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28 
ABSTRACT 29 
Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription 30 
factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy 31 
in the Rosid species Arabidopsis. Here, we present a functional characterization of the seven SEP/AGL6 32 
and four AP1/SQUA genes in the distant Asterid species Petunia x hybrida petunia. Based on the analysis 33 
of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with 34 
AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for 35 
the petunia SEP3 ortholog FLORAL BINDING PROTEIN 2 (FBP2). By contrast, the FBP9 subclade 36 
members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in 37 
determining floral meristem identity together with FBP4, while contributing only moderately to floral 38 
organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required 39 
for inflorescence meristem identity, and act as B-function repressors in the first floral whorl, together 40 
with BEN/ROB genes. Overall, these data together with studies in other species suggest major 41 
differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies 42 
during angiosperm evolution.  43 

44 

Plant Cell Advance Publication. Published on October 7, 2019, doi:10.1105/tpc.19.00162

mailto:michiel.vandenbussche@ens-lyon.fr


2 

INTRODUCTION 45 

Over the last two decades, the ABC model of floral organ identity has served as a genetic 46 

framework for the understanding of flower development in other species, and across evolution 47 

(Bowman et al., 2012). Members of the MADS-box transcription factor family play a central 48 

role in this model, and especially the MADS-BOX proteins encoding the floral B- and C-49 

functions have been studied in a wide range of species (Krizek and Fletcher, 2005), providing 50 

a better understanding of the evolution and diversification of floral development at the 51 

molecular level. By contrast, much less comparative data is available for members of the 52 

AP1/SQUA and the SEPALLATA MADS-box transcription factor subfamilies. Compared to the 53 

B- and C-class MADS-box subfamilies, the SEP and AP1/SQUA subfamilies have substantially54 

expanded via several gene duplication events during angiosperm evolution (Litt and Irish, 2003; 55 

Zahn et al., 2005). Together with reported extensive redundancy among individual SEP and 56 

among AP1/SQUA genes (see below), this makes comparative functional studies challenging, 57 

and probably underlies the relative lack of functional data in a broad range of species. 58 

Moreover, the extensive sequence similarity observed among members within both subfamilies 59 

may render the interpretation of phenotypes obtained by gene-silencing approaches (such as 60 

RNAi/co-suppression/VIGS) difficult. In addition, in several species members of the closely 61 

related AGL6 MADS-box subfamily also perform SEP-like functions (Ohmori et al., 2009; 62 

Rijpkema et al., 2009; Thompson et al., 2009; Dreni and Zhang, 2016), adding further genetic 63 

complexity to a comparative analysis of the SEP function across species borders. 64 

The SEP and AP1/SQUA MADS-box transcription factor families are unique to 65 

angiosperms, while AGL6 genes are present both in gymnosperms and angiosperms (Becker 66 

and Theissen, 2003; Litt and Irish, 2003; Zahn et al., 2005). Interestingly, the AGL6, SEP and 67 

AP1/SQUA subfamilies together compose a monophyletic superclade within the MADS-box 68 

family (further referred to as the AP1/SEP/AGL6 superclade), suggesting a common ancestral 69 

origin predating the angiosperm/gymnosperm divergence, although the evolutionary 70 

relationship between the different subfamilies had not been completely resolved (Purugganan 71 

et al., 1995; Purugganan, 1997; Becker and Theissen, 2003). A more recent phylogenetic 72 

analysis based on exon/intron structural changes suggests that AGL6 genes are sister to both 73 

SEP and AP1 subfamilies (Yu et al., 2016). 74 

Thus far, Arabidopsis is the only core eudicot species for which a functional 75 

characterization of all its AP1/SEP/AGL6 superclade genes has been achieved in sufficient 76 

detail, including the identification of redundant functions through higher order mutant analysis, 77 

but a wealth of functional data has been accumulated also in tomato and rice in recent years 78 
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(see further). The Arabidopsis SEP subfamily consists of four members, named SEP1, SEP2, 79 

SEP3 and SEP4, and petals, stamens and carpels in the sep1 sep2 sep3 triple mutant are 80 

transformed into sepals (Pelaz et al., 2000), while all floral organs in a sep1 sep2 sep3 sep4 81 

mutant develop as leaf-like organs (Ditta et al., 2004). This led to the conclusion that SEP genes 82 

are required for the identity of all floral organs, and function in a largely, but not completely 83 

redundant fashion. In addition, SEP genes were shown to be involved in floral meristem identity 84 

and determinacy (Pelaz et al., 2000; Ditta et al., 2004). SEP proteins are proposed to act as 85 

‘bridge proteins’ enabling higher order complex formation (floral quartets) with the products 86 

of the homeotic B and C function organ identity genes, and to provide transcriptional activation 87 

capacity to these complexes (Honma and Goto, 2001; Theissen and Saedler, 2001; Immink et 88 

al., 2009; Melzer et al., 2009). These findings have inspired the addition of the SEP (or E-) 89 

function to the classic ABC model of floral development (Bowman et al., 1991; Coen and 90 

Meyerowitz, 1991), summarized in a floral quartet model (Theissen and Saedler, 2001). In 91 

contrast to the function of AGL6 genes in other species, the two Arabidopsis AGL6 subfamily 92 

members AGL6 and AGL13 do not seem to perform a SEP-like function in floral organ identity 93 

determination (Koo et al., 2010; Huang et al., 2012; Hsu et al., 2014). The Arabidopsis 94 

AP1/SQUA subfamily is composed of 4 members, of which the roles of AP1, CAL 95 

(CAULIFLOWER) and FUL (FRUITFULL) in floral development have been particularly well 96 

studied. Arabidopsis ap1 mutants lack petals and have sepals displaying bract like features 97 

(Irish and Sussex, 1990; Mandel et al., 1992). For these reasons, AP1 has been classified as an 98 

A-function gene in the ABC model, required for the identity specification of sepals and petals. 99 

Furthermore, AP1 plays also a major role in specifying floral meristem identity, in a largely 100 

redundant fashion with CAL (Bowman et al., 1993; Kempin et al., 1995). FUL was initially 101 

identified for its unique role in Arabidopsis carpel and fruit development (Gu et al., 1998), but 102 

in addition was later shown to function redundantly with AP1 and CAL to control inflorescence 103 

architecture (Ferrandiz et al., 2000).  104 

To provide more insight in floral development and in the evolution of the floral gene 105 

regulatory network in higher eudicot species in general, we have been systematically analyzing 106 

the genetics underlying floral development in the Asterid species Petunia x hybrida. While the 107 

genes encoding the floral A, B and C- functions in petunia have been well characterized 108 

(Angenent et al., 1993; van der Krol et al., 1993; Kater et al., 1998; Kapoor et al., 2002; 109 

Vandenbussche et al., 2004; Rijpkema et al., 2006; Cartolano et al., 2007; Heijmans et al., 2012; 110 

Morel et al., 2017; Morel et al., 2018), only a few of the 10 previously described genes 111 

belonging to the large petunia AP1/SEP/AGL6 superclade (Immink et al., 1999; Ferrario et al., 112 
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2003; Immink et al., 2003; Vandenbussche et al., 2003a; Vandenbussche et al., 2003b; 113 

Rijpkema et al., 2009) have been functionally analyzed thus far.  114 

Research on petunia SEPALLATA genes dates back a long time and provided, together 115 

with a study in tomato, the first indication of the existence of SEP-function in floral 116 

development: transgenic lines in which the SEP3-like petunia FBP2 or tomato TM5 genes were 117 

silenced by co-suppression both exhibited simultaneous homeotic conversion of whorls 2, 3, 118 

and 4 into sepal-like organs and loss of determinacy in the center of the flower (Angenent et 119 

al., 1994; Pnueli et al., 1994), a phenotype similar to that later found in Arabidopsis sep1 sep2 120 

sep3 mutants. However, at that time, multimeric complex formation of MADS-box proteins 121 

still remained to be discovered (Egea-Cortines et al., 1999), and it was not clear how many 122 

genes where co-suppressed in these lines. Therefore, the molecular basis of these phenotypes 123 

in petunia and tomato was not immediately understood. Later, it was shown in yeast that petunia 124 

SEP proteins also bind to B-class heterodimers and to C-class proteins, mediate quaternary 125 

complex formation with B- and C-class proteins and display transcriptional activation capacity 126 

(Ferrario et al., 2003), compatible with the proposed quartet model in Arabidopsis. 127 

Interestingly, among the six petunia SEP-like proteins, also clear differences in protein–protein 128 

interactions were revealed in a yeast 2-hybrid assay, suggesting functional diversification 129 

(Ferrario et al., 2003; Immink et al., 2003). Especially FBP2 and FBP5 showed a much broader 130 

range of interaction partners compared to the other petunia SEP proteins. Furthermore, it was 131 

shown in planta that petunia SEP proteins may be crucial to import at least some other MADS-132 

box transcription factors into the nucleus (Immink et al., 2002). 133 

Using a gene-specific approach, we showed that the fbp2 co-suppression phenotype was 134 

indeed not gene specific, since single fbp2 mutants showed only a very incomplete sep-like 135 

phenotype, with primarily the margins of the petals exhibiting a petal-to sepal homeotic 136 

conversion (Vandenbussche et al., 2003b). We also reported fbp5 mutants that as single mutants 137 

develop as wild type. Flowers of fbp2 fbp5 mutants, however, showed an enhanced phenotype 138 

compared to fbp2 mutants: the sepaloid regions at the petal edges extended slightly further 139 

towards the center; sepal-like structures appeared on top of the anthers, and a sudden dramatic 140 

phenotype appeared in the ovary, which continued to grow long after development has arrested 141 

in wild-type (WT) flowers of comparable stages, resulting in a giant ovary. While the general 142 

architecture of the ovary was maintained (carpels containing an interior placenta), inside all 143 

ovules were homeotically converted to sepal-like organs (Vandenbussche et al., 2003b). This 144 

directly demonstrated that not only the identity of petals, stamens and carpels depends on SEP 145 

activity in petunia, but also ovule identity, as was also reported in Arabidopsis in the same 146 
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journal issue (Favaro et al., 2003). More recently, we demonstrated that petunia AGL6 also 147 

exhibits SEP-like functions (Rijpkema et al., 2009), and performs a major role in petal identity, 148 

redundantly with FBP2. In addition, a function in stamen development was revealed by fbp2 149 

fbp5 agl6 triple mutant analysis. In line with the proposed SEP-function for AGL6, we found 150 

that AGL6 and FBP2 in yeast overall interact with the same the partners (Rijpkema et al., 2009).  151 

Thus far, three petunia AP1/SQUA genes have been described, called PFG, FBP26 and 152 

FBP29 (Immink et al., 2003), and only the function of PFG was analyzed, using a co-153 

suppression approach, resulting in a dramatic nonflowering phenotype, although the occasional 154 

development of single solitary flowers in these lines was also reported (Immink et al., 1999). 155 

However, as for the FBP2 co-suppression line, the full-length coding sequence including the 156 

highly conserved MADS-domain was used to generate the co-suppression construct, 157 

questioning the specificity of the obtained phenotype. 158 

To provide more insight in the functions of the AP1/SEP/AGL6 superclade members in 159 

petunia, and more broadly in the evolutionary trajectory of the AP1/SEP/AGL6 superclade in 160 

the core eudicots, we aimed to uncover unique and redundant functions of the complete 161 

SEP/AGL6 and AP1/SQUA subfamilies during petunia flower development.  162 

First, we present a genetic fine-dissection of the petunia SEP-function obtained from 163 

the analysis of a series of single and multiple knock-out mutants, combining putative null 164 

mutations in the six petunia SEP genes and AGL6. Most remarkably, we found that the FBP9 165 

subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis 166 

(Zahn et al., 2005), play an essential role in determining floral meristem identity together with 167 

FBP4, with only moderate contributions to the classic SEP floral organ identity function. 168 

Furthermore, we show that the petunia genetic equivalent of the Arabidopsis sep1 sep2 sep3 169 

mutant still displays residual B- and C-function activity, while a full sepallata phenotype was 170 

obtained in a sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 mutant. The analysis further suggests that 171 

the petunia SEP3 ortholog FBP2 performs a master floral organ identity SEP-function as in 172 

Arabidopsis. In addition, we have analyzed the dependence of homeotic gene expression on the 173 

SEP function, by comparing the dynamics of expression between wild-type and the sextuple 174 

fbp2 fbp4 fbp5 fbp9 pm12 agl6 mutant.  175 

Finally, we show that the petunia AP1/SQUA subfamily is composed of four members 176 

(PFG, FBP26, FBP26 and the here described euAP1 gene) that function in a largely redundant 177 

way. We found that they are required for inflorescence meristem identity, but surprisingly, pfg 178 

fbp26 fbp29 euap1 mutants developed fully functional terminal flowers. In addition, we show 179 

that they act as B-function repressors in the first floral whorl, together with BEN/ROB genes 180 
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(Morel et al., 2017). Overall, comparison of these data with previous studies in mainly 181 

Arabidopsis, tomato and rice reveal major differences in the functional diversification of the 182 

SEP/AGL6 and AP1/SQUA MADS-box subfamilies during evolution of the angiosperms. 183 

 184 

RESULTS 185 

Petunia Floral Development 186 

To facilitate the comparison of the phenotypes presented in this study with the equivalent 187 

Arabidopsis mutants, we summarize first the relevant differences in WT floral architecture 188 

between petunia and Arabidopsis (Figure 1). Petunia flowers consist, from the outside towards 189 

the center, of five sepals partly fused at their basis, five large congenitally fused petals, five 190 

stamens of which the filaments are partly fused with the petal tube, and a central pistil composed 191 

of two congenitally fused carpels (Figure 1A). Some important differences in flower 192 

development between petunia and Arabidopsis, and relevant for this study, concern sepal 193 

identity, placentation topology and inflorescence architecture. Indeed in Arabidopsis, epidermal 194 

cell types and trichome architecture found on sepals can clearly be distinguished from those of 195 

leaves (Ditta et al., 2004). By contrast, petunia sepals display a similar kind of epidermal cell 196 

types as found in bracts and leaves, and are covered with the same type of multicellular 197 

trichomes (Figure 1C). While Arabidopsis sepals dehisce rapidly after fertilization of the flower 198 

and subsequently fall off together with petals and stamens, petunia sepals physiologically 199 

behave more as leaf-like organs: they stay firmly attached to the pedicel and may remain green, 200 

even long after the fruit has fully matured (Figure 1B). Note that the same occurs in flowers 201 

that were not fertilized (see further Figure 4F). The parietal placenta and ovules in Arabidopsis 202 

develop from the inner ovary wall, after termination of the floral meristem. In petunia, the 203 

central placenta arises directly from the center of the floral meristem in between the two 204 

emerging carpel primordia (Figure 1D), suggesting that the floral meristem is terminated later 205 

compared to Arabidopsis (Colombo et al., 2008). Finally, Petunia species develop a cymose 206 

inflorescence (Figure 1E, inset) as opposed to the raceme in Arabidopsis (reviewed in (Castel 207 

et al., 2010)). During petunia cymose inflorescence development, the apical meristem 208 

terminates by forming a flower, while an inflorescence meristem (IM) emerges laterally, 209 

repeating the same pattern (Souer et al., 1998). This results in the typical zigzag-shaped petunia 210 

inflorescence with alternating flowers on each node subtended by bracts.  211 

 212 

Petunia SEP/AGL6 Expression Analysis and Mutant Identification 213 
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Six SEP genes and one AGL6 gene (Ferrario et al., 2003; Vandenbussche et al., 2003b; 214 

Rijpkema et al., 2009) were described in petunia compared to 4 SEP genes and 2 AGL6-like 215 

genes in Arabidopsis. A survey of the recently released Petunia axillaris and Petunia inflata 216 

genome sequences (Bombarely et al., 2016) indicated that these sequences represent the total 217 

number of SEP/AGL6 genes in petunia (Supplemental Table 1). Several detailed and robust 218 

phylogenetic studies of the SEP family (Zahn et al., 2005; Yu et al., 2016) as well as the more 219 

limited phylogenetic analysis presented here (Figure 1F), identified FBP2 as the sole SEP3 220 

ortholog in petunia, meaning that the petunia SEP3 clade contains only one member as in 221 

Arabidopsis. Petunia FBP5 and PMADS12 (PM12) were shown to be the closest relatives of 222 

SEP1 and SEP2, with the FBP5/PM12 and SEP1/SEP2 paralogous pairs originating from 223 

independent gene duplications in the lineages leading to petunia and Arabidopsis respectively. 224 

Finally, petunia FBP4 grouped in the SEP4 subclade, while FBP9 and FBP23 genes were 225 

members of the FBP9 subclade, a subclass of SEP genes that is absent from the Arabidopsis 226 

genome and potentially may have been lost in the lineage leading to Arabidopsis (Malcomber 227 

and Kellogg, 2005; Zahn et al., 2005). The larger number of SEP genes in petunia compared to 228 

Arabidopsis is therefore entirely due to the presence of the two petunia FBP9 subclade genes.  229 

As expected based on their close taxonomic relationship, the petunia proteins overall 230 

showed the closest relationship with SEP/AGL6 members from tomato (The Tomato Genome 231 

Consortium, 2012; Soyk et al., 2017) compared to Arabidopsis and rice (Figure 1F). Like 232 

petunia, tomato contained one AGL6 gene, one SEP3 copy and two FBP9 members, but slight 233 

differences in the number of genes belonging to the SEP1/SEP2 and SEP4 subclades could be 234 

observed between the two species. Notably, tomato contained only one SEP1/SEP2 copy, while 235 

having two SEP4-like genes. Among the members of the tomato SEP/AGL6 family, the SEP4-236 

like RIN gene initially received most of the attention, because the classical rin mutation has 237 

been widely used in tomato breeding as it improves shelf-life of tomato fruits when present in 238 

a heterozygous state, while the homozygous rin mutation prevents initiation of ripening 239 

(Vrebalov et al., 2002). Interestingly, more recent studies in tomato have shed a first light on 240 

the function of the enigmatic FBP9 subclade genes. First of all, it was found that SLMBP21/J2 241 

(JOINTLESS 2) is required for the development of the pedicel abscission zone (Liu et al., 2014; 242 

Roldan et al., 2017; Soyk et al., 2017). Furthermore, a breakthrough functional study (Soyk et 243 

al., 2017) based on both natural and CRISPR induced mutant alleles showed that the two tomato 244 

FBP9 clade genes SLMBP21/J2 and SlMADS1/EJ2 (ENHANCER OF JOINTLESS 2) have 245 

overlapping functions in meristem maturation and the control of inflorescence branching 246 

together with LIN (LONG INFLORESCENCE), the second tomato SEP4-like gene. 247 
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Remarkably, triple j2 ej2 lin knockout mutants exhibit a dramatic phenotype consisting of 248 

massively overproliferated sympodial inflorescence meristems (SIMs) without the formation 249 

of flowers, indicating that the transition towards FM identity is not made.  250 

As a first step in the characterization of the complete SEP/AGL6 clade in petunia, we 251 

performed RT-qPCR expression analysis (Figure 1G) in three floral bud developmental stages 252 

(Figure 1E) with the stage 1 floral bud sample also including very early flower primordia, bracts 253 

and the inflorescence meristem, and in various other tissues. This allows for a more quantitative 254 

analysis than a previous study by RNA gel blot and in situ hybridization (Ferrario et al., 2003). 255 

We detected important differences in expression levels among the SEP/AGL6 genes and clear 256 

differences in expression patterns, both correlated with their phylogenetic position, suggesting 257 

functional divergence: FBP2, FBP5, and AGL6 were the most abundantly expressed genes, 258 

reaching expression levels roughly tenfold higher than the SEP4 homolog FBP4, and the FBP9 259 

subclade members FBP9 and FBP23. Furthermore, FBP2, FBP5 and AGL6 expression was 260 

restricted to floral tissues, with expression levels strongly increasing during floral bud 261 

development, while FBP4, FBP9 and FBP23 were more broadly expressed, and expression 262 

levels did not show a strong upregulation during later stages of floral bud development. 263 

Expression outside the floral domain was most marked in bracts for FBP4, and in the 264 

inflorescence stem tissue for both FBP4 and FBP9. One exception to these general differences 265 

observed between SEP1/SEP2/SEP3/AGL6 and SEP4/FBP9 genes was PM12, which was 266 

expressed ~100 fold lower than its close paralog FBP5, and for which expression was detected 267 

also in bracts and stems. For all genes analyzed, expression levels varied considerably between 268 

the different floral organs: Expression may be much lower in one particular organ type 269 

compared to the three other floral organs (e.g. very low FBP2 and FBP5 expression in sepals; 270 

low levels of PMADS12, AGL6 and FBP23 expression in stamens), or may peak in one specific 271 

floral organ (FBP4 in sepals; FBP9 in petals). Our results are in agreement with the in situ data 272 

previously obtained for FBP2 and FBP5, showing mainly expression in the three inner floral 273 

whorls during early flower development, while some minor differences with the PMADS12 in 274 

situ data suggest that the PM12 expression pattern is not constant as floral buds further develop 275 

(Ferrario et al., 2003). 276 

To perform a functional analysis, we used a reverse genetics strategy (Koes et al., 1995; 277 

Vandenbussche et al., 2003b; Vandenbussche et al., 2008) to identify dTph1 transposon 278 

insertions in the coding sequences of the petunia SEP and AGL6 genes. In total, we identified 279 

and confirmed 16 independent transposon insertions in planta, including some earlier reported 280 

alleles (Vandenbussche et al., 2003b; Rijpkema et al., 2009) in all of the 7 different members 281 
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of the SEP/AGL6 clade (Figure 1H). Because the 284 bp dTph1 sequence encodes stop codons 282 

in all six possible reading frames, and based on their insert position (either disrupting the first 283 

exon encoding the MADS DNA binding domain, or the K-region required for protein-protein 284 

interactions in the case of the fbp2 insertions, all of the selected insertion alleles most likely 285 

represent null alleles. We obtained and analyzed homozygous mutants for all insertion alleles, 286 

but remarkably, only homozygous mutants for fbp2 insertions displayed floral homeotic defects 287 

(Figure 1H), suggesting extensive functional redundancy among the petunia SEP/AGL6 genes, 288 

and that FBP2 function is more essential than that of any other SEP/AGL6 gene. These results 289 

clearly indicated the need for multiple mutant analyses to further uncover putative redundant 290 

functions. 291 

 292 

The Petunia fbp2 fbp5 pmads12 Mutant, Genetic Equivalent of the Arabidopsis sep1 sep2 293 

sep3 Mutant, Displays Floral Characteristics Indicating Residual B- and C-Function 294 

Activity 295 

In Arabidopsis, the simultaneous loss of SEP1, SEP2 and SEP3 results in flowers consisting 296 

only of sepals (Pelaz et al., 2000). To compare the petunia genetic equivalent, we aimed to 297 

analyze fbp2 fbp5 pm12 triple mutants (Figure 2). As mentioned earlier, of the three single 298 

mutants, only fbp2 mutants displayed a phenotype different from WT (Figures 2A to 2D). 299 

Moreover, fbp2/+ fbp5 pm12 flowers (Figure 2E) developed morphologically as WT, 300 

demonstrating that FBP2 even in a heterozygous state can fully compensate for the loss of 301 

FBP5 and PM12 functions. In addition, fbp2 pm12 double mutants were not markedly different 302 

from fbp2 single mutants (Figure 2F), in contrast to the earlier reported fbp2 fbp5 mutants 303 

(Figures 2G to 2K) and (Vandenbussche et al., 2003b). However, fbp2 fbp5 pm12 flowers could 304 

be easily distinguished from fbp2 fbp5 flowers: a clear enhancement of stamen to sepal identity 305 

could be observed in the third whorl, although still some antheroid tissue remained, as in fbp2 306 

fbp5 mutants (Figure 2M). Furthermore, while the extremely enlarged fbp2 fbp5 mutant pistil 307 

still exhibited partial carpel identity, the carpels of fbp2 fbp5 pm12 mutants acquired clear 308 

sepal/leaf-like epidermal characteristics (Figures 2N to 2Q), and were densely covered with 309 

trichomes. The latter are never observed on WT pistils, and only at very low frequency on fbp2 310 

fbp5 pistils (Figure 2N). Furthermore, no stigma and style structures remained in the triple 311 

mutant, but the overall internal organization of the ovary was maintained, with a placenta 312 

structure covered by a few hundred leaf-like organs that represented homeotically converted 313 

ovules, as observed in fbp2 fbp5 mutants (Figures 2K and 2L). In the second whorl of fbp2 fbp5 314 

pm12 flowers, the partial petal to sepal conversion at the corolla border was only subtly 315 
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enhanced compared to fbp2 fbp5 mutants (Figures 2G and 2H). Given that the effect of the 316 

pm12 mutation only became apparent in an fbp2 fbp5 mutant background, we conclude that 317 

PM12 plays a less essential role than its close paralog FBP5. Overall, the remnant petal and 318 

stamen tissues and the maintenance of a placenta structure in fbp2 fbp5 pm12 flowers show that 319 

unlike in Arabidopsis, genes outside the SEP3 and SEP1/SEP2 subfamilies are able to rescue 320 

part of the B- and C-functions in a petunia sep1 sep2 sep3 mutant background.  321 

 322 

The FBP9 Subclade Genes FBP9 and FBP23 Function as Floral Meristem Identity Genes 323 

together with FBP4 324 

We showed earlier that petunia AGL6 is one of the genes outside the classical SEP1/SEP2/SEP3 325 

group that plays a prominent role in performing a SEP-like floral organ identity function, 326 

especially in the determination of petal identity, redundantly with FBP2 (Rijpkema et al., 2009). 327 

However, FBP4 as a SEP4-like gene may also participate, as found in Arabidopsis (Ditta et al., 328 

2004) and potentially also FBP9 and FBP23, the petunia representatives of the FBP9 subclade.  329 

Earlier we found that the fbp9, fbp23 and fbp4 single mutants displayed a WT phenotype 330 

(Figure 1H), and that expression levels of all three genes peak early during floral developmental 331 

stages compared to the other petunia SEP genes and AGL6 (Figure 1G), potentially indicating 332 

a redundant (common) function for FBP4, FBP9 and FBP23. Indeed, a functional overlap was 333 

recently demonstrated among corresponding SEP subclade members in tomato (Soyk et al., 334 

2017). 335 

To test such a putative functional redundancy among the petunia FBP9, FBP23 and 336 

FBP4 genes, we first created and analyzed fbp9 fbp23 double mutants, since FBP9 and FBP23 337 

are close paralogs belonging to the same FBP9 SEP-subclade.  Interestingly, we found that fbp9 338 

fbp23 mutants were dramatically affected in their inflorescence architecture, with new 339 

inflorescence shoots developing instead of flowers, resulting in a highly branched inflorescence 340 

structure. However, flower development was not completely abolished in these mutants, 341 

because after several weeks of a highly branched inflorescence development, frequently a 342 

flower appeared on one or more branches of the same plant, after which these branches switched 343 

again to the initial phenotype (Figures 3B and 3F). This indicated that the capacity to form 344 

floral meristems was not completely abolished in fbp9 fbp23 mutants and that (an)other 345 

factor(s) can partly rescue floral meristem determinacy in the absence of FBP9/FBP23 function. 346 

Because we assumed FBP4 being a likely candidate, we next analyzed fbp4 fbp9 fbp23 triple 347 

mutants. Indeed, we found that the fbp9 fbp23 phenotype was further enhanced in these triple 348 

mutants, resulting in a highly branched flowerless inflorescence architecture (Figures 3C, 3G 349 
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and 3H), phenotypically very similar to that reported earlier for the petunia floral meristem 350 

identity mutant alf (Souer et al., 1998), with ALF being orthologous to Arabidopsis LEAFY 351 

(LFY) (Weigel et al., 1992) and snapdragon FLORICAULA (FLO) (Coen et al., 1990) genes. 352 

Note that over a long period (> 6 months) of highly branched inflorescence development, some 353 

triple mutants produced 1-2 isolated flowers, while other individuals never flowered at all.  354 

 To study the fbp4 fbp9 fbp23 phenotype in more detail, we analyzed fbp4 fbp9 fbp23 355 

inflorescence apices by scanning electron microscopy in comparison with WT (Figures 3I to 356 

3L). At very early developmental stages, the fbp4 fbp9 fbp23 plants exhibited a phenotype very 357 

comparable to alf mutants (Souer et al., 1998): as in alf mutants, the bifurcation pattern of fbp4 358 

fbp9 fbp23 inflorescence apices was similar to WT, but the two resulting meristems both 359 

behaved as inflorescence meristems, as indicated by the continuous bifurcation of each newly 360 

formed meristem and the repetitive formation of bracts flanking these meristems. Together, this 361 

indicates that floral meristems in fbp4 fbp9 fbp23 mutants are homeotically transformed into 362 

inflorescence meristems. 363 

 Finally,  floral meristem identity was not visibly affected in fbp4 fbp9 fbp23/+ and fbp4 364 

fbp23 fbp9/+ plants, as judged by the presence of a normal cymose inflorescence architecture 365 

in these mutant combinations (Figures 3M to O). This shows that the presence of either FBP9 366 

or FBP23 in heterozygote state is sufficient to rescue floral meristem identity. Together with 367 

the already strong phenotype observed in fbp9 fbp23 plants compared to fbp4 fbp9 fbp23 plants 368 

(Figures 3B to 3C, 3F to 3G, 3P to 3Q), we conclude that the FBP9 clade members FBP23 and 369 

FBP9 play a major role in floral meristem identity determination in a largely redundant fashion, 370 

while FBP4 is involved in the same function, but plays a less essential role compared to the 371 

FBP9/FBP23 gene pair.  372 

 Although the phenotypes of tomato j2 ej2 lin and petunia fbp9 fbp23 fbp4 mutants at 373 

first sight do not look very similar (see discussion), overall, this shows that in both species, 374 

FBP9 clade genes together with a SEP4 gene play an essential role in floral meristem identity, 375 

different from the classical SEP organ identity functions. 376 

 To test whether FBP4, FBP9 and FBP23 also function later in conferring floral organ 377 

identity, we introduced the corresponding mutations into the fbp2 mutant background, the only 378 

petunia sep mutation with a visible phenotype as a single mutant. However, we found that 379 

flowers of fbp2 fbp4, fbp2 fbp9 and fbp2 fbp23 mutants were not markedly different from fbp2 380 

mutants (Figures 3R to 3U), while fbp2 fbp4 fbp23 and fbp2 fbp4 fbp9 flowers only showed a 381 

moderate enhancement of the fbp2 petal-to-sepal conversion phenotype (Figure Figures 3V to 382 

3W). In fbp2 fbp4 fbp23 flowers, the green margin appeared to be broader in all five petals 383 
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while in fbp2 fbp4 fbp9 flowers this was most visible in the two basal petals. In comparison 384 

with the earlier described floral phenotypes of fbp2 fbp5 (Vandenbussche et al., 2003b), fbp2 385 

agl6, fbp2 fbp5 agl6 (Rijpkema et al., 2009) and fbp2 fbp5 pmads12 mutants, this suggests that 386 

FBP4, FBP9 and FBP23 do play a role in floral organ identity, but contribute only moderately 387 

to this function compared to the petunia SEP1/SEP2/SEP3 homologs and AGL6. Note that we 388 

also obtained fbp2 fbp4 fbp9 fbp23 quadruple mutants, but as expected, these developed a 389 

highly branched flowerless inflorescence structure as in fbp4 fbp9 fbp23 mutants.   390 

 391 

The Sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 Mutant Displays a Classic sepallata Phenotype 392 

 By analyzing AGL6, FBP2 and FBP5 functions and the fbp2 fbp5 pmads12 and fbp4 393 

fbp9 fbp23 triple and fbp2 fbp4 fbp9 fbp23 mutants, we could reveal specific/specialized SEP 394 

functions for certain members of the petunia SEP/AGL6 clade and surprisingly, the requirement 395 

of FBP9/FBP23 function (and to a lesser extend FBP4) for floral meristem identity, as was also 396 

recently shown in tomato. However, a classic floral sepallata phenotype as described for 397 

Arabidopsis was not obtained, indicating further redundancy, possibly shared between the 398 

majority of the petunia SEP/AGL6 genes. To test this further, we embarked on a long-term 399 

crossing scheme aimed to combine all of the sep/agl6 mutant alleles in a single plant. However, 400 

we chose to exclude the fbp23 mutation in this scheme since this would completely abolish 401 

flower formation when combined with the fbp9 and fbp4 mutations and thus prevent 402 

visualization of additive floral phenotypes. After years of crossing, we finally obtained 403 

homozygous sextuple fbp2-332 fbp4-44 fbp5-129 fbp9-90 pm12-37 agl6-118 mutant plants, 404 

hereafter referred to as sextuple sep/agl6 mutants. In contrast to the earlier described lower 405 

order mutants, all organs in the flowers of sextuple sep/agl6 mutants were green and densely 406 

covered by trichomes (Figure 4), exhibiting sepal/leaf-like characteristics (Figures 4A to 4E). 407 

Note that as mentioned earlier, it is not possible to discriminate between sepal, bract and leaf 408 

identity in petunia based on epidermal cell characteristics (Figure 1C). As expected, scanning 409 

electron microscopy of these organs revealed the conversion of the typical petal, stamen and 410 

carpel epidermal cell types into epidermal cells characteristic for sepals, bracts and leaves, 411 

including stomata and multicellular trichomes (Figure 4E). The second whorl, which in WT 412 

consists of five large brightly colored fused petals, was occupied by five green organs that 413 

remained fused at their bases (Figure 1C). Although dramatically smaller than WT petals, they 414 

remained larger than first whorl sepals. Similarly, in the third whorl, the five stamens were 415 

replaced by sepal/leaf like organs. The overall shape of these organs did retain some of the 416 

stamen architecture, since the region corresponding to the WT stamen filament remained 417 
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smaller compared to the more leaf blade-like upperparts. Stamen filaments in WT are fused 418 

along half of their length with the inside of the petal tube. By contrast, third whorl organs in the 419 

sextuple mutant completely lost this partial fusion. In the fourth whorl, normally occupied by 420 

two carpels that are entirely fused and enclose the placenta and ovules, two (sometimes three) 421 

unfused sepal/leaf-like organs were found. Internally, the placenta was entirely replaced by a 422 

new emerging flower reiterating the same floral phenotype (Figure 1D). Thus in contrast to 423 

lower order sep mutants, the sextuple mutant was fully indeterminate. In the majority of the 424 

flowers (Figure 4F), this secondary flower further developed and emerged from the primary 425 

flower supported by a pedicel, while containing on itself another flower in its center. This third 426 

flower usually did not further grow out, although occasionally we observed up to three 427 

consecutive fully developed flowers (Figure 4F). Note that the sextuple sep/agl6 mutant 428 

displayed a normal cymose inflorescence architecture as in WT (Figure 4F), in sharp contrast 429 

to fbp4 fbp9 fbp23 mutants. This demonstrates that FBP23 alone can fully rescue floral 430 

meristem identity in a sextuple mutant background, but not floral organ identity.  431 

 432 

Homeotic Gene Expression in Sextuple sep/agl6 Mutant Flowers 433 

To further characterize the sextuple sep/agl6 mutant at the molecular level, we quantified and 434 

compared the dynamics of homeotic gene expression levels between WT and the sextuple 435 

mutant (Figure 4G) at three different stages of floral bud development, as described earlier 436 

(Figure 1E). Encoding of the B-function in petunia is more complex compared to Arabidopsis 437 

and Antirrhinum, and involves the two PI/GLO-like MADS-box transcription factors Petunia 438 

hybrida GLO1 and GLO2, the DEF/AP3 ortholog PhDEF, and PhTM6, the petunia 439 

representative of the ancestral B-class TM6 lineage that has been lost in Arabidopsis, but which 440 

is present in many species (Angenent et al., 1993; van der Krol et al., 1993; Vandenbussche et 441 

al., 2004; Rijpkema et al., 2006). In WT, we found that all four B-class genes were 442 

progressively upregulated as floral buds developed, with an upregulation from stage 1 to stage 443 

3 varying roughly from three to six times, depending on the gene. In the sextuple mutant, we 444 

observed expression levels of PhGLO1, PhGLO2 and PhDEF initially similar to WT in the 445 

youngest stage analyzed. However, upregulation in older stages was strongly affected, 446 

especially for PhGLO1 and PhGLO2, which remained expressed at initial levels. PhDEF 447 

remained progressively upregulated in the different sextuple mutant samples, but reached only 448 

one third of the expression compared to WT in the final stage. By contrast, PhTM6 expression 449 

levels were strongly downregulated from stage 1 floral buds onwards, remaining at similarly 450 

low levels in the two older stages.  451 
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The C-function in petunia is redundantly encoded by PMADS3 and FBP6, orthologs of 452 

Arabidopsis AG and SHP1/2 respectively (Heijmans et al., 2012; Morel et al., 2018). As for the 453 

B-function genes, FBP6 and PMADS3 expression in WT is progressively upregulated in 454 

developing floral buds (6,5 and 11 times respectively), and initial expression levels in stage 1 455 

buds were very similar between WT and sextuple mutants for both C-class genes. Both C-genes 456 

still displayed a clear upregulation in the older sextuple mutant flower buds, and seemed in 457 

general less affected by the sextuple loss of SEP/AGL6 function than the B-function genes, 458 

especially in stage 2. In stage 3 buds, FBP6 expression was not different between WT and 459 

sextuple mutants, while PMADS3 in the sextuple mutant was expressed at around 50% of its 460 

WT levels. FBP11 is a petunia D-lineage MADS-box gene orthologous to STK (Angenent et 461 

al., 1995; Colombo et al., 1995), and that with FBP7 (another D-lineage member) and the C-462 

genes PMADS3 and FBP6 redundantly is required to confer ovule identity, and to arrest the 463 

floral meristem (Heijmans et al., 2012). Consistent with its later function in floral development, 464 

the FBP11 expression profile showed a very strong upregulation in the WT developmental 465 

series (~30 fold). By contrast, in the sextuple mutant samples, FBP11 expression was barely 466 

detectable in all stages tested.  467 

Finally, we choose to monitor the expression of petunia UNS (UNSHAVEN), a member of the 468 

SOC1 subfamily, because of its particular expression pattern reported to be mainly restricted to 469 

green tissues including stems, leaves, bracts and the first whorl (sepals) in the flower (Immink 470 

et al., 2003; Ferrario et al., 2004). Moreover, UNS ectopic expression was shown to confer leaf-471 

like characteristics to floral organs. We first used the cDNA series from Figure 1F to analyze 472 

its expression pattern in a more quantitative manner compared to earlier gel blot data, 473 

confirming highest expression levels in bracts, inflorescence stems, and in the sepals within the 474 

flower (Supplemental Figure 1). In the WT developmental series, we found UNS to be 475 

progressively downregulated as flower buds further developed, corresponding to a ~4 fold drop 476 

in expression levels compared to the youngest stage (Fig 4G). Interestingly, UNS was expressed 477 

at higher levels in all sextuple mutant floral bud stages compared to WT, with the largest 478 

difference found in the oldest bud stage (~ 5-fold upregulation compared to WT). Moreover, a 479 

linear downregulation as in WT was not observed. 480 

 481 

The Petunia AP1/SQUA Subfamily: Phylogeny, Expression Analysis and Mutant 482 

Identification 483 

 We found that the petunia SEP genes FBP9, FBP23 and FBP4 function primarily as 484 

floral meristem identity genes, a function which is in Arabidopsis mainly associated with 485 
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members of the AP1/SQUA MADS-box subfamily (Irish and Sussex, 1990; Mandel et al., 1992; 486 

Kempin et al., 1995; Ferrandiz et al., 2000). This raised the obvious question to what extent the 487 

petunia AP1/SQUA members are implicated in floral meristem identity determination. For these 488 

reasons, we aimed to functionally analyze the members of the petunia AP1/SQUA subfamily. 489 

Thus far, three petunia AP1/SQUA genes have been described, called PFG, FBP26 and FBP29 490 

(Immink et al., 1999; Immink et al., 2003). In addition, based on sequence similarity, we 491 

identified a fourth AP1/SQUA member by the presence of an insertion mutant and associated 492 

transposon flanking sequence encountered in our transposon flanking sequence database, which 493 

we have called Ph-euAP1 (Petunia x hybrida euAP1), based on the presence of the highly 494 

conserved euAP1 motif (Litt and Irish, 2003; Vandenbussche et al., 2003a) in its C-terminus, 495 

as also found in the Arabidopsis AP1 and CAL genes (Supplemental Figure 2A). To provide 496 

further proof for the euAP1 classification of the new Petunia AP1/SQUA member, we 497 

conducted a phylogenetic analysis (Figure 5) including all AP1/SQUA subfamily members from 498 

Arabidopsis, tomato (Hileman et al., 2006; The Tomato Genome Consortium, 2012 and rice 499 

(Lee et al., 2003; Yu et al., 2016). Similar to the SEP/AGL6 phylogenetic analysis, overall the 500 

petunia proteins showed the closest relationship with AP1/SQUA members from tomato 501 

(Figure 5A), while all four rice AP1 members grouped apart from the eudicot proteins as shown 502 

previously (Yu et al., 2016). The analysis further showed that petunia euAP1 indeed is 503 

orthologous to the tomato MACROCALYX (MC) gene (Vrebalov et al., 2002) and the 504 

Arabidopsis AP1 and CAL genes, all previously demonstrated as belonging to the euAP1 clade 505 

(Litt and Irish, 2003; Yu et al., 2016). Petunia therefore is similar to tomato in having only one 506 

euAP1 clade member compared to two members in Arabidopsis. MC, the tomato euAP1 507 

representative, was shown to regulate sepal size, fruit abscission and maintenance of 508 

inflorescence meristem identity. Indeed, mc mutants develop flowers with enlarged sepals, have 509 

an incomplete pedicel abscission zone, and develop inflorescences that revert to vegetative 510 

growth after forming two to three flowers (Vrebalov et al., 2002; Nakano et al., 2012; Yuste-511 

Lisbona et al., 2016). 512 

  The previously described FBP29 gene fell into the AGL79 subclade to which the tomato 513 

genes MBP10 and MBP20 also belonged, while the PFG and FBP26 genes grouped into the 514 

euFUL subclade together with the tomato FUL1 (TDR4/TM4) and FUL2 (MBP7) genes  as 515 

previously shown (Yu et al., 2016). While stable mutants remain to be described for these four 516 

tomato genes, RNAi mediated downregulation of FUL1 and FUL2 indicate a role for these 517 

genes in fleshy fruit ripening (Bemer et al., 2012; Shima et al., 2013; Wang et al., 2014). 518 

Furthermore, a role for MBP20 and FUL1 was proposed in the regulation of compound leaf 519 
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development (Burko et al., 2013). Finally, to date no function has been proposed for tomato 520 

MBP10 but an evolutionary study of the FUL genes in the Solanaceous family suggest that the 521 

MBP10 lineage, which is absent in petunia, may be undergoing pseudogenization (Maheepala 522 

et al., 2019). A sequence analysis of the Petunia axillaris and Petunia inflata genome sequences 523 

(Bombarely et al., 2016) further indicated that euAP1, PFG, FBP26 and FBP29 represent the 524 

total number of AP1/SQUA family members in petunia (Supplemental Table 1), similar to the 525 

size of the AP1/SQUA subfamily in Arabidopsis and rice, and one less compared to tomato (due 526 

to the absence of a MBP10 lineage member in petunia). 527 

 A quantitative expression analysis in different tissues and three floral bud 528 

developmental stages in WT (Figure 5B) showed that the expression patterns of the four genes 529 

were quite similar, although some minor differences did exist. Interestingly, expression levels 530 

of all four genes gradually decreased during floral bud development, suggesting an early 531 

developmental function, similar as what we observed for e.g. FBP9 and FBP4. Furthermore, 532 

during later flower development, moderate expression levels were detected in sepals, petals 533 

(except for FBP29) and carpels, while expression in stamens was considerably lower compared 534 

to the other floral organs. The four genes were also well expressed in inflorescence stem tissues 535 

as well as in bracts (with the exception of Ph-euAP1). Finally, PFG showed the broadest 536 

expression pattern, since moderate expression levels were also observed in vegetative apices 537 

and leaves. In addition, the peak values of PFG expression levels were around tenfold higher 538 

compared to those of Ph-euAP1, FBP26 and FBP29. The PFG expression data were in line 539 

with the broad expression pattern previously observed by RNA gel blot analysis and in situ 540 

hybridization (Immink et al., 1999), which revealed PFG expression in vegetative, 541 

inflorescence and floral meristems, in newly formed leaves, the vascular tissues, during early 542 

flower organ development and in carpel walls and ovules during later phases of pistil 543 

development.   544 

  To determine the function of the four petunia AP1/SQUA genes, we screened for dTph1 545 

transposon insertions in their coding sequences, similarly as for the SEP genes. In total, we 546 

identified and confirmed 6 independent transposon insertions in planta (Figure 5C), including 547 

two earlier reported alleles (Vandenbussche et al., 2003b), potentially yielding putative null 548 

mutants for all four genes based on the insertion position of the dTph1 transposon, either 549 

disrupting the first exon encoding the MADS DNA binding domain or the K-region required 550 

for protein-protein interactions in the case of the euap1 allele. We obtained and analyzed 551 

homozygous mutants for all insertion alleles, but all these homozygous mutants developed 552 

normally (Figure 5C). Moreover, when we analyzed some double mutants to overcome putative 553 
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genetic redundancy, flowers in these double mutants developed normally, and inflorescence 554 

architecture was not affected (Supplemental Figure 2B).  555 

 556 

Petunia AP1/SQUA Family Members are Required for Inflorescence Meristem Identity  557 

 Because of the absence of clear phenotypes in the above-described mutants, we decided 558 

to create and analyze pfg fbp26 fbp29 euap1 quadruple mutants (Figure 6). Remarkably, the 559 

flowers that developed on these quadruple mutants were fertile, and organ identity of the 560 

carpels, stamens and petals was not visibly affected (Figures 6A to 6C). However, sepals were 561 

considerably enlarged and contained sectors that exhibited homeotic conversion towards petal 562 

identity, as indicated by the red pigmentation and the presence of petal conical cells in these 563 

regions (Figure 6D). Overall, the general mildness of the pfg fbp26 fbp29 euap1 flower 564 

phenotype was very surprising, compared to the already dramatic phenotypes found in 565 

Arabidopsis ap1 single and ap1 cal double mutants, and compared to the complete absence of 566 

flowers in ap1 cal ful triple mutants (Irish and Sussex, 1990; Mandel et al., 1992; Kempin et 567 

al., 1995; Ferrandiz et al., 2000).  568 

 Quadruple pfg fbp26 fbp29 euap1 mutants did display a severe phenotype in 569 

inflorescence development. In fact, the normal cyme inflorescence architecture was completely 570 

abolished, and instead a large number of leaves were produced from the main apical meristem 571 

before terminating into a solitary flower (Figures 6E and 6G). In addition, branches that 572 

developed from the base of the plant followed exactly the same developmental pattern (Figure 573 

6L). The leaves produced on the main stem and side branches were generated in a spiral 574 

phyllotaxy (Figures 6F and 6Q), characteristic of vegetative development (Figure 6P), in 575 

contrast to the opposite positioning of bracts in a WT inflorescence meristem. Finally, after the 576 

production of usually >25 leaves, this vegetative meristem was fully converted into a floral 577 

meristem resulting in a solitary flower (Figures 6H to 6I) as opposed to the normal cyme 578 

inflorescence structure in WT (Figure 6M). Note that quadruple mutant flowers consistently 579 

displayed an increase in floral organ number (e.g. the flower shown in Figure 6A has 10 petals), 580 

possibly because the full conversion of the vegetative meristem into a floral meristem resulted 581 

in a larger floral meristem size. In addition, the corolla of these flowers was not always properly 582 

organized, as the petal tube was often disrupted on one side.  583 

  Once this terminal flower was fully developed, new branches started to grow from 584 

vegetative meristems that were present in the axils of the leaves further down on the stem 585 

(Figure 6I). These branches produced again a large number of leaves before terminating with a 586 

solitary flower (Figure 6X), after which the same process was repeated. Together these results 587 
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indicate that petunia AP1/SQUA genes are required to establish inflorescence meristem identity 588 

and associated cymose branching of the petunia inflorescence.  589 

 Interestingly, intermediate phenotypes could be observed in different triple mutants in 590 

which the fourth AP1 subfamily member was still in a heterozygous state (Figures 6S to 6Q), 591 

resulting in inflorescences in which each time several leaves developed before the next flower-592 

bearing node was produced. Together this indicates that all four genes contribute to cymose 593 

inflorescence development in petunia. 594 

 595 

Petunia AP1/SQUA Family Members Repress the B-Function in the First Whorl in 596 

Concert with the ROB/BEN Genes.  597 

The partial sepal-to-petal homeotic conversion in flowers of pfg fbp26 fbp29 euap1 mutants 598 

(Figure 6D) suggests that petunia AP1/SQUA genes negatively regulate the B-function in the 599 

first floral whorl. Recently we demonstrated that the AP2-type REPRESSOR OF B (ROB1), 600 

ROB2 and ROB3 genes repress the B-function in the first whorl, together with BEN, a TOE-601 

type AP2 gene (Morel et al., 2017). To further explore the implication of the petunia AP1/SQUA 602 

genes in patterning the B-function, we tested their genetic interaction with ROB genes. We 603 

crossed pfg fbp26 fbp29 euap1 and rob1 rob2 rob3 mutants and screened progenies for an 604 

enhanced sepal-to-petal homeotic conversion phenotype compared to pfg fbp26 fbp29 euap1 605 

and rob1 rob2 rob3 mutants. Among a large progeny, we found individuals displaying the pfg 606 

fbp26 fbp29 euap1 inflorescence phenotype while bearing terminal flowers of which the first 607 

whorl organs showed a much more pronounced sepal-to-petal conversion compared to pfg 608 

fbp26 fbp29 euap1 mutants. We genotyped several of these plants for the seven insertions, and 609 

found that plants with the strongest phenotype were rob1 rob2/+ rob3 pfg fbp26 fbp29 euap1 610 

(Figures 6J and 6K). Flowers of these mutants had first whorl organs that clearly formed the 611 

beginning of a petal tube (Figure 6J), although not fused along its entire length, and with 612 

strongly expanded petaloid regions compared to the first whorl organs of pfg fbp26 fbp29 euap1 613 

flowers (Figures 6D and 6K). The presence of pale pigmentation at the basal end of the organs 614 

and bright red at the distal end (Figure 6K) was also characteristic for the modular tube/corolla 615 

architecture of a WT petunia petal (Figures 1A and 2I). For comparison, first whorl sepals of 616 

rob1 rob2/+ rob3 plants had a phenotype similar to WT (Figures 6N to 6O), while rob1 rob2 617 

rob3 flowers exhibit a very subtle sepal-to-petal conversion at the margins of their sepals, and 618 

which is only clearly visible in the first 2–3 flowers that develop (Morel et al., 2017). Although 619 

we did not obtain plants homozygous for all seven mutations, the synergistic interaction 620 

observed between rob1 rob2/+ rob3 and pfg fbp26 fbp29 euap1 mutations strongly supports a 621 
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role for petunia AP1/SQUA genes in repressing the B-function in the first whorl, together with 622 

the ROB/BEN genes. 623 

624 

DISCUSSION 625 
A Comparison of SEP/AGL6 and AP1/SQUA Functions in Petunia, Arabidopsis, Tomato 626 

and Rice 627 

In this study, we exploited the natural dTph1 transposon mutagenesis system in 628 

petunia to identify mutants for all 11 members of the petunia AP1/SEP/AGL6 superclade, and 629 

created a series of higher order mutants to uncover putative redundant functions. Here we 630 

discuss and compare our findings with the available functional data from mainly Arabidopsis, 631 

tomato and rice (see Figures 1F and 5A for the composition of their SEP/AGL6 and AP1/SQUA 632 

subfamilies). Petunia and tomato on the one hand, and Arabidopsis on the other hand are 633 

representatives of the Asterids and Rosids respectively, which constitute the two major groups 634 

in the core eudicots, and are thought to have diverged >100 million years ago (Moore et al., 635 

2010). Comparison of the molecular mechanisms controlling flower development in these 636 

species therefore helps to assess conservation and divergence of the floral regulatory gene 637 

network in the core eudicots (Vandenbussche et al., 2016). Petunia and tomato both belong to 638 

the Solanaceous family, and the lineages leading to petunia and tomato are estimated to have 639 

diverged around 30 MYA (Bombarely et al., 2016). Their close relationship is indeed reflected 640 

in a high degree of sequence similarity between tomato/petunia orthologous pairs in the 641 

AP1/SEP/AGL6 superclade (see also Supplemental Data Files 1, 2, 3 and 4), which makes the 642 

petunia/tomato comparison particularly well suited to evaluate functional diversification 643 

patterns on a shorter evolutionary time-scale, as opposed to the comparison with the distant 644 

monocot model species rice. 645 

646 

Implication of SEP and AGL6 Gene Functions in Floral Organ Identity 647 

Our genetic analysis in petunia indicates that its SEP3 ortholog FBP2 encodes the major 648 

SEP organ identity function: FBP2 is capable of fully rescuing flower development in a fbp2/+ 649 

fbp5 pm12 mutant background, and fbp2 is the only sep single mutant with a clearly visible 650 

phenotype. In Arabidopsis, all available genetic data indicate that SEP3 is also the most 651 

important SEP gene. Indeed, it was reported that single sep3 mutants display a phenotype on 652 

their own, showing a mild petal to sepal conversion, while sep1, sep2 and sep4 single mutants 653 

showed no developmental abnormalities (Pelaz et al., 2001). Secondly, sep1 sep2 sep4 mutants 654 

show no significant perturbation of floral organ development, indicating that SEP3 can fully 655 
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rescue WT development in a triple mutant background (Ditta et al., 2004). Thus SEP3 seems 656 

to perform a master SEP floral organ identity function in both species.  657 

While the gene-silencing approaches used to analyze SEP3 function in tomato and rice 658 

do not yet allow such detailed conclusions, these experiments suggest that their SEP3 orthologs 659 

play also a major role in floral organ identity: Tomato TM5 co-suppression lines genes exhibited 660 

homeotic conversion of whorls 2, 3, and 4 into sepal-like organs and loss of determinacy in the 661 

center of the flower (Pnueli et al., 1994) and a Y2H study found that TM5 was the preferred 662 

bridge protein of the 5 SEP tomato proteins tested (Leseberg et al., 2008). Transgenic lines 663 

carrying a construct aimed at simultaneously downregulating the two SEP3-like rice OsMADS7 664 

and OsMADS8 genes were late flowering, and carried flowers exhibiting partial homeotic 665 

conversions of the floral organs in the three inner whorls into palea/lemma-like organs, and a 666 

partial loss of floral determinacy (Cui et al., 2010). 667 

Arabidopsis sep1 sep2 sep3 mutants display a full conversion of petals, stamens and 668 

carpels into sepals, and flowers are fully indeterminate (Pelaz et al., 2000). By contrast, the 669 

genetically equivalent fbp2 fbp5 pmads12 mutant in petunia retains -albeit reduced- petal and 670 

stamen tissues, and the basic organization of the placenta structure in the flower center is 671 

maintained. Thus unlike in Arabidopsis, genes outside the SEP3 and SEP1/SEP2 clades are 672 

able to rescue part of the B- and C-functions in a petunia sep1/sep2/sep3 mutant background. 673 

We identified petunia AGL6 as one of these genes (Rijpkema et al., 2009). Similarly, the two 674 

rice AGL6 genes OsMADS6/MFO1 and OsMADS17 perform SEP-like functions, partly in a 675 

redundant fashion with the SEP gene OsMADS1/LHS1 (Ohmori et al., 2009; Dreni and Zhang, 676 

2016). More recently, a floral organ identity function was also proposed for the tomato AGL6 677 

gene, based on RNAi (Yu et al., 2017). Despite that the Arabidopsis genome encodes two AGL6 678 

homologs (AGL6 and AGL13), the phenotype of the sep1 sep2 sep3 mutant demonstrates that 679 

Arabidopsis AGL6 genes may have lost most of their SEP-like activity compared to petunia, 680 

rice and tomato AGL6 genes, in agreement with the diverse proposed functions for Arabidopsis 681 

AGL6 and AGL13 (Koo et al., 2010; Huang et al., 2012; Hsu et al., 2014).  682 

 683 

 Furthermore, we showed that in a petunia sextuple sep/agl6 mutant a full sepallata 684 

phenotype was obtained, including complete loss of floral meristem termination. Remarkably, 685 

the obtained phenotype was similar to that of the earlier described FBP2 co-suppression line 686 

(Ferrario et al., 2003), demonstrating the efficiency of co-suppression to silence multiple genes 687 

simultaneously. The expression levels of all six petunia SEP genes (but not of AGL6) were 688 

monitored in the co-suppression line, but only FBP2 and FBP5 were found to be 689 
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downregulated. This strongly suggests that other genes were silenced at the post-transcriptional 690 

level as was reported to frequently occur in gene silencing experiments (Stam et al., 1997). 691 

Measuring mRNA levels of paralogous genes thus appears to be a limited method to assess the 692 

specificity of a silencing construct. 693 

The addition of the sep4 mutation to the Arabidopsis triple sep1 sep2 sep3 mutant 694 

resulted in the conversion of sepal-like organs into leaf-like organs, indicating that SEP genes 695 

are required to specify sepal identity (Ditta et al., 2004). The fact that we could not observe a 696 

transition from sepal towards leaf-identity in the sextuple sep/agl6 mutant is most likely directly 697 

related to the 'leaf'-like identity of petunia WT sepals. Such basic differences in sepal identity 698 

between Arabidopsis and other species such as petunia may be contributing to the difficulties 699 

to formulate a broadly applicable A-function (Litt, 2007; Causier et al., 2009).  700 

Transgenic lines in which at least four of the rice SEP-like genes (OsMADS1/LHS1 701 

(LEAFY HULL STERILE1)), OsMADS5, OsMADS7 and OsMADS8) were downregulated, 702 

showed homeotic transformation of all floral organs except for the lemma into leaf-like organs 703 

(Cui et al., 2010), reminiscent of the Arabidopsis sep1 sep2 sep3 sep4 quadruple mutant flower 704 

phenotype. Remarkably however, severe loss-of-function mutations in the LOFSEP gene 705 

OsMADS1/LHS1 alone can cause complete homeotic conversion of organs of the three inner 706 

whorls into lemma/palea-like structures, and loss of floral meristem determinacy (Agrawal et 707 

al., 2005), while also dominant-negative and milder phenotypes were reported for other 708 

OsMADS1/LHS1 alleles (Jeon et al., 2000; Chen et al., 2006). More recently, Wu and 709 

colleagues specifically investigated unique and redundant functions of the three LOFSEP genes 710 

using mutant alleles and found that OsMADS1/LHS, OsMADS5, and OsMADS34/PAP2 711 

(PANICLE PHYTOMER2) together regulate determinacy of the floral meristem and specify the 712 

identities of spikelet organs by positively regulating the other MADS-box floral homeotic genes 713 

including B-, C-, SEP3 and AGL6 genes (Wu et al., 2017a). 714 

In petunia sextuple sep/agl6 mutant flowers, we found that the initial expression levels 715 

of the B-class genes PhGLO1, PhGLO2 and PhDEF and of the C-class genes PMADS3 and 716 

FBP6 were comparable to WT, indicating that initial activation and expression of these genes 717 

does not depend on the SEP/AGL6 floral organ identity function. In Arabidopsis, a similar 718 

observation has been made, showing normal patterning and accumulation of AP3, PI and AG 719 

expression in young sep1 sep2 sep3 floral buds (Pelaz et al., 2000). With perhaps the exception 720 

of FBP6 (SHP1/2), we found that further upregulation during later stages of development was 721 

impaired, especially for the PI homologs PhGLO1 and PhGLO2, while PhDEF (AP3) and 722 

PMADS3 (AG) still showed upregulation, but with a smaller incremental rate. These results are 723 
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in agreement with the idea that in Arabidopsis, complex formation of SEP proteins with B- and 724 

C- class MADS-box proteins is required for their positive autoregulation (Gomez-Mena et al.,725 

2005; Kaufmann et al., 2009).  726 

In sharp contrast with the other B-class genes, PhTM6 expression levels in the sextuple 727 

mutant were almost completely abolished during all stages tested, indicating a full dependence 728 

on SEP/AGL6 activity for all stages of its expression. Earlier, we showed that regulation of 729 

PhTM6 expression is atypical for a B-class gene, since its expression largely depends on the 730 

activity of the C-genes PMADS3 and FBP6 (Heijmans et al., 2012), resulting in a WT 731 

expression pattern mainly in stamens and carpels from early developmental stages onwards, 732 

and in all floral whorls when the C-genes are ectopically expressed (Vandenbussche et al., 733 

2004; Rijpkema et al., 2006). Together, this indicates that both SEP and C-class genes are 734 

absolutely required for PhTM6 expression, most likely as interaction partners in a MADS-box 735 

protein complex (Ferrario et al., 2003). For FBP11 (STK) expression, we found the same SEP 736 

dependence, but since FBP11 is expressed relatively late during flower development in the 737 

developing placenta and ovules (Angenent et al., 1995), this may also be an indirect effect, 738 

since these tissues are completely absent in the sextuple mutant. Thus, B- and C-class MADS-739 

box proteins may have an absolute requirement of SEP function to activate their downstream 740 

developmental programs, but depend only partly on it for upregulation of their own expression. 741 

This suggests differences in the molecular mechanisms involved in autoregulation versus 742 

downstream target gene activation/repression. 743 

Finally, we found that UNS, a petunia member of the SOC1 family, was strongly 744 

upregulated in the sextuple sep/agl6 mutant from early stages onwards, suggesting that SEP 745 

genes repress UNS during WT flower development. SOC1 was identified as a direct target of 746 

SEP3 in a genome wide study in Arabidopsis, with the expression of SOC1 being already 747 

reduced after only 8h of SEP3 induction in seedlings (Kaufmann et al., 2009). Interestingly, it 748 

was shown that constitutive UNS expression in petunia and Arabidopsis flowers lead to the 749 

unshaven floral phenotype, which is characterized by ectopic trichome formation on floral 750 

organs and conversion of petals into organs with leaf-like features (Ferrario et al., 2004). All 751 

these observations are consistent with the finding of Ó’Maoiléidigh and colleagues, who 752 

demonstrated that the floral homeotic organ identity gene AG not only functions by positively 753 

conferring floral identity to organ primordia in the flower, but also by actively repressing 754 

components of the leaf developmental program (OMaoileidigh et al., 2013).  755 

756 

757 
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The FBP9 Subclade Genes together with a SEP4-like Gene are Required to Confer Floral 758 

Meristem Identity in petunia and tomato.  759 

We found that the FBP9 subclade members FBP9 and FBP23 together with FBP4 play 760 

a crucial role in floral meristem identity, as illustrated by the homeotic transformation of flower 761 

meristems into inflorescence meristems in fbp9 fbp23 fbp4 triple mutants. In contrast, genetic 762 

interactions with the fbp2 mutant revealed only mild contributions to the classical SEP organ 763 

identity function. The phenotype of the fbp9 fbp23 fbp4 triple mutant is strikingly similar to 764 

that of the floral meristem identity mutants alf and dot (Souer et al., 1998; Souer et al., 2008), 765 

but it remains to be investigated how these genes are hierarchically positioned. However, it was 766 

found that simultaneous overexpression of ALF and DOT in young seedlings led to strong 767 

activation of FBP9 and FBP23 expression (Souer et al., 2008), suggesting that ALF/DOT 768 

specify floral meristem identity at least in part by activating FBP9 and FBP23 expression. An 769 

expression analysis of ALF, DOT, FBP9, FBP23 and FBP4 in the different mutant backgrounds 770 

may provide further support for this hypothesis.  771 

 Importantly, our analysis of the fbp4 fbp9 fbp23 mutant combined with a recent study 772 

of tomato FBP9 and SEP4 subclade members (Soyk et al., 2017) demonstrates that the 773 

requirement of FBP9 and SEP4 clade genes for floral meristem identity is conserved between 774 

tomato and petunia, and therefore likely also in other Solanaceous species. Note that although 775 

in both cases floral meristem identity is compromised, the phenotypes of tomato j2 ej2 lin and 776 

petunia fbp9 fbp23 fbp4 mutants superficially do look quite different. We believe that this may 777 

be explained for an important part by basic differences in the inflorescence architecture between 778 

the two species. First of all, in petunia, every flower arises from a node that bears two bracts, 779 

while the tomato inflorescence is bractless. As a consequence, loss of FM identity in petunia 780 

leads to a highly branched structure composed of a lot of bracts, while in tomato this leads to a 781 

more naked structure consisting of proliferating SIMs. Also, the compound tomato 782 

inflorescence architecture is more complex compared to petunia and involves the transition of 783 

a vegetative meristem into a transition meristem (TM) that terminates in a floral meristem (FM) 784 

resulting in the first flower of the inflorescence. Additional flowers then develop from the 785 

axillary SIM, resulting in an inflorescence bearing multiple flowers (Park et al., 2014).  786 

While the strongest phenotype was obtained in the tomato triple mutants, analysis of 787 

single and double mutants revealed also individual contributions to tomato development: LIN 788 

limits internode length and the number of flowers that develop per inflorescence, EJ2 789 

negatively regulates sepal size, while both J2 and EJ2 are involved in the control of branching 790 
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of the tomato inflorescence (Soyk et al., 2017). In addition, J2 is required for the development 791 

of the pedicel abscission zone (Liu et al., 2014; Roldan et al., 2017; Soyk et al., 2017).  792 

Finally, remark that our phylogenetic analysis indicates that within the SEP4 clade, RIN 793 

in fact is more closely related to petunia FBP4 compared to LIN. However, RIN shows a much 794 

more restricted expression pattern limited to the developing fruit (Vrebalov et al., 2002), 795 

indicating that RIN has evolved a specialized role compared to FBP4 and LIN. Because of the 796 

rin phenotype, RIN has long time been considered to function as a major regulator that is 797 

essential for the induction of ripening, but a recent study using a CRISPR/Cas9-mediated RIN-798 

knockout mutation shows that inactivation of RIN does not repress initiation of ripening and 799 

that the original rin mutation is rather a gain-of-function mutation resulting in an aberrant 800 

protein that actively represses ripening (Ito et al., 2017).  801 

802 

While Arabidopsis doesn’t have FBP9 subclade members (Zahn et al., 2005), it was 803 

found that Arabidopsis SEP proteins, in addition to their role in floral organ identity, are also 804 

involved in maintaining floral meristem identity, as evidenced by the frequent appearance of 805 

secondary flowers in the axils of first-whorl organs in sep1 sep2 sep3 sep4 quadruple mutants 806 

and much less frequently in sep1 sep2 sep 3 mutants (Ditta et al., 2004). Moreover, an ap1 sep1 807 

sep2 sep4 quadruple mutant was shown to produce a cauliflower phenotype similar to ap1 cal 808 

mutants, while an ap1 sep4 mutant had a meristem identity defect intermediate between that of 809 

ap1 and ap1 cal mutants. Although these data clearly demonstrate the implication of 810 

Arabidopsis SEP genes in floral meristem identity, the very severe floral meristem defects 811 

observed in ap1 cal or ap1 cal ful mutants, indicate that in Arabidopsis, floral meristem is 812 

mainly determined by members of the AP1/SQUA subfamily. 813 

In rice, the three LOFSEP genes OsMADS1/LHS, OsMADS5, and OsMADS34/PAP2  814 

were proposed to be involved in the transition of the spikelet meristem into a floral meristem 815 

(Wu et al., 2017a). However, floral meristem formation in the triple osmads1 osmads5 816 

osmads34 mutants was not completely abolished, only strongly delayed, possibly because the 817 

insertion alleles are not complete null mutants as suggested by the authors (Wu et al., 2017a). 818 

819 

The Petunia AP1 ortholog euAP1 is not required for petal development, and acts 820 

redundantly with the other AP1 clade members as a B-function Repressor in the First 821 

Floral Whorl. 822 

Because Arabidopsis ap1 mutants lack petals and have sepals displaying bract like 823 

features (Irish and Sussex, 1990; Mandel et al., 1992) and AP1 is negatively regulated by AG 824 
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in whorls three and four (Gustafson-Brown et al., 1994), AP1 has been classified as an A-825 

function gene in the ABC model, required for the identity specification of sepals and petals. In 826 

sharp contrast with the phenotype of Arabidopsis ap1 mutants, we found that petal development 827 

does not at all require euAP1 activity in petunia. This may not come as a complete surprise 828 

since it was shown before that also in Arabidopsis, AP1 is not essential for petal development, 829 

as evidenced by the nearly complete restauration of petal development in ap1 ag mutants 830 

(Bowman et al., 1993) and in 35S: SEP3 ap1 flowers (Castillejo et al., 2005), and a partial 831 

restauration in ap1 agl24 double mutants (Yu et al., 2004). In addition, single euap1 mutants 832 

that still develop petals have previously been described in other species such as e.g. the squa 833 

mutant in snapdragon (Huijser et al., 1992), the pim mutant in pea (Berbel et al., 2001; Taylor 834 

et al., 2002), mtap1 in Medicago (Benlloch et al., 2006; Cheng et al., 2018), and mc in tomato 835 

(Vrebalov et al., 2002; Nakano et al., 2012; Yuste-Lisbona et al., 2016). 836 

Restricting the activity of the floral homeotic B- and C-functions to their proper domains 837 

is crucial for the correct development of the flower structure, and it appears that the molecular 838 

mechanisms underlying these cadastral functions are much more diverse compared to the floral 839 

organ identity functions (reviewed in (Monniaux and Vandenbussche, 2018)). Here we 840 

identified the petunia AP1/SQUA genes as repressors of the B-function in the first whorl, as 841 

evidenced by the partial conversion of sepals into petaloid tissue in pfg fbp26 fbp29 euap1 842 

mutants, and the strong enhancement of this phenotype in combination with mutations in the 843 

ROB genes, which were previously identified as B-function repressors in the first whorl (Morel 844 

et al., 2017). Such a phenotype has so far never been reported in flowers of Arabidopsis ap1, 845 

cal or ful mutants, or any combination of these mutations (Ferrandiz et al., 2000). Nevertheless, 846 

it was proposed that AP1 in combination with AGL24 (AGAMOUS LIKE 24) and SVP (SHORT 847 

VEGETATIVE PHASE) represses both the B- and C-function genes during early phases of floral 848 

development (Gregis et al., 2006; Gregis et al., 2009), but it is not clear if other Arabidopsis 849 

AP1/SQUA genes would be also involved in this process and whether this is specific to the first 850 

floral whorl. Finally in rice, deregulation of B- and C-expression patterns was observed in 851 

osmads14 osmads15/+ and osmads14/+ osmads15 flowers (Wu et al., 2017b), suggesting that 852 

these rice AP1/SQUA transcription factors are also involved in patterning the homeotic B- and 853 

C-functions. 854 

  In summary, the observation that the petunia AP1/SQUA genes repress the B-function 855 

in the first floral whorl but do not seem to be required for 2nd whorl petal development 856 

demonstrates that petunia AP1/SQUA genes cannot be easily classified as “A-function” genes 857 

according to the original definition of the A-function in the ABC model. Earlier, we 858 
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encountered the same difficulties when trying to integrate the function of the petunia AP2-like 859 

transcription factors AP2 and ROB1-3 into a simple ABC model (Morel et al., 2017). This led 860 

us to propose a modified model for petunia floral organ identity in which the original A-function 861 

is replaced by a combinatorial function describing the cadastral (boundary setting) mechanisms 862 

that pattern the floral B- and C-functions (Morel et al., 2017). The above described cadastral 863 

function of the petunia AP1/SQUA genes during flower development perfectly fits into this 864 

alternative model, and is also compatible with the proposed modified (A)BC model (Causier et 865 

al., 2009), in which a more broadly defined (A)-function provides the genetic context in which 866 

the B- and C-functions are active and regulates both their spatial and temporal expression 867 

domains. Our findings for both the AP1/SQUA and AP2-like gene functions in petunia entirely 868 

explain the struggles to translate the Arabidopsis definition of the A-function to distant 869 

flowering species (Litt, 2007). 870 

871 

Petunia AP1/SQUA Family Members Function in a Largely Redundant Fashion and are 872 

Required for Inflorescence Meristem Identity. 873 

Different members of the AP1/SQUA subfamily in Arabidopsis have evolved unique 874 

roles during development as exemplified by the distinct phenotypes of the single ap1 and ful 875 

mutants. Swapping experiments suggest that functional divergence between AP1 and FUL is 876 

due to changes in both expression pattern and coding sequence (McCarthy et al., 2015). At the 877 

same time, AP1, CAL and FUL have retained a redundant function in inflorescence architecture 878 

(Ferrandiz et al., 2000), whereas CAL shares a cryptic role in petal development redundantly 879 

with AP1 (Castillejo et al., 2005). While the function of AGL79 (a euFUL-like gene) has 880 

remained elusive for a long time, a recent study suggests a role for AGL79 in lateral root 881 

development and control of lateral shoot branching (Gao et al., 2017). It remains to be 882 

established if AGL79 overlaps in function with AP1, CAL and FUL.  883 

Although we cannot exclude to have overlooked some very subtle defects, the absence 884 

of clear floral developmental defects in mutants for any of the four petunia AP1/SQUA genes 885 

suggests that individual members of the petunia AP1/SQUA subfamily did not functionally 886 

diverge, independent from their euAP1 or euFUL/paleoAP1 clade identity. In line with that, we 887 

found that all four genes show overlapping expression patterns in most tissues tested. It remains 888 

to be tested whether this broad functional redundancy is also observed during other 889 

developmental processes, such root or fruit development, which were not analyzed in this study. 890 

One of the striking aspects of the phenotype of quadruple pfg fbp26 fbp29 euap1 mutants 891 

is that these plants develop fully functional flowers, suggesting that floral meristem identity 892 
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does not require AP1/SQUA activity in petunia. Our finding that this function is apparently 893 

taken care off by a specific subset of SEP genes fully fits this hypothesis. However, we can 894 

currently not fully exclude that some residual AP1/SQUA activity remains in the pfg fbp26 895 

fbp29 euap1 mutants, possibly explaining the formation of terminal flowers. Especially the pfg-896 

12 insertion allele potentially could be a hypomorphic allele, since an alternative startcodon is 897 

present in the first exon (AA nr 8, Supplemental Data File 2) shortly after the transposon 898 

insertion site. This could in theory lead to the production of a protein with an N-terminal 899 

truncation of the MADS-domain, perhaps displaying some residual functionality. Other alleles 900 

will have to be identified in the future to fully proof the hypothesis that floral meristem identity 901 

in petunia does not require AP1/SQUA activity. 902 

On the other hand, the phenotype of the quadruple pfg fbp26 fbp29 euap1 mutants 903 

indicate that the petunia AP1/SQUA genes appear to be essential for the development of the 904 

cymose inflorescence, indicating a role in inflorescence meristem identity. Such a role also has 905 

been proposed for AP1/SQUA genes in other core eudicot species: VEG1 and its ortholog 906 

MtFUL are essential for the specification of the secondary inflorescence meristem in the 907 

compound inflorescences of pea and Medicago respectively, but are not required for floral 908 

meristem identity (Berbel et al., 2012; Cheng et al., 2018).  909 

 Interestingly, it was earlier found that the tomato mc mutants also play a role in 910 

inflorescence meristem development, since mc inflorescences revert to vegetative growth after 911 

forming two to three flowers. In addition, these flowers developed enlarged sepals and have an 912 

incomplete pedicel abscission zone (Vrebalov et al., 2002; Nakano et al., 2012; Yuste-Lisbona 913 

et al., 2016). Moreover, the implication of MC in the development of the pedicel abscission 914 

zone is proposed to occur via a higher order MADS-box complex including the SVP-like 915 

protein  JOINTLESS (J), and J2/SLMBP21 a SEP FBP9 clade member . Except for the pedicel 916 

abscission zone which does not exist in petunia, the mc phenotypes are reminiscent of what we 917 

observed in petunia quadruple ap1 mutants, suggesting a conserved role in inflorescence 918 

meristem identity and first whorl development. Because mc single mutants have a clear 919 

phenotype on their own, it also shows that MC exhibits less functional overlap with the other 920 

AP1 family members compared to petunia. However, as suggested by the relative mildness of 921 

the inflorescence meristem defect in mc mutants compared to the petunia quadruple mutants, 922 

this does not exclude possible partial redundancy with one or more of the other tomato AP1 923 

family members, something that still remains to be tested. RNAi mediated downregulation of 924 

tomato FUL1 and FUL2 suggested a role for these genes in fleshy fruit ripening (Bemer et al., 925 

2012; Shima et al., 2013; Wang et al., 2014), indicating that the implication of FUL genes in 926 
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fruit development is conserved between tomato and Arabidopsis, despite that these two species 927 

have very different fruit types (fleshy versus dry). Petunia on the other hand develops a dry 928 

fruit capsule, but the implication of AP1/FUL members in its development remains to be 929 

investigated.   930 

Finally, of the four identified rice AP1 subfamily members called OsMADS14, 931 

OsMADS15, OsMADS18 and OsMADS20 (Lee et al., 2003; Yu et al., 2016), it was found that 932 

OsMADS14, OsMADS15 and OsMADS18 are specifically activated in the meristem at phase 933 

transition together with the LOFSEP gene PAP2/OsMADS34 (Kobayashi et al., 2010; 934 

Kobayashi et al., 2012). While downregulation of these three AP1/FUL-like genes by RNAi  935 

caused only a slight delay in reproductive transition, further depletion of PAP2 function from 936 

these triple knockdown plants inhibited the transition of the meristem to the IM (Kobayashi et 937 

al., 2012), indicating that the AP1/FUL-like OsMADS14, OsMADS15, OsMADS18 and the 938 

LOFSEP gene PAP2/OsMADS34 coordinately act in the meristem to specify inflorescence 939 

meristem identity. In addition, it was shown that OsMADS14 and OsMADS15, besides to their 940 

function of specifying meristem identity, are also involved in the specification of palea and 941 

lodicule identities, using stable mutant alleles (Wu et al., 2017b).  942 

 943 

Functional Diversification Patterns in the AP1/SEP/AGL6 Superclade during Angiosperm 944 

evolution.  945 

Above, we compared AP1/SEP/AGL6 functions between different species, mainly 946 

focusing on Arabidopsis, petunia, tomato and rice, revealing important differences in the 947 

functions performed by their respective members. Perhaps the most striking observation is that 948 

a subclass of SEP genes (all belonging to the LOFSEP group) in petunia, tomato and possibly 949 

also rice are required to confer floral meristem identity, while in Arabidopsis the floral meristem 950 

identity function is mainly associated with members of the AP1/SQUA subfamily.  It thus seems 951 

that during angiosperm evolution, members of different subfamilies within the AP1/SEP/AGL6 952 

superclade have evolved specialized/subfunctionalized roles either in floral organ identity or 953 

inflorescence and/or floral meristem determination, providing further genetic support for the 954 

monophyletic origin of the AP1/SEP/AGL6 superclade. Within MADS-box subfamilies, it is 955 

not unusual that functions have been distributed differently between paralogs in different 956 

species. One of the first well documented cases concerns the C-function MADS-box subfamily, 957 

showing that the canonical C-function is encoded by nonorthologous genes in Arabidopsis and 958 

Antirrhinum (Causier et al., 2005). However, careful comparison of gene functions in the 959 

AP1/SEP/AGL6 superclade suggest that this random distribution of functions after gene 960 
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duplication has occurred also during the earlier phases of the evolution of the MADS-box gene 961 

family, resulting in functions that are differently distributed beyond the subfamily level. In 962 

addition, comparison between tomato and petunia indicates major functional differences that 963 

have arisen on a relatively short evolutionary time-scale. Of note is the involvement of several 964 

tomato AP1/SEP/AGL6 members in the development of the pedicel abscission zone and in 965 

compound leaf development, all processes that do not occur in petunia. 966 

Together, these observations illustrate that gene function cannot accurately be predicted 967 

solely based on sequence homology and phylogenetic analysis, and that final gene function may 968 

be strongly dependent on species-specific developmental contexts. Furthermore, it also 969 

illustrates that demonstration of gene function conservation between only two species, even if 970 

they are very distantly related (e.g. a monocot versus a dicot species), cannot safely be used to 971 

extrapolate a more general conservation of a particular gene function. Together with other 972 

studies, this further enforces the argument that plant biology in general, and plant evo–devo in 973 

particular would strongly benefit from a broader range of available model systems 974 

(Vandenbussche et al., 2016).  975 

976 

MATERIALS AND METHODS 977 

Plant Material, Genotyping and Phenotyping 978 

Petunia plants were grown in soil (FAVORIT-argile 10) either in a greenhouse (16 h day/8 h 979 

night: natural light supplemented with Philips Sodium HPS 400W SON-T AGRO light bulbs; 980 

55.000 lumens) or outside protected by an agricultural tunnel (from April to October), both 981 

under conditions that depend on local seasonal changes (45.72°N 4.82°E), or in growth 982 

chambers (settings: 16 h day 22°C /8 h night 18°C, 75W Valoya NS12 LED bars, light intensity 983 

130 µE). The identification of the following dTph1 transposon insertion alleles (Figures 1G and 984 

5D) was described previously (current allele naming based on exact insert position; old allele 985 

names in between brackets): fbp2-332 (fbp2-1); fbp2-440 (fbp2-2); fbp4-44 (fbp4-2); fbp4-55 986 

(fbp4-3); fbp5-129 (fbp5-1); fbp9-110 (fbp9-1); pfg-12 (pfg-1); fbp26-76 (fbp26-1) 987 

(Vandenbussche et al., 2003b), and agl6-118 (agl6-1) (Rijpkema et al., 2009). Note that the 988 

previously determined insert positions for some of these alleles differ by a few nucleotides 989 

compared to the data presented here, due to the imperfect manual sequencing method used at 990 

that time combined with the characterization of only the right border of the transposon flanking 991 

sequences, not taking the dTph1 8bp target site duplication into account. Also, it was mentioned 992 

that homozygous fbp9-1 (fbp9-110) mutants exhibited aberrations in plant architecture during 993 

the reproductive phase (Vandenbussche et al., 2003b). However, later outcrossing analysis of 994 
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the fbp9-1 allele showed that this defect was closely linked to fbp9-1, but not due to the fbp9-1 995 

insertion, as confirmed by the absence of this phenotype in the new fbp9-7 and fbp9-90 alleles. 996 

The following alleles fbp2-209; fbp4-23; fbp5-51; pm12-37; pm12-118; pm12-325; euap1-317; 997 

fbp29-31; fbp29-123 and fbp29-153 were identified by BLAST-searching our sequence-998 

indexed dTph1 transposon flanking sequence database (Vandenbussche et al., 2008) that was 999 

enlarged with the addition of extra populations. Exact insert positions were determined by 1000 

aligning the transposon flanking sequences with the corresponding genomic and coding 1001 

sequences. The insertion alleles were named after their exact insert position, expressed in bp 1002 

downstream of the ATG in the coding sequence (Figures 1G and 5D). Offspring of candidate 1003 

insertion lines were grown and genotyped by PCR using gene specific primer pairs flanking the 1004 

insertion site (Supplemental Table 2). The following thermal profile was used for segregation 1005 

analysis PCR: 11 cycles (94°C for 15s, 71°C for 20s minus 1°C/cycle, 72°C for 30s), followed 1006 

by 40 cycles (94°C for 15s, 60°C for 20s, 72°C for 30s). For all alleles, homozygous mutants 1007 

were obtained in offspring of the originally heterozygous insertion mutants, either containing 1008 

the original transposon insertion allele, or a stably inherited out-of-frame derived footprint 1009 

allele that was confirmed by sequencing, fully maintaining the mutation. Insertion alleles that 1010 

were used in crosses for higher order mutant analysis are indicated in red in Figures 1G and 1011 

5D. The different insertion alleles were further systematically genotyped in subsequent crosses 1012 

and segregation analyses. To test genetic interactions with the rob mutations (Figure 6), a pfg 1013 

fbp26 fbp29 euap1 mutant was crossed with the earlier described rob1 rob2 rob3 mutant (Morel 1014 

et al., 2017). Phenotypic analysis of all single and higher order mutants was focused and limited 1015 

to the screening for defects in floral organ development and inflorescence architecture. 1016 

1017 

Phylogenetic Analysis 1018 

The phylogenetic analyses shown in Figures 1F and 5A were conducted using the advanced 1019 

PhyML/oneClick workflow at ngphylogeny.fr (Lemoine et al., 2019). Full-length protein 1020 

sequences of either SEP/AGL6 (Figure 1F) or AP1/SQUA (Figure 5A) subfamily members 1021 

from petunia, tomato, arabidopsis and rice (Supplemental Table 1) were first aligned using 1022 

MAFFT (Katoh and Standley, 2013) applying the following options: Data type: Autodetection; 1023 

MAFFT flavor: auto; Gap extend penalty: 0.123; Gap opening penalty: 1.53; Matrix selection: 1024 

no matrix; Reorder output? true. Output format: FASTA (Supplemental Data files 1 and 2). 1025 

Next, alignment curation was done using BMGE (Criscuolo and Gribaldo, 2010) with the 1026 

following options: Sequence coding: AA; matrix: BLOSUM; Estimated matrix BLOSUM: 62; 1027 

Sliding windows size: 3; Maximum entropy threshold: 0.5; Gap Rate cut-off: 0.5; Minimum 1028 
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block size: 3 and 5 for Figures 1F and 5A respectively. Using the resulting BMGE files, 1029 

Maximum Likelyhood trees were calculated using PhyML (Lemoine et al., 2018) with the 1030 

following settings: Data type: amino acids; Evolutionary model: LG; Equilibrium frequencies: 1031 

ML/Model. Proportion of invariant sites: estimated; Number of categories for the discrete 1032 

gamma model: 4; Parameter of the gamma model: estimated; Tree topology search: Best of 1033 

NNI and SPR. Optimize parameter: Tree topology, Branch length, Model parameter; Statistical 1034 

test for branch support: Bootstrap; Number of bootstrap replicates: 1000. Seed value used to 1035 

initiate the random number generator: 123456. The tree was rendered using Newick Display 1036 

(Junier and Zdobnov, 2010). For the visual representation of the SEP/AGL6 analysis (Figure 1037 

1F), mid-point rooting was applied on the node separating SEP and AGL6 subfamilies, while 1038 

for the AP1/SQUA analysis (Figure 5A), mid-point rooting was applied on the node separating 1039 

rice from eudicot AP1/SQUA proteins. 1040 

1041 

Imaging and Microscopy 1042 

Electron microscopy images were obtained as previously described (Vandenbussche et al., 1043 

2009) or by using a HIROX SH-1500 benchtop environmental electron microscope equipped 1044 

with a cooled stage. Macroscopic floral phenotypes were imaged by conventional digital 1045 

photography using a glass plate as a support and black velvet tissue around 10 cm below the 1046 

glass plate in order to generate a clean black background. When needed, backgrounds were 1047 

further equalized by removing dust particles and light reflections with Photoshop. Images in 1048 

Figures 6H, 6I and 6M were photographed using a Zeiss Imager M2 microscope equipped with 1049 

an AxioCam MRc camera (Zeiss). 1050 

1051 

RT-qPCR Expression Analysis. 1052 

Total RNA was extracted using the Spectrum Plant Total RNA kit (Sigma Aldrich) and treated 1053 

with Turbo DNA-free DNase I (Ambion). RNA was reverse transcribed using RevertAid M-1054 

MuLV reverse transcriptase (Fermentas) according to the manufacturer’s protocol. PCR 1055 

reactions were performed in an optical 384-well plate in the QuantStudio™ 6 Flex Real-Time 1056 

PCR System (Applied Biosystems), using FastStart Universal SYBR Green Master (Roche), in 1057 

a final volume of 10µl, according to the manufacturer’s instructions. Primers (Supplemental 1058 

Table 2) were designed using the online Universal ProbeLibrary Assay Design Center (Roche). 1059 

Data were analyzed using the QuantStudio™ 6 and 7 Flex Real-Time PCR System Software 1060 

v1.0 (Applied Biosystems). Petunia ACTIN, GAPDH, and RAN were used as reference genes. 1061 

PCR efficiency (E) was estimated from the data obtained from standard curve amplification 1062 
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using the equation E=10−1/slope. Relative expression (R.E.) values on the y-axes are the average 1063 

of nine data points resulting from the technical triplicates of three biological replicates ± sd and 1064 

normalized to the geometrical average of three E−ΔCt, where ΔCt = CtGOI − CtACTIN, GAPDH and1065 

RAN. 1066 

The floral bud series (marked floral buds 1–3 in Figures 1F, 4G, 5C and Supplemental Figure 1067 

1) are successive developmental stages of complete floral buds harvested from the same1068 

inflorescences (Figure 1E). Young bracts were harvested from the node bearing stage 3 flowers, 1069 

while inflorescence stem tissue was collected from the internode connecting node stage 4 and 1070 

stage 5 bearing flowers. For each biological replicate, corresponding stages harvested from 1071 

three inflorescences were pooled. Stage 3 corresponds to flower buds with a diameter of ∼5 mm 1072 

and from which individual floral organs can be easily dissected by hand. All analyses showing 1073 

expression in separate floral organ types are from this stage. Biological replicates of the 1074 

different floral organ types were composed of pooled stage 3 organs harvested from three 1075 

different flowers each time. Floral buds marked “2” (diameter ∼2.5 mm) and “1” (diameter ∼1.5 1076 

mm) are younger stages and were harvested from the next two nodes produced after bud stage1077 

3. In addition to 1.5-mm buds, stage 1 also includes the inflorescence meristem and very young1078 

developing floral primordia subtended by bracts, which are attached to the base of the pedicel 1079 

of the 1.5-mm bud. For the sextuple mutant flower buds analyzed in Figure 4G, developmental 1080 

stages in relation to wild-type development were deduced based on their position on the 1081 

inflorescence. Vegetative apices (including very small leaf primordia) were harvested from 3-1082 

week-old seedlings by manually removing cotyledons, roots, and developed leaves. Young leaf 1083 

primordia were isolated from the same 3-week-old seedlings. Each biological replicate of the 1084 

vegetative apices and young leaf primordia consisted of pooled material harvested from each 1085 

time 10 seedlings. The root samples were obtained by pooling 10-15 actively growing 2 cm 1086 

root tips per biological replicate. 1087 

1088 

Accession Numbers 1089 

Sequence data for the genes that were functionally analyzed in this article can be found in the 1090 

GenBank/EMBL libraries under accession numbers FBP2 (M91666.1); FBP5 (AF335235.1); 1091 

PMADS12 (AY370527.1); FBP9 (AF335236.1); FBP23 (AF335241.1); FBP4 (AF335234.1); 1092 

Ph-AGL6 (AB031035.1); PFG (AF176782.1); FBP29 (AF335245.1); FBP26 (AF176783.1); 1093 

Ph-euAP1 (MK598839) (see also Supplemental Table 1). 1094 

1095 
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FIGURE LEGENDS 1495 
 1496 
Figure 1. Characterization of the Petunia SEP/AGL6 MADS-box Genes.  1497 

(A) Section through a WT petunia W138 flower showing inner whorls. (B) Petunia seedpod ~4 1498 

weeks post-pollination surrounded by green sepals. (C) SEM (scanning electron microscopy) 1499 

images of sepal, bract and leaf adaxial and abaxial epidermal surfaces. Bars = 50 µm. (D) 1500 

Longitudinal sections of developing petunia floral buds showing the placenta developing from 1501 

the center of the floral meristem s = sepal; p = petal; st = stamen; c = carpel; pl = placenta. Bars 1502 

= 200 µm. (E) W138 floral bud developmental stages for RT-qPCR analysis shown in (G), 1503 

dissected from the top of an inflorescence (inset), of which the large floral bud at the right is 1504 

just prior to opening. Numbers indicate sampled stages. 1 to 3 correspond to floral bud 1505 

diameters of ~1.5, 2.5 and 5 mm respectively. Stage 1 also includes very early flower primordia, 1506 

bracts and the inflorescence meristem. Bar = 1 cm. (F) Maximum Likelihood phylogenetic 1507 

analysis of the SEP and AGL6 subfamily members of Petunia hybrida (Ph), Solanum 1508 

lycopersicum (Sl), Arabidopsis thaliana (At) and Oryza sativa (Os). Bootstrap values marked 1509 

in red (expressed in %, based on 1000 replicates) supporting tree branching are indicated near 1510 
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the branching points. The scale bar represents number of substitutions per site. Accession codes 1511 

for the corresponding sequences are shown in Supplemental Table 1. Naming of subfamilies 1512 

and subfamily clades is based on previously described phylogenies for the SEP subfamily 1513 

(Malcomber and Kellogg, 2005; Zahn et al., 2005; Yu et al., 2016). (G) RT-qPCR expression 1514 

analysis of the petunia SEP/AGL6 genes. Relative expression (R.E.) levels are plotted as the 1515 

mean value of three biological and three technical replicates ±SE, normalized against three 1516 

reference genes (see Material and Methods). Expression levels were measured in vegetative 1517 

tissues (green bars; infl. stem = inflorescence stem); entire floral buds (orange bars) from 3 1518 

developmental stages shown in (E) and dissected floral organs (red bars) obtained from flower 1519 

buds corresponding to stage 3. (H) Schematic representations of the gene structures and 1520 

insertion alleles of the petunia SEP and AGL6 genes and floral phenotypes of the corresponding 1521 

insertion mutants used in further crosses. Black boxes and lines represent exons and introns 1522 

respectively. All gene models start at the start codon and end at the stop codon. Scale bars = 1523 

500 bp. Red triangles indicate positions of dTph1 transposon insertions. Alleles are named after 1524 

the exact insert position of the dTph1 element in number of base pairs downstream of the ATG 1525 

in the coding sequence. The names of the insertion alleles that have been selected for the 1526 

creation of double and higher order mutants are marked in red. 1527 

1528 

Figure 2. The Petunia fbp2 fbp5 pm12 Mutant, Genetic Equivalent of the Arabidopsis sep1 1529 

sep2 sep3 Mutant, Still Displays B- and C-function Floral Characteristics. 1530 

(A) to (H) Top view of flowers from WT, single, double and triple mutants of petunia1531 

SEP1/SEP2/SEP3 homologs. All images are at the same magnification. (I) to (L) Side view of 1532 

WT and mutant flowers sectioned through the middle. All images are at the same magnification. 1533 

(M) Close-up of dissected third whorl organs (stamens). (N) Close-up of dissected fourth whorl1534 

organs (carpels). (O) to (Q) SEM images of the outer ovary surface. Scale bars = 100 µm.  1535 

1536 

Figure 3. Petunia Floral Meristem Identity Depends on FBP9/FBP23/FBP4 Activity. 1537 

(A) to (C) and (E) to (G) Top and side view of WT, fbp9 fbp23 and fbp9 fbp23 fbp4 plants 131538 

weeks after sowing. (D) and (H) Schematic representation of inflorescence phenotypes. (I) to 1539 

(L) SEM images of inflorescence apices in WT and fbp4 fbp9 fbp23 mutants. Br: bracts; Se:1540 

sepals; F: flower; Fm: Flower meristem; Im: Inflorescence meristem. Scale bars = 100 µm. (M) 1541 

to (Q) Inflorescence architecture of lower order mutants compared to WT and fbp9 fbp23 fbp4 1542 

mutants. (R) to (W) Flower phenotypes of fbp4, fbp23 and fbp9 mutations in combination with 1543 

fbp2. All flowers are at the same magnification. 1544 
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1545 

Figure 4. Characterization of the Sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 Mutant 1546 

Compared to WT. Genotypes in each panel are indicated as follows: sext: sextuple fbp2 fbp4 1547 

fbp5 fbp9 pm12 agl6 mutant. WT: wild-type. 1548 

(A) and (B) Top view of young (A) and mature flower (B). (C) Dissected floral organs of a1549 

flower similar to the stage as indicated by the asterisk in (F). W# indicate whorl numbers. (D) 1550 

Longitudinal section through an older flower similar to the stage as indicated by the double 1551 

asterisk in (F). (E) SEM images of the epidermis of the four different floral whorls (indicated 1552 

by W#) in WT (left panels) and the sextuple mutant (right panels). (F) Inflorescences showing 1553 

flowers at various stages of development and aging. The arrows indicate an example where 1554 

three consecutive fully developed flowers arose from a single floral meristem. Scale bars: 0.25 1555 

cm in (A); 0.5 cm in (B, D); 1 cm in (C, F); 50 µm in (E). (G) RT-qPCR expression analysis of 1556 

the petunia floral homeotic genes in WT versus sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 1557 

mutants. Petunia genes are indicated and names of corresponding Arabidopsis orthologs are 1558 

shown in between brackets. *No TM6 ortholog exists in the Arabidopsis genome. **Petunia 1559 

FBP6 is orthologous to SHP1/SHP2, but is functionally homologous to AG. Relative expression 1560 

(R.E.) levels are plotted as the mean value of three biological and three technical replicates 1561 

±SE, normalized against three reference genes (see Material and Methods). Expression levels 1562 

were measured in entire floral buds from three developmental stages as shown in Figure 1E. 1563 

1564 

Figure 5. Characterization of the Petunia AP1/SQUA MADS-box Subfamily. 1565 

(A) Maximum likelihood phylogenetic analysis of the AP1/SQUA subfamily members of1566 

Petunia hybrida (Ph), Solanum lycopersicum (Sl), Arabidopsis thaliana (At) and Oryza sativa 1567 

(Os). Bootstrap values marked in red (expressed in %, based on 1000 replicates) supporting 1568 

branching are indicated near the branch points. The scale bar represents number of 1569 

substitutions/site. Accession codes for the corresponding sequences are shown in Supplemental 1570 

Table 1. Naming of subfamilies and subfamily clades is based on previously described 1571 

phylogenies for the AP1/SQUA subfamily (Litt and Irish, 2003; Yu et al., 2016; Maheepala et 1572 

al., 2019). (B) RT-qPCR expression analysis of the petunia AP1/SQUA genes. Relative 1573 

expression (R.E.) levels are plotted as the mean value of three biological and three technical 1574 

replicates ±SE, normalized against three reference genes (see Material and Methods). See 1575 

legend of Figure 1G for sample description. (C) Schematic representations of the gene 1576 

structures and insertion alleles of the petunia AP1/SQUA genes and corresponding floral 1577 
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phenotypes of insertion lines used for further crosses and analyses. Figure Legend as in Figure 1578 

1H. 1579 

1580 

1581 

Figure 6. Petunia AP1/SQUA Family Members are Required for Inflorescence Meristem 1582 
Identity and Repress the B-function in the First Floral Whorl. 1583 
(A) to (D) Flower phenotype of pfg fbp26 fbp29 euap1 mutants. Some sepals and petals have1584 

been removed in (B) to reveal inner organs. (D) Enlarged sepals showing petaloid sectors 1585 

displaying petal conical epidermal cells (inset SEM image). (E) to (G) Inflorescence phenotype 1586 

showing an “inflorescence” with spirally organized leaves (F) ending in a single terminal flower 1587 

(G). (L) Side branches developing from the basis of the plant exhibit an identical inflorescence 1588 

phenotype. (H), (I) and (M) Longitudinal sections of the apex of an inflorescence in vegetative 1589 

state (G), and of an inflorescence with terminal flower (I), compared to the apex of a WT 1590 

inflorescence (M). Red asterisks in (I) indicate vegetative lateral meristems. (J) to (K) 1591 

Enhanced homeotic sepal-to-petal conversion compared to (C) and (D). (N) and (O) unmodified 1592 

sepals in rob1 rob2/+ rob3 mutants (N) compared to WT (O). (P) and (Q) SEM images of a 1593 

WT vegetative meristem before the onset to flowering compared to the apex of a pfg fbp26 1594 

fbp29 euap1 inflorescence prior to terminal flower formation as in (H). (R) Schematic 1595 

representation of a pfg fbp26 fbp29 euap1 inflorescence (right) compared to an intermediate 1596 

inflorescence phenotype as shown in (T) to (V). (S) to (X) Inflorescence phenotypes of WT, 1597 

quadruple and various triple mutant combinations after prolonged flowering. White arrows 1598 

indicate positions of previous terminal flowers. Scale bars: 1 cm in (A-G; J-L; N-O; S-X); 100 1599 

µm in (P-Q; H, I, M); 50 µm in inset in (D). 1600 

1601 
1602 



Figure 1. Characterization of the Petunia SEP/AGL6 MADS-box Genes. 
(A) Section through a WT petunia W138 flower showing inner whorls. (B) Petunia seedpod ~4 weeks post-pollination surrounded by green sepals. (C) SEM (scanning electron
microscopy) images of sepal, bract and leaf adaxial and abaxial epidermal surfaces. Bars = 50 µm. (D) Longitudinal sections of developing petunia floral buds showing the
placenta developing from the center of the floral meristem s = sepal; p = petal; st = stamen; c = carpel; pl = placenta. Bars = 200 µm. (E) W138 floral bud developmental stages
for RT-qPCR analysis shown in (G), dissected from the top of an inflorescence (inset), of which the large floral bud at the right is just prior to opening. Numbers indicate sampled
stages. 1 to 3 correspond to floral bud diameters of ~1.5; 2.5 and 5 mm respectively. Stage 1 includes also very early flower primordia, bracts and the inflorescence meristem.
Bar = 1 cm. (F) Maximum Likelyhood phylogenetic analysis of the SEP and AGL6 subfamily members of Petunia hybrida (Ph), Solanum lycopersicum (Sl), Arabidopsis thaliana
(At) and Oryza sativa (Os). Bootstrap values marked in red (expressed in %, based on 1000 replicates) supporting tree branching are indicated near the branching points. The
scalebar represents number of substitutions/site. Accession codes for the corresponding sequences are shown in Supplemental Table 1. Naming of subfamilies and subfamily
clades are based on previously described phylogenies for the SEP subfamily (Malcomber and Kellogg, 2005; Zahn et al., 2005; Yu et al., 2016). (G) RT-qPCR expression
analysis of the petunia SEP/AGL6 genes. Relative expression (R.E.) levels are plotted as the mean value of three biological and three technical replicates ±SE, normalized
against three reference genes (see Material and Methods). Expression levels were measured in vegetative tissues (green bars; infl. stem = inflorescence stem); entire floral
buds (orange bars) from 3 developmental stages shown in (E) and dissected floral organs (red bars) obtained from flower buds corresponding to stage 3. (H) Schematic
representations of the gene structures and insertion alleles of the petunia SEP and AGL6 genes and floral phenotypes of the corresponding insertion mutants used in further
crosses. Black boxes and lines represent exons and introns respectively. All gene models start at the start codon and end at the stop codon. Scale Bars = 500 bp. Red triangles
indicate positions of dTph1 transposon insertions. Alleles are named after the exact insert position of the dTph1 element in number of basepairs downstream of the ATG in the
coding sequence. The names of the insertion alleles that have been selected for the creation of double and higher order mutants are marked in red.



Figure 2. The Petunia fbp2 fbp5 pm12 Mutant, Genetic Equivalent of the Arabidopsis sep1 sep2 sep3 Mutant Still Displays B- and C-function Floral Characteristics. 
(A) to (H) Topview of flowers from WT, single, double and triple mutants of petunia SEP1/2/3 homologs. All images are at the same magnification. (I) to (L) Sideview of WT
and mutant flowers sectioned through the middle. All images are at the same magnification. (M) Close-up of dissected third whorl organs (stamens). (N) Close-up of dissected
fourth whorl organs (carpels). (O) to (Q) SEM images of the outer ovary surface. Scale bars = 100 µm.



Figure 3. Petunia Floral Meristem Identity Depends on FBP9/23/4 Activity. 
(A) to (C) and (E) to (G) Top- and side view of WT, fbp9 fbp23 and fbp9 fbp23 fbp4 plants 13 weeks after sowing. (D) and (H) Schematic representation of inflorescence
phenotypes. (I) to (L) SEM images of inflorescence apices in WT and fbp4 fbp9 fbp23 mutants. Br: bracts; Se: sepals; F: flower; Fm: Flower meristem; Im: Inflorescence
meristem. Scale bars = 100 µm. (M) to (Q) Inflorescence architecture of lower order mutants compared to WT and fbp9 fbp23 fbp4 mutants. (R) to (W) Flower phenotypes of
fbp4, fbp23 and fbp9 mutations in combination with fbp2. All flowers are at the same magnification.



Figure 4. Characterization of the Sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 Mutant compared to WT. Genotypes in each panel are indicated as follows: sext: sextuple fbp2
fbp4 fbp5 fbp9 pm12 agl6 mutant. WT: wild-type. 
(A) and (B) Topview of young (A) and mature flower (B). (C) Dissected floral organs of a flower similar to the stage as indicated by the asterisk in (F). W# indicate whorl
numbers. (D) Longitudinal section through an older flower similar to the stage as indicated by the double asterisk in (F). (E) SEM images of the epidermis of the four different
floral whorls (indicated by W#) in WT (left panels) and the sextuple mutant (right panels). (F) Inflorescences showing flowers at various stages of development and aging. The
arrows indicate an example where three consecutive fully developed flowers arose from a single floral meristem. Scalebars: 0,25 cm in (A); 0,5 cm in (B, D); 1cm in (C, F); 50
µm in (E). (G) RT-qPCR expression analysis of the petunia floral homeotic genes in WT versus sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 mutants. Petunia genes are each time
indicated and names of corresponding Arabidopsis orthologs are shown in between brackets. *No TM6 ortholog exists in the Arabidopsis genome. **Petunia FBP6 is orthologous
to SHP1/2, but is functionally homologous to AG. Relative expression (R.E.) levels were plotted as the mean value of three biological and three technical replicates ±SE,
normalized against three reference genes (see Material and Methods). Expression levels were measured in entire floral buds from three developmental stages as shown in
Figure 1E.



Figure 5. Characterization of the Petunia AP1/SQUA MADS-box Subfamily. 
(A) Maximum Likelyhood phylogenetic analysis of the AP1/SQUA subfamily members of Petunia hybrida (Ph), Solanum lycopersicum (Sl), Arabidopsis thaliana (At) and Oryza
sativa (Os). Bootstrap values marked in red (expressed in %, based on 1000 replicates) supporting tree branching are indicated near the branching points. The scalebar
represents number of substitutions/site. Accession codes for the corresponding sequences are shown in Supplemental Table 1. Naming of subfamilies and subfamily clades
are based on previously described phylogenies for the AP1/SQUA subfamily (Litt and Irish, 2003; Yu et al., 2016; Maheepala et al., 2019). (B) RT-qPCR expression analysis
of the petunia AP1/SQUA genes. Relative expression (R.E.) levels are plotted as the mean value of three biological and three technical replicates ±SE, normalized against
three reference genes (see Material and Methods). See legend of Figure 1G for sample description. (C) Schematic representations of the gene structures and insertion alleles
of the petunia AP1/SQUA genes and corresponding floral phenotypes of insertion lines used for further crosses and analyses. Figure Legend as in Figure 1H.



Figure 6. Petunia AP1/SQUA family members are Required for Inflorescence Meristem Identity, and Repress the B-function in the First Floral Whorl. 
(A) to (D) Flower phenotype of pfg fbp26 fbp29 euap1 mutants. Some sepals and petals have been removed in (B) to reveal inner organs. (D) Enlarged sepals showing petaloid
sectors displaying petal conical epidermal cells (inset SEM image). (E) to (G) Inflorescence phenotype showing an “inflorescence” with spirally organized leaves (F) ending in
a single terminal flower (G). (L) Side branches developing from the basis of the plant exhibit an identical inflorescence phenotype. (H), (I) and (M) Longitudinal sections of the
apex of an inflorescence in vegetative state (G), and of an inflorescence with terminal flower (I), compared to the apex of a WT inflorescence (M). Red asterisks in (I) indicate
vegetative lateral meristems. (J) to (K) Enhanced homeotic sepal-to-petal conversion compared to (C) and (D). (N) and (O) unmodified sepals in rob1 rob2/+ rob3 mutants (N)
compared to WT (O). (P) and (Q) SEM images of a WT vegetative meristem before the onset to flowering compared to the apex of a pfg fbp26 fbp29 euap1 inflorescence prior
to terminal flower formation as in (H). (R) Schematic representation of a pfg fbp26 fbp29 euap1 inflorescence (right) compared to an intermediate inflorescence phenotype as
shown in (T) to (V). (S) to (X) Inflorescence phenotypes of WT, quadruple and various triple mutant combinations after prolonged flowering. White arrows indicate positions of
previous terminal flowers. Scale bars: 1 cm in (A-G; J-L; N-O; S-X); 100 µm in (P-Q; H, I, M); 50 µm in inset in (D).



DOI 10.1105/tpc.19.00162
; originally published online October 7, 2019;Plant Cell

Rodrigues Bento, Christophe Trehin, Marie Monniaux, Jan Zethof and Michiel Vandenbussche
Patrice Morel, Pierre Chambrier, Veronique Boltz, Sophy Chamot, Frederique Rozier, Suzanne

Factor Superclade
Divergent Functional Diversification Patterns in the SEP/AGL6/AP1 MADS-box Transcription

 
This information is current as of November 4, 2019

 

 Supplemental Data  /content/suppl/2019/10/07/tpc.19.00162.DC1.html

Permissions
 X

https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298

eTOCs
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for eTOCs at: 

CiteTrack Alerts
 http://www.plantcell.org/cgi/alerts/ctmain

Sign up for CiteTrack Alerts at:

Subscription Information
 http://www.aspb.org/publications/subscriptions.cfm

 is available at:Plant Physiology and The Plant CellSubscription Information for 

ADVANCING THE SCIENCE OF PLANT BIOLOGY 
© American Society of Plant Biologists

https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
http://www.plantcell.org/cgi/alerts/ctmain
http://www.plantcell.org/cgi/alerts/ctmain
http://www.aspb.org/publications/subscriptions.cfm

	Short title: Analysis of the Petunia SEP/AGL6/AP1 Superclade
	INTRODUCTION
	Petunia Floral Development
	Petunia SEP/AGL6 Expression Analysis and Mutant Identification
	The Sextuple fbp2 fbp4 fbp5 fbp9 pm12 agl6 Mutant Displays a Classic sepallata Phenotype
	Homeotic Gene Expression in Sextuple sep/agl6 Mutant Flowers
	MATERIALS AND METHODS
	Plant Material, Genotyping and Phenotyping
	Phylogenetic Analysis
	Imaging and Microscopy
	Supplemental Data File 1: MAFFT Multiple Alignment of SEP and AGL6 Protein Sequences from Petunia (Ph), Tomato (Sl), Arabidopsis (At) and Rice (Os) in fasta format.
	Supplemental Data File 2: MAFFT Multiple Alignment of AP1/SQUA Protein Sequences from Petunia (Ph), Tomato (Sl), Arabidopsis (At) and Rice (Os) in fasta format.
	Supplemental Data File 3: SEP/AGL6 Newick tree file.
	Supplemental Data File 4: AP1/SQUA Newick tree file.
	Acknowledgments
	REFERENCES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6



