Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2019

Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism

James Robblee
  • Fonction : Auteur
Thomas Blake
  • Fonction : Auteur
Carol Bookwalter
  • Fonction : Auteur
Elena Krementsova
  • Fonction : Auteur
Michael Previs
  • Fonction : Auteur
Jake Baum
Kathleen Trybus
  • Fonction : Auteur
Anne Houdusse

Résumé

Plasmodium parasites are obligate intracellular protozoa and causative agents of malaria, responsible for half a million deaths each year. The lifecycle progression of the parasite is reliant on cell motility, a process driven by myosin A, an unconventional single-headed class XIV molecular motor. Here we demonstrate that myosin A from Plasmodium falciparum (PfMyoA) is critical for red blood cell invasion. Further, using a combination of X-ray crystallography, kinetics, and in vitro motility assays, we elucidate the non-canonical interactions that drive this motor's function. We show that PfMyoA motor properties are tuned by heavy chain phosphorylation (Ser19), with unphosphorylated PfMyoA exhibiting enhanced ensemble force generation at the expense of speed. Regulated phosphorylation may therefore optimize PfMyoA for enhanced force generation during parasite invasion or for fast motility during dissemination. The three PfMyoA crystallographic structures presented here provide a blueprint for discovery of specific inhibitors designed to prevent parasite infection.
Fichier principal
Vignette du fichier
2019_Robert-Paganin_NatureCommunications_s41467-019-11120-0_1.pdf (3.3 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02349247 , version 1 (26-05-2020)

Licence

Identifiants

Citer

Julien Robert-Paganin, James Robblee, Daniel Auguin, Thomas Blake, Carol Bookwalter, et al.. Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism. Nature Communications, 2019, 10 (1), ⟨10.1038/s41467-019-11120-0⟩. ⟨hal-02349247⟩
84 Consultations
84 Téléchargements

Altmetric

Partager

More