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ScienceDirect
A key question in biology is how the endless diversity of forms

found in nature evolved. Understanding the cellular basis of this

diversity has been aided by advances in non-model

experimental systems, quantitative image analysis tools, and

modeling approaches. Recent work in plants highlights the

importance of cell wall and cuticle modifications for the

emergence of diverse forms and functions. For example,

explosive seed dispersal in Cardamine hirsuta depends on the

asymmetric localization of lignified cell wall thickenings in the

fruit valve. Similarly, the iridescence of Hibiscus trionum petals

relies on regular striations formed by cuticular folds. Moreover,

NAC transcription factors regulate the differentiation of lignified

xylem vessels but also the water-conducting cells of moss that

lack a lignified secondary cell wall, pointing to the origin of

vascular systems. Other novel forms are associated with

modified cell growth patterns, including oriented cell expansion

or division, found in the long petal spurs of Aquilegia flowers,

and the Sarracenia purpurea pitcher leaf, respectively. Another

good example is the regulation of dissected leaf shape in C.

hirsuta via local growth repression, controlled by the REDUCED

COMPLEXITY HD-ZIP class I transcription factor. These

studies in non-model species often reveal as much about

fundamental processes of development as they do about the

evolution of form.
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Introduction
The tree of life is filled with an amazing variety of forms,

and how and why they appeared at certain times in certain

clades during evolution is still mostly unresolved. Under-

standing morphological variation comes down to decrypt-

ing the biological processes that generate pattern and

diversity. A useful approach to this problem is to perform

developmental studies in a comparative context. Major

advances in developmental biology have mostly come
Current Opinion in Plant Biology 2016, 34:114–121 
from working in model species, but obviously the basis of

diversity cannot be comprehended from studying model

species alone. A key challenge in recent years has been to

establish many of the experimental advantages found in

model organisms in other species with divergent

morphologies. In particular, the development of genetic

tools in non-model species has allowed the rigor of

genetics to be applied to ask how diverse morphologies

evolved. Moreover, advances in quantitative image anal-

ysis have enabled the four-dimensional characterization

of growth and morphogenesis and are widely applicable to

all species. Computational modeling is another important

approach used in recent studies to gain a predictive

understanding of the processes underlying development

and diversity. In this review, we will discuss work over the

past two years that has shed light on the cellular basis of

morphological evolution.

Conserved genes control diverse cellular
innovations
Model species in early-diverging land plants, such as

the moss Physcomitrella patens or the liverwort March-
antia polymorpha, have proven very useful to assess the

degree of conservation versus divergence across large

phylogenetic distances (Figure 1) [1,2]. Two recent

studies addressed the genetic basis of key adaptations

to land: specialized cells for water transport and struc-

tural support; and epidermal structures for rooting,

reproduction and other functions [3��,4��]. There are

striking differences in the morphology of cells special-

ized for water conduction or support in vascular versus

non-vascular plants (Figure 1). For example, xylem

vessels and fibers have lignified secondary cell walls

in vascular plants, while hydroids and stereids, which

function analogously to conduct water and provide

structural support in moss, do not. For these reasons,

it was surprising that a group of NAC transcription

factors (NAM, ATAF1/2, CUC) regulated these differ-

ent cell types in both Arabidopsis thaliana and P. patens
[3��,5,6]. Knocking-out some of these genes, named

VNS (VND, NST/SND, SMB) in P. patens, affected the

development of water-conducting hydroid cells and

overall desiccation tolerance [3��]. Inducible overex-

pression of PpVNS4 caused programmed cell death in

both P. patens and A. thaliana, accompanied by ectopic

secondary cell wall deposition in the latter; two features

associated with water-conducting cell differentiation

[3��]. The transcriptome response of PpVNS4 overex-

pression in P. patens showed a striking overlap with

VNS target genes previously identified in A. thaliana,

suggesting that the VNS regulatory network in the moss

gametophyte and A. thaliana sporophyte generations are
www.sciencedirect.com
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Common genes control diverse cellular adaptations for the evolutionary transition from water to land. The evolution of land plants and vascular

plants are indicated on a phylogeny simplified from Ref. [36]. VSN genes are involved in the formation of xylem vessels (blue) in Arabidopsis

thaliana, here depicted on a root cross-section, and in the formation of hydroids (blue) in Physcomitrella patens, here depicted in a leaf cross-

section. RSL class-I genes are involved in the formation of epidermal structures, such as root hairs in A. thaliana, rhizoids and gemmae in

Marchantia polymorpha, and rhizoids and axillary hairs in P. patens.
homologous (Figure 1) [3��]. Similarly, ROOT-HAIR
DEFECTIVE SIX-LIKE (RSL) class I genes are needed

for the development of epidermal structures with di-

verse forms and functions in M. polymorpha, P. patens
and A. thaliana (Figure 1) [4��,7,8]. Both loss-of-func-

tion and overexpression alleles of MpRSL1 were iden-

tified by screening Marchantia T-DNA populations for

mutants that lost or gained rhizoids respectively, and

this gene was also found to be necessary, but not

sufficient, for the development of gemmae, slime and

mucilage papillae [4��]. Additionally, the overexpres-

sion of MpRSL1 restored root hair development in A.
thaliana mutants lacking RSL class I gene function.

Therefore, the molecular function of RSL class I pro-

teins to control diverse epidermal structures has been

maintained throughout land plant evolution (Figure 1)

[4��].
www.sciencedirect.com 
Form and function: secondary cell wall
diversity
Differentiated plant cells acquire specific properties relat-

ed to their function. For example, a secondary cell wall,

located between the primary cell wall and the plasma

membrane, imparts rigidity; or a cuticle provides hydro-

phobicity to the epidermal surface, which prevents dehy-

dration. Additional patterning of the cuticle can result in

novel functions such as petal iridescence (Figure 2a). This

phenomenon has been described in the flower of Hibiscus
trionum [9–11] but exists in many other genera of flowering

plants. The cuticle on H. trionum iridescent petals forms

regular folds, which diffract sunlight resulting in visible

iridescence (Figure 2b). This visual cue is recognized by

pollinators; for example, bees can recognize iridescent

flowers faster than non-iridescent ones [12�]. These cuti-

cle patterns are characterized by irregularities in the
Current Opinion in Plant Biology 2016, 34:114–121
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Figure 2

Morphological novelty

(a)

(c)

(e) (f)

(d)

(b)

Cell wall property

Light
diffraction

Water
transport

2 cm

Fruit explosion

5 cm

5 mm

2 μm

50 μm

20 μm

Current Opinion in Plant Biology

Cellular basis of morphological diversity: cuticle and secondary cell wall patterning. (a,b) Petals of Hibiscus trionum display a black iridescent

patch in their centre (a). Sunlight is diffracted by regular folding of the petal cuticle, here depicted in a petal cross-section (b). (c,d) The pitcher

leaf of Nepenthes alata displays a striated peristome surface (c), consisting of overlapping microcavities that transport water rapidly in a single

direction by enhanced capillary rise (d). This process instantly wets the entire surface of the peristome, rendering it slippery for insects. (e,f) The

fruit of Cardamine hirsuta expels its seeds via rapid coiling of its two valves (e). This explosive mechanism relies on the hinged geometry of

lignified cell walls (blue) in the endocarp b cell layer (f). Opening these hinges causes the sudden failure of a geometric constraint keeping the

valve straight, resulting in explosive coiling.

Current Opinion in Plant Biology 2016, 34:114–121 www.sciencedirect.com
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spacing of the folds, which restricts the range of light

diffraction to lower wavelengths, such that petals do not

display the full range of colors that could be obtained by

total light diffraction [9]. After testing bee preferences for

natural versus artificial iridescence patterns, the authors

hypothesized that this imperfection might represent a

trade-off between having a highly detectable flower that

also provides a reproducible visual cue that is mostly

invariant to observation angle [12�]. Alternatively, an

iridescence that is restricted to a particular color range

may enhance the detection of pigments in that range,

producing a very strong visual cue for pollinators.

Other striated surfaces are deadly attractive to insects,

such as those found on the prey-trapping pitcher leaves of

Nepenthes (Figure 2c) [13–15]. Regular ridges along the

peristome, that is, the edge of the pitcher mouth, had

been previously correlated with its wettability. This wet

surface causes insects to aquaplane and slip into the

pitcher, representing a major strategy for Nepenthes to

capture prey [14,15]. A recent study investigated the

physical basis for this function of the peristome, and

found that the surface striations allowed exceptional

water conductance that wets the whole peristome surface

in a few milliseconds (Figure 2d) [13]. These striations

exhibit a complex structure with two-order magnitude

microgrooves and periodic arc-shaped microcavities with-

in them (Figure 2d). The authors found that the over-

lapping of neighbouring microcavities produced

unidirectional water transport that was much faster than

would be possible by normal capillary rise [13]. As a result,

when water evaporates from the pitcher and condenses on

the peristome or when rain falls on the peristome, the

whole peristome becomes instantly wet and highly slip-

pery for insects that will easily fall into the pitcher.

Understanding how these complex structures are regular-

ly formed by epidermal cells on the peristome surface

represents an exciting follow-up to this work.

Explosive seed dispersal is another striking innovation

found in various flowering plants, including Cardamine
hirsuta; a close relative of A. thaliana [16,17]. This invasive

weed uses an explosive mechanism to accelerate its seeds

away from the fruit at over 1500 g, spreading seeds in a

2 m radius around a single plant (Figure 2e) [18��]. A

recent study used a combination of genetics and mathe-

matical modeling to identify cellular properties of the

fruit valve that enabled it to rapidly release tension at the

right stage of development. The authors discovered that

this explosive process was controlled by the geometry of

asymmetric secondary cell wall thickenings within endo-

carp b cells [18��]. These stiff, lignified cell walls are

shaped like a hinge, which can open (Figure 2f). At

maturity, the fruit valve needs to curl along its length

to release tension, but its curved cross-section prevents

this. Opening the hinge flattens the cross-section of the

valve, causing sudden mechanical failure of the structure
www.sciencedirect.com 
and rapid coiling. The authors found a strict correlation

between explosive seed dispersal and the presence of

asymmetric cell wall thickenings in endocarp b cells of

fruit across the Brassicaceae [18��]. Therefore, the evolu-

tionary novelty of this secondary cell wall pattern was a

likely driver of explosive seed dispersal.

In C. hirsuta, the fruit valve generates tension through

deformation, in particular a contraction in length, of the

exocarp cell layer (Figure 3a,b) [18��]. Meanwhile, the

endocarp b layer of the valve is stiffened with lignin and

cannot contract (Figure 2f). This results in a build-up of

tension in the valve that can only be released by the whole

valve coiling (Figure 3a). Previous studies had proposed

that this contraction occurred as the fruit dried [19,20],

but C. hirsuta fruit explode while still green and hydrated

[21]. Surprisingly, this recent study found that exocarp

cells actually used their turgor pressure in order to con-

tract [18��]. By using a finite element model of three-

dimensional plant cells, the authors showed that when the

cells were pressurized, they contracted in length while

expanding in depth [18��]. This anisotropic cellular re-

sponse relies on the particular geometry of exocarp cells

in C. hirsuta fruit and the anisotropic properties of their

cell walls (Figure 3b).

Cell growth: the dynamics of form
Form and function are also determined at the level of the

whole organ. The final geometry of plant organs results

from a complex interplay of growth and patterning events

during early stages of development [22,23]. Diverse organ

geometries can arise from evolutionary ‘tinkering’ with

any of these parameters and the feedbacks between them

[22]. This makes it challenging to identify the causal

differences underlying divergent forms. Recent advances

in computational modeling [22,23], and quantitative im-

aging have helped address this challenge; for example,

MorphoGraphX is an especially useful software platform

for the four-dimensional analysis of morphogenesis [24��].
Combined with experimental tools in non-model sys-

tems, particularly methods for genetic analyses, these

approaches have advanced our understanding of the

genetic basis for morphological diversity.

Leaf shape varies tremendously among plants and differs

between A. thaliana and C. hirsuta, which have simple

versus dissected leaves respectively [16,25]. Recently, the

HD-ZIP class I transcription factor REDUCED COM-

PLEXITY (RCO), was identified in C. hirsuta as a major

regulator of leaf shape and diversity (Figure 3c) [26��].
The rco mutant was isolated from a genetic screen for

mutants that converted C. hirsuta leaf shape from dissect-

ed to simple, resembling A. thaliana [26��,27]. Using time-

lapse confocal imaging and lineage tracking, the authors

reconstructed the growth parameters of cell lineages at

the time of leaflet initiation, in wild-type and rco leaves,

with MorphoGraphX [26��]. They could visualize the few
Current Opinion in Plant Biology 2016, 34:114–121
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Figure 3
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cells located at the boundaries between leaflets, where

RCO specifically repressed growth, allowing leaflets to

emerge from the leaf margin (Figure 3d). Tracing the

evolutionary history of RCO indicated that this gene was

lost from the genome of A. thaliana, contributing to its

simple leaf shape [26��]. Furthermore, transforming RCO
into A. thaliana was sufficient to reverse this evolutionary

transition and make the A. thaliana leaf more complex

[26��]. Moreover, independent mutations at the RCO
locus caused repeated evolutionary changes in leaf shape

within the Brassicaceae; for example, between the Cap-
sella species C. rubella and C. grandiflora [28]. In this way,

RCO played a key role in shaping leaf diversity.

The ability to quantify and model growth can also provide

insights into the cellular basis of complex organ geome-

tries like pitcher leaves, mentioned previously, and petal

spurs [29,30�]. Sarracenia purpurea develops pitcher

leaves similar to the ones of Nepenthes, but organized in

two parts called the tube and the keel (Figure 3e). At early

stages of pitcher development, the orientation of cell

division planes differ between the tube and keel

(Figure 3f) [29]. Using a modeling approach, the authors

found that they could recapitulate the two parts of Sar-
racenia’s pitcher by forcing cell divisions into the orienta-

tion planes that they observed during leaf development.

This highlights the potential of modeling to find growth

parameters that are necessary and sufficient for morpho-

genesis. The authors conclude that cell expansion plays

little role in generating the form of this modified leaf,

which contrasts with recent findings about the cellular

basis of petal spur length in Aquilegia (Figure 3g) [31].

Variation in the length of petal nectar spurs among

Aquilegia species is a spectacular example of plant-polli-

nator co-evolution, since the evolution of longer spurs is

associated with shifts to pollinators with longer tongues

[32]. This probably contributed to the high speciation

rates found in Aquilegia, so understanding this variation

may offer insights into the relationship between morpho-

logical evolution and speciation processes [33,34]. Early

petal spur development is similar among different Aqui-
legia species, while the dramatic variation in spur length

between species correlates with differences in oriented

(anisotropic) cell expansion during later development.

For example, A. vulgaris and A. longissima use a similar

number of cells to produce spurs of approximately 1 cm

versus 12 cm length, respectively (Figure 3h) [31]. Using
(Figure 3 Legend) Cellular basis of morphological diversity: cell growth, an

hirsuta fruit relies on differential contraction of tissues in the fruit valve (a). T

on turgor pressure, cell geometry and cell anisotropy (b). (c,d) The dissecte

between emerging leaflets (c). The action of RCO to repress growth in this 

lapse imaging (d). (e, f) The pitcher leaf of Sarracenia purpurea is composed

like protrusion at the front of the tube (e). Differences in cell division plane (

leaf) can account for the different morphologies of the tube and keel (f). (g,h

in size, depicted here for the spurs of A. vulgaris (purple) and A. longissimi 

expansion, depicted here in insets of epidermal regions of identical width fo

www.sciencedirect.com 
a transcriptome study to identify differentially expressed

genes during petal spur development in A. coerulea, the

authors found that an orthologue of the cell proliferation

regulator TCP4 was up-regulated in growing regions of

the petal spur [30�]. Knocking-down TCP4 function by

VIGS resulted in short and distorted petal spurs, caused

by over-proliferation of cells in the distal part of the petal

(Figure 3g). Given the previously described role for TCP4
in A. thaliana petals [35], it appears that regulating the

balance of cell proliferation and expansion is an important

aspect of petal organogenesis among species with diverse

petal morphologies.

Conclusion
Considerable progress has been made in recent years

towards understanding the cellular and genetic basis of

morphological diversity. Specialized epidermal cells, and

cells for water transport and structural support, were key

adaptations during plant evolution that enabled the tran-

sition from water to land. Surprisingly, a common genetic

basis underlies the formation of quite different cell types

that perform these functions in vascular versus non-vas-

cular plants [3��,4��]. A key point to emerge from this

review is the critical role of such cell differentiation

processes in generating evolutionary novelties. Striking

trait innovations such as petal iridescence, pitcher leaf

carnivory, and explosive seed dispersal, all depend on

novel patterning of secondary cell walls or epidermal

surfaces [9,13,18��]. The next step will be to identify

the causal genetic changes that regulate these processes.

RCO was identified as an important regulator of leaf

shape, underlying repeated evolutionary transitions be-

tween dissected and simple leaf forms in the Brassicaceae

[26��,28]. Advances in quantitative image analysis were

leveraged to understand precisely how differences in RCO
genotypes were translated into divergent leaf shapes

through development [24��,26��]. Computational model-

ing has been particularly important to unravel the logic

that shapes plant form, and to move towards a predictive

understanding of development and diversity [22,23]. The

fascination with diverse plant forms has motivated the use

of non-model plants to investigate how this diversity is

produced and how it evolved. Advances in whole genome

sequencing, quantitative imaging, and modeling frame-

works have done much to level the playing field for

research in non-model organisms. But to understand

the genetic basis for morphological evolution still requires
isotropy, division and expansion. (a,b) The explosive shatter of C.

he exocarp tissue contracts in length by an active process that relies

d shape of C. hirsuta leaves depends on local growth repression

region (dark grey) was determined by quantitative analysis of time-

 of two main parts: a hollow tube and a keel, which is a membrane-

shown as red lines oriented to the distal, D, — proximal, P, axis of the

) Flowers of the genus Aquilegia develop long petal spurs (g) that vary

(yellow) (h). This size variation is caused by differences in oriented cell

r each species.
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the advantages of high experimental tractability and good

genetic tools in these organisms.
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