the commutation formula of Proposition 3.2, applied to Z ξ k f = W k , and Lemma 6.1. The pointwise decay estimates satised by

R 3 v
|W |dv are given by ( 23) and ( 24).

Let us now split R into two parts H + G, where

T χ φ (H) + AH = 0, H(0, ., .) = R(0, ., .), T χ φ (G) + AG = BW, W (0, 
., .) = 0.

In order to obtain an L 2 estimate on the velocity average of |R|, we will prove

• a pointwise decay estimate on x,v norm of H. The computations will be similar to those of Section 6 and we will in particular take advantage of the pointwise decay estimate that we have at our disposal on Z κ A, for |κ| ≤ 3. This will allow us to obtain an L 2 estimate on R 3 v |H|dv.

• Since we do not control the derivatives of the matrix B, one cannot commute the transport equation satised by G in order to derive pointwise estimates on it. For this, we introduce K, the solution of

T χ F (K) + AK + KD = B such that K(0, •, •) = 0. Now, remark that T χ φ (KW ) + AKW = BW and KW (0, •, •) = 0, which implies that G = KW . Recall that R 3 v |W |dv is a decaying function, so the inequality R 3 v |G|dv 2 L 2 (Σt) = R 3 v |KW |dv 2 L 2 (Σt) R 3 v |W |dv R 3 v |K| 2 |W |dv L 1 (Σt) R 3 v |W |dv L ∞ (Σt) R 3 v |K| 2 |W |dv L 1 (Σt) , (47) 
will allow us to prove an estimate on the L 2 norm of the velocity average of G, provided that we control

E G (t) := |I| i=0 |I| j=0 |I| q=0 Σt R 3 v K j i 2 |W q | dvdx. (48) 
Note that in view of the denition of W and R, G = KW and R vanish for |v| ≤ 1 according to Proposition 5.6. Since H = R -G, we deduce that H also satises this property. We then obtain Proposition 7.4. The vector valued elds H and G both vanish for all |v| ≤ 1, which implies that T φ (H) + AH = 0, H(0, ., .) = R(0, ., .).

Study of the homogeneous system

The purpose of this subsection is to obtain an L ∞ , and then an L 2 , estimate on

R 3 v
|H|dv through the use of Proposition 2.11. We will then be led to commute three times the transport equation satised by H and we then start by the following Lemma. Lemma 7.5

. Let i ∈ 1, |I| , Z β ∈ V |β| and Z ζ ∈ V |ζ| , with |β| + |ζ| ≤ 3. Then, Z ζ T φ ( Z β H i ) can be bounded by a linear combination of 1 + zr 1 + t + r |∇ x Z γ φ| | Z ξ H j |, with |γ| ≤ N -3, |ξ| ≤ 3 and j ∈ 1, 3 . (49) 
Proof. Let |ζ| + |β| ≤ 3 and note rst that

Z ζ T φ ( Z β H i ) = -[T φ , Z ζ ]( Z β H i ) + [T φ , Z ζ Z β ](H i ) -Z ζ Z β (T φ (H i )) .
Applying the commutation formula of Proposition 3.2 and then Lemma 6.1, we directly obtain that we can bound 

-[T φ , Z ζ ]( Z β H i ) + [T φ , Z ζ Z β ](H i )
if c(v) is a good coecient, then Z κ (c) ∈ L ∞ (R 3 v ), we can estimate Z ζ Z β (T φ (H i )) by a linear combination of Z ξ (∇ x Z γ φ • H j ) and Z ξ (x n • Y pq Z γ φ • H j ) , with j ∈ 1, |I| , |γ| ≤ N -6, |ξ| ≤ 3 and (n, p, q) ∈ 1, 3 3 . Note now that [∂ µ , Y pq ] = [v i ∂ v i , Y pq ] = 0, [S, Y pq ] = -Y pq , [ Ω ij , Y pq ] = δ i p Y qj + δ i q Y jp + δ j p Y iq + δ j q Y pi .
Using also that, for Proof. Applying Lemma 7.5 and using that H(0, ., .) = R(0, ., .) as well as the smallness hypotheses on 

Z α ∈ V |α| , Z α (x n ) ∈ {0,
∃ C H > 0, E 2 H (0) ≤ E 3 H (0) ≤ C H .
The bounds on E 3 H and E 2 H then follow from a bootstrap argument and the use of the energy inequality of Proposition 3.3. Indeed, according to Lemma 7.5, the potential is dierentiated at most N -3 times in all the terms composing Z ζ T φ ( Z β H i ) , when |ζ| + |β| ≤ 3, and can then be estimated pointwise (see Proposition 5.1). Hence, for E 3 H (respectively E 2 H ), one just has to follow the computations of the proof of Proposition 6.3 (respectively 6.5 for the cases |γ| ≤ N -3). Now, according to Proposition 2.11, we have

∀ t ∈ [0, T [, R 3 v |H|dv L ∞ (Σt) E 2 H (t) (1 + t) 2
(1 + t) 2 .

We nalle obtain, using the Cauchy-Schwarz inequality in v, for all t ∈ [0, T [,

R 3 v |H|dv 2 L 2 (Σt) R 3 v |H|dv R 3 v |H|dv L 1 (Σt) R 3 v |H|dv L ∞ (Σt) E 2 H (t) 2 (1 + t) 2 .

Study of the inhomogeneous system

In order to prove that E G is uniformly bounded in time, we will need to control suciently well

E 1 G (t) := |I| i=0 |I| j=0 |I| q=0 Σt R 3 v z K j i 2
|W q | dvdx and to apply Proposition 3.3. For this, remark that

T φ |K j i | 2 W q = T χ φ |K j i | 2 W q = |K j i | 2 D r q W r -2 A r i K j r + K r i D j r K j i W q + 2B j i K j i W q . ( 50 
)
Proposition 7.7. We have, if is small enough,

∀ t ∈ [0, T [, E 1 G (t) ≤ (1 + t) δ and E G (t) ≤ .
Proof. Since E 1 G (0) = E G (0) = 0, there exists T ∈]0, T ] such that Applying Lemma 6.1 with |γ| = 0 and g = z and then Lemma 2.4, we have

∀ t ∈ [0, T [, E 1 
v 0 |∇ x φ • ∇ v (z)| ∇ x φ L ∞ (Σt) (z|∇ x z| + Z∈ V | Z(z)|) z ∇ x φ L ∞ (Σt) .
According to the pointwise decay estimate of Proposition 5.1 and that v 0 ≥ 1 on the support of W , we then obtain

t 0 Σs R 3 v v 0 |∇ x φ • ∇ v (z)| |K| 2 |W | dv v 0 dxds t 0 ∇ x φ L ∞ (Σs) Σs R 3 v z|K| 2 |W | dv v 0 dxds t 0 E 1 G (s) (1 + s) 2 ds 2 .
Note now, using Proposition 7.3 and (43), that

|B| 1 + z r 1 + t + r |α|≤N |∇ x Z α φ| z |α|≤N |∇ x Z α φ|.
We then obtain, using the Cauchy-Schwarz inequality in x and that v 0 ≥ 1 on the support of W ,

t 0 Σs R 3 v z|B||K||W | dv v 0 dxds |α|≤N t 0 ∇ x Z α φ L 2 (Σs) R 3 v z 2 |K||W |dv L 2 (Σs)
ds.

The Cauchy-Schwarz inequality in v and the pointwise decay estimate Let Z β ∈ V |β| such that N -2 ≤ |β| ≤ N (recall that we already treated the lower order derivatives). Then, there exists i ∈ 1, |I| such that H i + G i = R i = Z β f . According to (47), we have

R 3 v z 3 |W |dv (1 + t) -2+δ give R 3 v z 2 |K||W |dv L 2 (Σs) R 3 v z 3 |W |dv R 3 v z|K| 2 |W |dv 1 2 L 1 (Σs) √ (1 + s) 1-δ 2 E 1 G (s) (1 + s) 1-δ .
∀ t ∈ [0, T [, R 3 v | Z β f |dv 2 L 2 (Σt) ≤ R 3 v |H i |dv 2 L 2 (Σt) + R 3 v |W |dv L ∞ (Σt) E G (t).
The result then follows from Propositions 7.6 and 7.7 as well as 

  which ensues from integration by parts in v. For the Vlasov equation, one can check by direct computations that [T, Z] = 0, [T, S] = T and [T, S v ] = -T. Then, note for instance that

4 ,

 4 |∇ x z| 1 and Z∈ V | Z(z)| z. According to Proposition 5.1 and the boostrap assumptions (

Proposition 6 . 3 .

 63 Let multi-indices γ and κ such that|γ| + |κ| ≤ N -2, |γ| ≤ N -3and |κ| ≤ N -3.

6. 1

 1 Proof of Propositions 6.3 and 6.4 Let us x t ∈ [0, T [ as well as multi-indices γ and κ satisfying |γ| + |κ| ≤ N -2, |γ| ≤ N -3 and |κ| ≤ N -3.

  4 and we x multi-indices γ and κ such that |γ| + |κ| ≤ N + 1, |γ| ≤ N and |κ| ≤ N.

R 3 v

 3 |H|dv by propagating a weighted L 1

Σ0 R 3 v( 1 +

 31 |x|) 3 | Z β f |dvdx for all |β| ≤ N + 3, we directly obtain, for enough, that

Finally, by Proposition 5

 5 

3 2 -δ ds 2 , 7 . 3

 3273 which concludes the improvement of the bootstrap assumptions on E G and E 1 G . End of the proof of Proposition 7.1

  t) -2 (see Proposition 7.3).

  1-δ .

	Proposition 6.4. Let multi-indices γ and κ such that	
	|γ| + |κ| ≤ N + 1,	|γ| ≤ N	and |κ| ≤ N.

  1-δ .

	Proposition 6.5. Let multi-indices γ and κ such that	
	|γ| + |κ| ≤ N + 1,	|γ| ≤ N	and |κ| ≤ N.

  by a linear combination of terms given in (49). By Proposition 7.3 and the fact that

  ±x 1 , ±x 2 , ±x 3 } and Z α ∇ x Z γ φ It then only remains to use (43) in order to estimate r Y pq Z κ φ • Z θ H j by the terms given in (49). Proposition 7.6. If is small enough, we have E 3 H (t) ≤ 2C H (1 + t) δ and E 2 H (t) ≤ 2C H for all t ∈ [0, T [.

	Let us now introduce the following energy norms				
	|I|					|I|
	E 3 H (t) :=	E 3 3 [H i ](t)	and	E 2 H (t) :=	E 2 3 [H i ](t).
	i=1					i=1
	It implies					
	∀ t ∈ [0, T [,	R 3 v	|H|dv	L 2 (Σt)	1 + t	.

|κ|≤|α|+|γ|

|∇ x Z κ φ| , we obtain, using Leibniz formula, that Z β (T φ (H i )) can be bounded by a linear combination of

∇ x Z κ φ • Z θ H j and r Y pq Z κ φ • Z θ H j ,

with |κ| ≤ N -3 and |θ| ≤ 3.

  Using rst Proposition 7.3 as well as (43) and then the pointwise decay estimates of Proposition 5.1 as well as τ -≤ z (see Lemma 2.4), we have Hence, as v 0 ≥ 1 on the support of W ,

					1≤i≤|I|	t 0 Σs R 3 v	T φ |K j i | 2 W q	dv v 0 dxds	t 0 Σs R 3 v	(|A| + |D|)|K| 2 |W | + |B||K||W |	dv v 0 dxds
					1≤j,q≤|I|					
						t						
	E 1 G (t) ≤	0 Σs R 3				
	|A| + |D|			1 + z	r 1 + t + r	|γ|≤N -3	|∇ x Z γ φ|	z	1 1 + |t -r|	+	r 1 + t + r (1 + r)(1 + t)	z (1 + t) 2 .
	Similarly, one has, since z 1 + t + r,	
									|A| + |D|	1 + z	r 1 + t + r	|γ|≤N -3	|∇ x Z γ φ|	1 + t	.
		0	t	Σs R 3 v	(|A| + |D|)|K| 2 |W |	dv v 0 dxds		t 0 (1 + s) 2	Σs R 3 v	z|K| 2 |W |dvdxds	0	t	E 1 G (s) (1 + s) 2 ds	2 ,
	0	t		Σs R 3 v	z(|A| + |D|)|K| 2 |W |	dv v 0 dxds		0	t	E 1 G (s) 1 + s	ds

G (t) ≤ 2 (1 + t) δ and E G (t) ≤ 2 .

In order to improve these boostsrap assumptions, combine the energy inequality of Proposition 3.3 with (50) to get, for t ∈ [0, T [, that

E G (t) ≤ v z (|A| + |D|)|K| 2 |W | + |B||K||W | dv v 0 dxds + t 0 Σs R 3 v v 0 |∇ x φ • ∇ v (z)| |K| 2 |W | dv v 0 dxds. 2 (1 + t) δ .

We choose to work with the weights z 0k , 1 ≤ k ≤ 3, for simplicity and since they do not prevent us to use our method for systems composed of a relativistic transport equation and an elliptic equation. We refer to Remark 2.14 below to see how recover the results of this article without using them.

For the massive system, equation (3) is replaced by1 + |v| 2 ∂tf + v j ∂ j f -1 + |v| 2 ∇ i φ • ∂ v i f = 0.

We refer to Subsection 3.3 for the denition of the charge of Z γ φ.

One only has to follow their proof. We emphasize that f (0, •, •) has to be non negative.

We refer to[START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] (see Proposition 3.6) for a concise of (1).

This estimate is optimal in the presence of a non zero total charge, as in that case ∇xφ cannot decay faster than r -2 .

We refer to Appendix B of[START_REF] Bigorgne | Sharp asymptotics for the solutions of the three-dimensional massless Vlasov-Maxwell system with small data[END_REF] for the proof of a similar result which ensues from straightforward but tedious computations.

The weight r has to be transformed since otherwise we would be led to deal with r 2 |∇xZ γ φ|, which is not uniformly bounded in r if Z γ is composed of at least one translation in space. We use the bad inequality τ -+ t ≤ z(1 + t) in order to unify the estimate of (41) with the one of (40).
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