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Abstract 
 
Phosphatase and tensin homolog (PTEN) is a tumour suppressor that represents 
one of the most common targets for genetic defect in human cancer. PTEN controls 
an array of physiopathological processes related to cell proliferation, differentiation, 
DNA/chromosome integrity, apoptosis and invasiveness. PTEN dephosphorylates 
not only proteins, but also phosphoinositides generated by phosphatidylinositol 3-
kinase, thus counteracting the Akt signalling pathway. Interestingly, PTEN can also 
exert some biological functions independently of its catalytic activity.  
A feature of colorectal cancers is the relatively low incidence of PTEN mutation or 
deletion, whereas PTEN downregulation occurs in approximately one third of 
tumours. PTEN inactivation may be even higher when changes in posttranslational 
modifications and/or mislocalization of the tumour suppressor are accounted for. 
Strategies based on pharmacologically-induced restoration of wild-type PTEN 
function in colon cancer cells could therefore be considered, to impact cell growth, 
trigger apoptosis, and sensitize tumour cells to therapeutic agents.  
This review details current knowledge of the mechanisms regulating PTEN 
expression, activity and function. It also focuses on the use of small molecules 
targeting positive or negative PTEN regulators and summarizes alternative strategies 
that could be used to alter PTEN conformation/activity. Finally, we propose an outline 
of a personalized approach to restore PTEN function in colon cancer cells. 
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1. Background 
PTEN (phosphatase and tensin homolog deleted on chromosome ten)/MMAC 
(mutated in multiple advanced cancers) was identified in 1997 by two groups as a 
candidate tumour suppressor gene located at 10q23 (Li et al. 1997a; Steck et al. 
1997). In parallel, in a study screening for new dual-specificity phosphatases the 

same gene was identified and named TEP-1 (TGF--regulated and epithelial cell-
enriched phosphatase) (Li and Sun 1997b). Homozygous inactivation of PTEN 
occurs in a large fraction of glioblastomas, melanoma cell lines, advanced prostate 
cancers and endometrial carcinomas (Teng et al. 1997). Depending on tissue type, 
PTEN inactivation can occur either as an early (e.g. endometrium), or late event (e.g. 
prostate cancers, glioblastomas). PTEN is one of the most common targets for 
genetic defect in human cancer. Haploinsufficiency or inactivation of a single PTEN 
allele is sufficient for cancer development. Germ-line mutations in PTEN cause three 
autosomal dominant inherited cancer syndromes (Cowden disease, Lhermitte-Duclos 
disease, and Bannayan-Zonana syndrome) characterized by hamartomas, and an 
increased prevalence of breast and thyroid malignancies. Pten+/- mice mimic the 
effects of some germ-line mutations of the human tumour suppressor gene (Di 
Cristofano et al. 1998; Suzuki et al. 1998; Podsypanina et al, 1999). Pten-/- mice 
exhibit early embryonic lethality, whereas heterozygotes show increased tumour 
incidence, consistent with its identification as a tumour suppressor gene.  
PTEN encompasses 403 amino acids and is characterized by five functional 
domains: a short N-terminal PtdIns(4,5)P2 (PIP2)-binding domain, a phosphatase 
domain, a membrane-targeting C2 domain, and a C-terminal tail containing PEST 
sequences and a PDZ binding motif in its C-terminus (Figure). The PDZ binding motif 
permits binding to PDZ domain-containing proteins that often direct the assembly of 
multiprotein complexes at membrane-cytoskeletal interfaces.   
PTEN is a multifunctional protein endowed with phosphatase activity. It has been 
reported that PTEN dephosphorylates the protein substrates FAK, SHC, IRS1, Dvl2 
and PTK6 (Gu et al. 1998; Shi et al. 2014; Shnitsar et al. 2015; Wozniak et al. 2017). 
The tyrosine residue 138 of PTEN appears to be critical for PTEN protein 
phosphatase activity (Davidson et al. 2010). Importantly, PTEN dephosphorylates not 
only proteins, but also the phosphoinositides generated by phosphatidylinositol 3-
kinase activity. PtdIns(3,4,5)P3 is known to exert its function by recruiting proteins 
that contain pleckstrin homology (PH) domains to the membrane, such as Btk, 
PKB/Akt, PLC-γ, Gab1, P-Rex1, PDK1, and Grp1 (Lemmon 2007). PtdIns(3,4,5)P3 
effectors promote activation of Rac GTPases and F-actin polymerization at the 
leading edge of migrating cells. Through its lipid phosphatase activity PTEN 
counteracts the PI3K/Akt signalling cascade to decrease cell proliferation (Furnari et 
al. 1998), promote apoptosis (Stambolic et al. 2001; Szado et al. 2008) and revert 
invasiveness (Kotelevets et al. 2001, see also "PI3K as therapeutic target" by Raquel 
Seruca and Sofia Fernandes, in this issue). PTEN can autodephosphorylate 
threonine 383 and threonine 366 in its C-terminal tail (Figure) (Raftopoulou et al. 
2004; Tibarewal et al. 2012).  
The many somatic PTEN mutations identified in human cancers impact PTEN 
stability, subcellular localisation, and/or the lipid phosphatase/both lipid and protein 
phosphatase activities (Georgescu et al. 2000; Yang et al. 2017; Furnari et al. 1998).  
PTEN also exerts some biological activities independently of its catalytic activity. For 
example, PTEN directly interacts with the tumour suppressor Tp53, enhancing its 
stability and transcriptional activity (Freeman et al. 2003; Tang and Eng 2006). The 
C-terminal domain of PTEN physically interacts with the forkhead-associated domain 
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of the Microspherule Protein 1 (MSP58) and inhibits its oncogenic activity (Okumura 
et al 2005). The isolated C2 domain of PTEN is also able to mimic effects of full-
length PTEN in the control of both cell migration and glandular morphogenesis in 3D 
colorectal cancer cell systems (Raftopoulou et al. 2004; Leslie et al. 2007; Lima-
Fernandes et al. 2011; Javadi et al. 2017).  Nuclear PTEN also interacts with the 
anaphase-promoting complex (APC/C), promotes APC/C association with CDH1 
(CDC20 homolog 1), and thereby enhances the tumour-suppressive activity of the 
APC-CDH1 complex, in a phosphatase-independent manner (Song et al. 2011). 
Interestingly, the knockin of mutant phosphatase-defective alleles of PTEN in mouse 
models reveals that heterozygous mice bearing one mutant allele (PtenC124S/+ and 
PtenG129E/+) have a higher tumour burden than Pten+/- counterparts with one full null 
allele. This suggests that heterooligomerization of wild-type with mutant PTEN 
inhibits PTEN tumour suppressor activity (Papa et al. 2014). 
 
Due to the significant progress in high-throughput technologies, vast amounts of 
multidimensional data relevant to the biology of colorectal cancers have been 
generated (http://www.colonatlas.org) (Chisanga et al. 2016). Colorectal cancers 
(CRC) arise through the stepwise accumulation of genetic alterations leading from 
normal epithelia to aberrant crypt foci, adenoma, carcinoma and metastatic disease 
(Fearon and Vogelstein 1990; Kotelevets et al. 2016), and follow three molecular 
pathways to genome instability characterized by i) chromosomal instability (CIN), ii) 
high microsatellite instability (MSI-H), or iii) CpG island methylator phenotype (CIMP). 
A more detailed classification of primary colorectal cancers based on intrinsic gene 
expression profiles, resulting in the four biologically distinct consensus molecular 
subtypes (CMS1 – 4) was recently proposed to facilitate the translation of molecular 
subtypes into the clinic (Guinney et al. 2015).  
According to The Cancer Genome Atlas Network, APC, TP53, KRAS, PIK3CA, 
FBXW7, SMAD4, TCF7L2 and NRAS are the most frequently mutated genes in CRC 
(cancer genome atlas network 2017). Molecular analysis of PTEN status in sporadic 
colorectal cancers revealed that PTEN mutation is a relatively rare event. COSMIC 
v84 (URL http://cancer.sanger.ac.uk/cosmic/, released February 13 2018), reports 
that 335 out of 6361 human colonic tumour samples exhibited PTEN mutations 
(5.27%, 2.02% according to Lin et al. 2015), whereas PTEN mutations were found in 
37.8% of endometrial cancers. PTEN mutation in CRC was associated with the 
subgroup displaying microsatellite instability (mutation rate estimated to 19% in this 
subgroup), suggesting that PTEN might be a target of defective mismatch repair 
function in colorectal carcinogenesis. In line with this, the PTEN coding region 
contains several repeat sequences, including two poly(A) tracts in exons 7 and 8 
(Goel et al. 2004). These mutations were found regardless of the antero-posterior 
localization of the tumour, with a slightly higher incidence in the cecum and proximal 
colon (Loree et al. 2017). 
The loss of PTEN copy number was identified in 1.56% of tumour samples. 
Nevertheless, PTEN downregulation occurs in 33% of colon cancer samples. PTEN 
inactivation in colonic tumours might therefore be underestimated and could occur 
via other non-genomic mechanisms such as aberrant regulation of posttranslational 
modifications and/or mislocalization of the tumour suppressor. Nuclear-cytoplasmic 
partitioning of PTEN is a promising biological marker: the absence of nuclear PTEN 
is associated with more aggressive disease in patients with colorectal cancer or other 
types of cancer (Zhou et al. 2002; Tachibana et al. 2002; Whiteman et al. 2002; 
Perren et al. 2000; Fridberg et al. 2007). 
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Experimental studies demonstrate that restoration of PTEN expression sensitizes 
tumour cells to conventional as well as targeted therapies and immunotherapies. 
Since PTEN mutation is uncommon in CRC, targeting the multiple levels of PTEN 
regulation constitutes an attractive strategy to explore with the goal of re-
establishing/potentiating its tumour suppressor activities and to manage tumour cell 
responses to chemotherapies.  
 
2. Targeting PTEN in colorectal cancers  
PTEN exerts pleiotropic activity and fulfils a complex array of physio-pathological 
processes related to cell proliferation (cell cycle arrest in G1 or in G2-M), 
differentiation, DNA and chromosomal integrity (Shen et al 2007), apoptosis 
(increased susceptibility) and invasiveness (inhibition). PTEN expression is therefore 
subjected to fine-tuning at transcriptional, post-transcriptional and post-translational 
levels (Figure). The importance of maintaining appropriate PTEN expression is 
highlighted by the fact that even a subtle reduction in PTEN levels is sufficient to 
promote cancer susceptibility (Carracedo et al. 2011).  
 
2.1 Transcriptional level 
 
Epigenetic PTEN regulation 
Hypermethylation of CpG islands in promoters is associated with gene silencing and 
PTEN silencing might therefore result from promoter methylation independently of 
copy number loss. The analysis of PTEN promoter methylation might be biased by 
contamination of the methylated PTEN pseudogene. In colonic cell lines, PTEN 
promoter methylation is a rare event (Hesson et al. 2012). In contrast, however, 
PTEN promoter methylation was observed in approximately 30% of colorectal tumour 
samples (lin et al. 2015; Yazdani et al. 2016). Interestingly, sulforaphane, an 
organosulfur compound present in cruciferous vegetables such as broccoli, Brussels 
sprouts and cabbages induces DNA demethylation and restores PTEN expression in 
cultures of mammary cell lines (Lubecka-Pietruszewska et al. 2015). Other 
epigenetic inhibition of PTEN expression involves the histone methyltansferase 
activity of the Polycomb Repressive Complex 2 that is reversed by the selective 
antagonist 3-deazaneplanocin A (Benoit et al. 2013).  
This provides a rationale for epigenetic therapies based on the use of DNA 
demethylating agents, such as 5-azacytidine and 5-aza-2'-deoxycytidine, or of 
selective inhibitors of histone methyltransferase. Such compounds are under clinical 
trial for cancer treatment (16 trials referenced at URL: https://clinicaltrials.gov/, 
accessed on 1st March 2018 concern azacytidine derivatives in colorectal cancers, 
13 trials evaluate histone methyltransferase inhibitors in different types of cancers). 
The PTEN pseudogene PTENpg1 is located on chromosome 9, and encodes a long 
noncoding RNA (lncRNA) that regulates PTEN both positively and negatively at 
transcriptional and posttranscriptional levels (Johnsson et al. 2013). PTENpg1 is 
transcribed in the sense orientation and in antisense under three isoforms: unspliced, 
spliced antisense alpha and antisense beta. It is proposed that the antisense alpha 
recruits the EZH2 histone methyltransferase and the DNA methyltransferase 3A 
(DNMT3a) to the PTEN promoter leading to PTEN silencing. The nuclear export of 
the PTENpg1 sense RNA which lacks a poly-A tail is facilitated by PTENpg1 
antisense beta. Due to its strong homology with PTEN, cytoplasmic sense PTENpg1 
transcript acts as a "sponge" to "mop up" the microRNAs targeting PTEN (Figure and 
see below) (Poliseno et al. 2010). 
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Transcription factors 
A series of transcription factors bind directly to the PTEN promoter and either 
activate or repress PTEN transcription (Figure). 
Inducing factors include the early growth response transcriptional factor 1 (EGR1) 
(Virolle et al. 2001), the peroxisome proliferator activated receptor gamma (PPARγ) 
(Patel et al. 2001), activating transcription factor 2 (ATF2) (Shen et al. 2006), the 
nuclear factor of activated T cell (NFAT) (Wang et al. 2011) and the tumour 
suppressor, Tp53 (Stambolic et al. 2001). 
In contrast, PTEN is transcriptionally repressed by c-Jun (Hettinger et al. 2007), 
nuclear factor-kappa B (NFкB) (Xia et al. 2007; Ghosh-Choudhury et al. 2010)), and 
the zinc finger-like proteins SNAIL and SLUG involved in epithelial-mesenchymal 
transition (Escriva et al. 2008; Uygur et al. 2015).   
These transcription factors and their upstream effectors therefore constitute targets 
to enhance PTEN transcription. Examples include the PPARγ agonist rosiglitazone, 
induction of EGR-1 following irradiation, activation of NFAT by butyrate a short-chain 
fatty acid produced by fermentation of dietary fibers by colonic microbiota, statins or 
selective inhibitors to target NFkB. 
 
2.2 Posttranscriptional modulation 
MicroRNAs (miRNAs) are a class of small non-coding RNAs containing 18-24 
nucleotides. These short RNAs can negatively regulate gene expression by 
complementary binding to the 3-untranslated region (3’-UTR) of target transcripts, 
leading to translation inhibition and/or mRNA degradation (Figure). One single 
miRNA may target the expression of many different genes. Conversely, one 
transcript may be targeted by distinct miRNAs. MiRNAs are usually transcribed as 
miRNA precursors, which are processed by the DGCR8–Drosha complex, to produce 
a 60- to 70-nucleotide pre-miRNA. This pre-miRNA is exported to the cytoplasm and 
further cleaved by the Dicer complex into the mature form of miRNA. The mature 
miRNA is then loaded onto the Argonaute protein, forming a miRNA–protein complex 
known as the RNA-induced silencing (RISC). A subgroup of miRNAs termed 
oncomiRs, exert oncogenic action through the binding and downregulation of tumour 
suppressor transcripts. 
So far, 19 miRNA known to directly target PTEN have been identified in colorectal 
cancers, including miR-17 and miR-92a (cluster miR-17-92) (Tanaka et al. 2016; 
Zhang et al. 2013); miR-20b (Zhu et al. 2014) and miR-106a (cluster miR-106a-363) 
(Qin et al. 2018); miR-21 (Zhu et al. 2014); miR-26b (Fan et al. 2018); miR-29a 
(Wang et al. 2016); miR-32 (Wu et al. 2013); miR-103 (Geng et al. 2014); miR-106b 
(Zheng et al. 2015); miR-130b (Colangelo et al. 2013); miR-135b (Xiang et al. 2014); 
miR-181a (Wei et al. 2014); miR-200a (Li et al. 2016); miR-200c (Chen et al. 2014); 
miR-221 (Xue et al. 2013); miR-494 (Sun et al. 2014); miR-543 (Sun et al. 2016); 
miR-582 (Song et al. 2017). In contrast, miR-22 suppresses the growth, migration 
and invasion of colorectal cancer cells through targeting Sp1 transcripts, resulting in 
PTEN up-regulation (Xia et al. 2017). 
MiRNAs expression could therefore be targeted at different levels, i.e. transcription, 
processing, or via depletion or inactivation using antisense sequence or small 
molecule inhibitors (Nguyen and Chang 2018). As a proof of concept, the high 
throughput analysis of a library of pharmacologically active compounds allowed the 
identification of small molecule inhibitors of the (onco)mir-21 (Gumireddy et al. 2008). 
Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by 
upregulating PTEN (Xue et al. 2013). The MEK inhibitor PD0325901 suppresses 
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expression of the miR-17-92 cluster and up-regulates PTEN in human colonic HT-29 
cells (Tanaka et al. 2016).  
The RNA-binding proteins Musashi-1/2 overexpressed in CRC bind PTEN transcripts 
leading to loss of the PTEN protein and to activation of the Akt pathway (Wang et al. 
2015; Li et al. 2015; see Figure). The emerging role of Musashi proteins in 
carcinogenesis motivated several groups to screen libraries of small molecules in 
order to identify compounds that might disrupt the binding of Musashi proteins to 
RNA. Gossypol, a natural phenol derived from the cotton plant, was identified 
following screening. Interestingly, this inhibitor of RNA-binding proteins suppresses 
tumour growth in a mouse xenograft model and might constitute the basis for the 
development of more selective compounds (Kudinov et al. 2017). 
 
2.3 PTEN translation/PTEN isoforms 
In addition to the initial PTEN sequence encompassing 403 amino acid residues, 
longer isoforms have been recently identified (Hopkins et al. 2013; Liang et al. 2014; 
Tzani et al. 2016). These isoforms originate via translation from alternative start 
codons, distinct from the canonical AUG, and characterized by an extra in frame N-

terminal sequence of 72 (PTEN-O), 131 (PTEN-N), 146 (PTEN-M/PTEN-) and 173 

amino acid residues (PTEN-L/PTEN-) (Pulido et al. 2014; Tzani et al. 2018). 
Translation of the PTEN-L isoform was reported to be under the control of the 
eukaryotic translation initiation factor 2A (eIF2a) (Liang et al. 2014). All these 
isoforms retain phosphatase activity and downregulate the PI3K/Akt pathways. 
Nevertheless, the N-terminal extension affects their subcellular localization. PTEN-L 
interacts with canonical PTEN to increase PTEN-induced kinase 1 (PINK1) levels 
and collaborates in mitochondrial bioenergetics through regulation of cytochrome c 
oxidase activity and ATP production (Liang et al. 2014). PTEN-M is localized to the 
nucleolus, where it binds and dephosphorylates, nucleolin, the nucleolar 
phosphoprotein resulting in inhibition of rDNA transcription, ribosomal biogenesis and 
cell proliferation (Liang et al. 2017). 
PTEN-L harbours an N-terminal signal peptide secretion signal, is secreted from cells 
and can enter into other neighbouring cells (Figure). As an exogenous agent, PTEN-
L antagonizes PI3K signalling and induces tumour cell death in vitro and in mouse 
tumours xenograft after intraperitoneal injection (Hopkins et al. 2013). By providing a 
means to restore a functional tumour suppressor protein to tumour cells, PTEN-L 
may have therapeutic implications. In this context, a variant of this isoform was 
engineered by replacement of the native leader sequence of PTEN-L with a leader 
sequence from human light-chain immunoglobulin G (IgG) to enhance cell-mediated 
protein delivery to neighbouring cancer cells (Lavictoire et al. 2018). Another 
prospect might be to exploit surrounding neighbouring non-transformed cells to 
produce PTEN-L. The eukaryotic translation initiation factor 2 (eI2F) plays an 
important role in the translation of this isoform (Liang et al. 2014).  
 
2.4 Posttranslational regulation 
In the case where PTEN is expressed, several approaches could be devoted to 
increase its activity, including posttranslational modulation, stabilization of active 
conformations and modulating its subcellular localization. 
 
Phosphorylation 
PTEN is subjected to phosphorylation, mainly on serine/threonine residues located in 
the C-terminus (Thr366, Ser370, Ser380, Thr382, Thr383 and Ser385) (Odriozola et 
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al. 2007). Casein kinase 2 (CK2) phosphorylates PTEN sequentially on Ser-385, Ser-
380, Thr-383, Thr-382, and Ser-370, and reduces phosphatase activity and 
proteolysis by 70% (Torres and Pulido 2001; Cordier et al. 2012; Fragoso and Barata 
2015) (Figure). Despite T cell acute lymphoblastic leukemia (T-ALL) cells displaying 
normal levels of wild type PTEN mRNA and exhibiting PTEN overexpression, 
hyperphosphorylation of PTEN on the phosphorylation sites in its C-terminus by CK2, 
results in decreased PTEN lipid phosphatase activity and hyperactivation of the 
PI3K/Akt pathway (Silva et al 2008). Incubation of T-ALL cell lines with the selective 
CK2 inhibitor CX-4945 reverses Akt activation and triggers apoptosis (Buontempo et 
al. 2014). Interestingly, CK2 is also overexpressed in CRC and colonic cell lines 
treated with CK2 inhibitor display decreased proliferation and invasiveness (Zou et al. 
2011). 
It has been proposed that phosphorylation of the C-terminal Ser380, Thr382, Thr383, 
Ser385 cluster induces a "closed" less active cytoplasmic form that has decreased 
plasma membrane targeting and increased conformational compaction (Vazquez et 
al. 2000; Vazquez 2001; Das et al. 2003; Bolduc et al. 2013; see Figure). 
Intramolecular interaction of the phosphorylated C-terminal tail with basic residues 
within the N-terminal PIP2-binding motif, the catalytic and C2 domains maintains 
PTEN in its "closed" form (Rahdar et al. 2009). Mutation of the C-terminal residues 
disrupts the intramolecular interaction promoting an "open" form of PTEN with 
increased plasma membrane association to control PIP3 levels (Rahdar et al. 2009; 
Lima-fernandes et al. 2014). The "open" PTEN conformation also favours PTEN 
translocation to the nucleus (Nguyen et al. 2015) where it functions in DNA repair 
and genome stability independently of its lipid phosphatase activity (see below, 
PTEN ubiquitination). PTEN is also inhibited by the GSK-3β (phosphorylation of 
Ser362 and 366) and the MASTs (Microtubules associated Kinase 205, MAST3, 
phosphorylation of C-terminal tail) Ser/Thr kinases (Al-Khouri et al. 2005; Cordier et 
al. 2012; Fragoso and Barata 2015; Valiente et al. 2005). In contrast, phosphorylation 
of Ser-229/Thr-223 and Thr-319/Thr-321 amino acid residues by ROCK (RhoA-
associated kinase) in the PTEN C2 domain enhances PTEN phosphatase activity (Li 
et al. 2005; Lima-Fernandes et al.  2011). Activation of ATM serine/threonine kinase 
(ataxia telangiectasia mutated) by DNA damage induces PTEN phosphorylation at 
Ser 113 leading to PTEN nuclear translocation and induction of autophagy (Chen et 
al. 2015). The interaction of glioma tumour suppressor candidate region 2 gene 
product, GLTSCR2/ 'protein interacting with carboxyl terminus 1' (PICT-1) with PTEN 
favors phosphorylation of Ser-380 (Okahara et al. 2004).  
PTEN is also a substrate for tyrosine kinases. Src phosphorylates PTEN at Tyr-240 
and Tyr-315 leading to a decrease in phosphatase activity and stability of the tumour 
suppressor (Lu et al. 2003). Phosphorylation of tyrosine 336 by the tyrosine kinases 
Rak and FAK results in inhibition of PTEN polyubiquitination by NEDD4-1 and 
degradation by the proteasome (Yim et al. 2009; Tzenaki et al. 2015).  
The polo-like kinase 1 (PLK1) is a regulator of many cell cycle-related events, 
including mitotic entry and the G2/M checkpoint, coordination of the centrosome and 
cell cycle, regulation of spindle assembly and chromosome segregation. PLK1 
phosphorylates PTEN in vitro on Ser-380, Thr-382, and Thr-383, but not Ser-385. In 
vivo, only the Ser-380 amino-acid residue is significantly phosphorylated and this is 
associated with PTEN accumulation on chromatin (Choi et al. 2014). PTEN and 
PLK1 can reciprocally regulate each other. PTEN inhibits PLK1 by inducing its 
dephosphorylation, or by promoting the association of the E3 ligase APC/C with its 
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activator CDH1, which induces the degradation of mitotic cyclins (Cyclins A and B), 
as well as mitotic kinases including PLK1 (Song et al. 2011; Zhang et al. 2016). 
So far, few studies have reported the mechanisms related to PTEN 
dephosphorylation. The N-myc downstream-regulated gene 2 (NDRG2) is a 
molecular partner of PTEN that recruits protein phosphatase 2A (PP2A) resulting in 
dephosphorylation of PTEN at the Ser380, Thr382 and Thr383 (Nakahata 2013). 
Interestingly, NDRG2 is frequently down-regulated in CRC. The Tyrosine 
phosphatase SHP-1 dephosphorylates PTEN in Src transfected cells and restores 
PTEN stability (Lu et al. 2003). Some orally bioavailable small molecule activators of 
PP2A (SMAPs) efficiently inhibited the growth of KRAS-mutant lung cancers in 
mouse xenografts and transgenic models (Sangodkar et al. 2018). 
 
Oxidation 
PTEN is subjected to reversible inactivation by reactive oxygen species (ROS) 
produced by the membrane associated Duox1/2, NAPDH oxidase (Noxs) and 
mitochondrial oxidative stress. Hydrogen peroxide (H2O2) inactivates PTEN by 
promoting oxidation of the critical Cys124 residue in the catalytic domain of PTEN 
and forming an intramolecular disulfide bond with Cys71 (Lee et al. 2002; Leslie et al. 
2003). This inhibition is reversed by thioredoxin (Figure). This regulation process 
might occur under physiological conditions. Accordingly, it has been proposed that 
cell stimulation by EGF triggers PI3Kinase activation that induces NOXs activation. 
The resulting ROS inactivate PTEN leading to further accumulation of PIP3 to 
complete a positive feedback loop (Kwon et al. 2004). Binding of thioredoxin-1 to 
PTEN Cys212 of the C2 domain of PTEN inhibits PTEN membrane translocation and 
activation (Meuillet et al. 2004).  
Hypoxia, a hallmark of tumours, promotes transcriptional inhibition of AIF (tumour 
apoptosis-inducing factor) through HIF-1 (hypoxia induced factor-1), resulting in 
oxidative inactivation of PTEN and epithelial–mesenchymal transition of colorectal 
cancer (Xiong et al. 2016). 
 Oxidation of PTEN-binding partners can also affect PTEN activity. For example, the 
oncogene DJ-1 binds to PTEN and reduces its catalytic activity. Oxidation of DJ-1 
increases its affinity for PTEN, resulting in more profound decreases in PTEN activity 
(Kim et al. 2009). ROS might also affect PTEN indirectly via pro-inflammatory redox-
sensitive pathways, such as NF-κB. 
Scavengers of ROS, such as sodium pyruvate, which reacts with H2O2 to yield 
sodium acetate, carbon dioxide and water and anti-inflammatory agents therefore 
constitute approaches to restore PTEN activity. 
 
S-nitrosylation 
Ischemia, superoxide anion, hydrogen peroxide and nitric oxide (NO) can trigger S-
nitrosylation of protein cysteine residues. It was reported that low NO concentrations 
lead to S-nitrosylation of Cys-83 leading to PTEN inactivation (Numajiri et al. 2011) 
The NO scavenger c-PTIO efficiently prevents PTEN S-nitrosylation. 
 
Acetylation 
The Histone Acetylase (PCAF)/ lysine acetyltraansferase 2B (KAT2B) has been 
reported to promote PTEN acetylation on Lys125 and Lys128 in response to growth 
factor stimulation (Okumura et al., 2006). As these residues are within the catalytic 
pocket, acetylation negatively regulates its enzymatic activity. PTEN is also 
acetylated on Lys402, which is located within the C-terminal PDZ-domain-binding 
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motif of PTEN, by CREB-binding protein (CREBBP) favouring PTEN interaction with 
proteins with PDZ domains (Ikenoue et al. 2008). CREBBP and the sirtuin SIRT1 
have been identified as the main PTEN acetyltransferase and deacetylase, 
respectively. Interestingly, PCAF forms a complex with CREBBP.  
It has also been recently demonstrated that non-selective Histone Deacetylase 
(HDAC) or HDAC6-specific inhibitors switch PTEN into an open conformation and 
induce its membrane translocation through acetylation at Lys163, resulting in the 
inhibition of cell proliferation, migration and invasion, as well as xenograft tumour 
growth in athymic mice (Meng et al. 2016). Such inhibitors may be clinically relevant 
to treat tumours with wild-type PTEN. 
 
Mono/ polyubiquitinylation proteasome 
PTEN is regulated by ligation of the protein modifiers ubiquitin (76 amino acids) on 
the Lys amino-acid residues 13 and 289. NEDD4 was identified as an E3 ligase that 
ubiquitylates PTEN (Wang et al. 2007). Other E3 ligases have also been reported to 
target PTEN, including X-linked inhibitor of apoptosis protein (XIAP) and WWP2. 
Polyubiquitination of PTEN leads to its degradation by the proteasome complex, 
whereas monoubiquitylation is essential for PTEN nuclear import (Wang et al. 2007, 
Trotman et al. 2007 (Figure). Although NEDD4 proved to be overexpressed in 
colorectal cancer (Kim et al. 2008), its effect on the growth and morphology of human 
colonic cell lines seems to be independent of PTEN (Eide et al. 2013). 
The monoubiquitylation of PTEN and its nuclear compartmentalization, is reversed by 
the deubiquitylase USP7 (Song et al. 2008). Nuclear exclusion of PTEN has been 
associated with cancer progression. Some inhibitors of USP7 are under development 
in several bio-pharmaceutical companies (Zhou et al. 2018) 
 
Sumoylation 
PTEN can be modified by the small ubiquitin-like modifier (SUMO) on Lys254 and 
Lys266 in the C2 domain. SUMOylation, principally at Lys266, in the CBR3 loop, 
which plays a major role in PTEN membrane association, was shown to promote 
binding to the plasma membrane via electrostatic interactions (Huang et al. 2012). 
This leads to decreased PI3K/AKT signalling, suppression of anchorage-independent 
cell growth and tumour growth in vivo. Subsequently it was shown that SUMOylation 
of Lys254 controls PTEN nuclear localization (Figure). Following cell exposure to 

either -irradiation or DNA-damaging chemotherapeutic agents, SUMO conjugated 
PTEN was excluded from the nucleus in an ATM protein kinase manner. Cells 
lacking nuclear PTEN were hypersensitive to DNA damage.  
 
Several other studies have shown that there may be competition between 
SUMOylation and ubiquitination. Gonzalez-Santamaria et al. (2012), showed that 
Lys289 can also be SUMOylated. As Lys289 is also a major site for PTEN 
monoubiquitination, which drives nuclear import, competition for modification on this 
site would be predicted to affect nucleocytoplasmic partitioning. In another study, 

PTEN SUMOylation was shown to be enhanced by the SUMO E3 ligase PIASx, 
resulting in reduced PTEN polyubiquitination and increased stability, culminating in 
negative regulation of the PI3K/AKT pathway, cell proliferation inhibition and tumour 
suppression (Wang et al. 2014). 
 
Ribosylation 
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PTEN can also be ribosylated by tankyrases (TNKS1 and TNKS2) on Glu40/Glu150 
in the phosphatase domain and Asp326 in the C2 domain. This promotes the 
recognition of PTEN by an E3 ubiquitin ligase, RNF146, leading to subsequent PTEN 
ubiquitination and degradation. Knockdown of TNKS1/2 in colorectal cancer cell lines 
resulted in the inhibition of tumour growth in PTEN-expressing cells but not in PTEN-
depleted cells. This indicates that targeting TNKS in tumour cells may only be 
effective in wild-type PTEN contexts. Interestingly, expression of tankyrases was 
found to be negatively correlated with PTEN levels in human colon carcinomas. 
Combined, all these findings support the rationale to explore the development of 
tankyrase inhibitors as potential anti-cancer agents.  
 
Other postranslational modifications of PTEN 
PTEN is also subject to S-sulfydration on both Cys71 and Cys124, which has been 
proposed to prevent the S-nitrosylation associated with inhibition of PTEN catalytic 
activity. PTEN can also be methylated on Lys313 by the oncogenic protein 
methyltransferase SET and MYND domain containing 2 (SMYD2), which has been 
proposed to result in negative regulation of PTEN activity and increased PI3K/AKT 
signalling (Nakakido et al. 2015).  
 
2.5 Protein-Protein Interactions  
PTEN interacts with many effector systems through its different domains (lipid 
binding, catalytic, C2 domain and the PDZ binding motif in the C-terminus) which are 
crucial for its localization and for organization in a variety of submembranous 
complexes associated with cell signal mediators, including ion channels, 
transmembrane receptors and regulatory enzymes (Harris and Lim 2001; Kotelevets 
et al. 2005, Chastre et al. 2009, Lima-Fernandes et al. 2011). 
 
The cellular activity of PTEN is thus commonly modulated via inclusion in multiprotein 
signalosomes (Figure). 
Modulating protein–protein interactions involved in disease pathways is an attractive 
strategy for developing drugs, but remains a challenge to achieve. One approach is 
to target certain domains within proteins that mediate these interactions (Berg 2003; 
Arkin et al. 2004). One example of such a domain is the PDZ domain (Dev et al. 
2004). Proteins with PDZ domains usually encompass a series of such domains 
alone or combined with other protein-protein interaction domains, and act as 
scaffolding molecules allowing the organization of effector proteins as signalosomes 
and their targeting to selective cellular subdomains.  
A series of proteins with PDZ domains interact with the C-terminus of PTEN, These 
include MAGI-1/2/3, NHERF, MAST3, hDLG1. We demonstrated that PTEN was 
recruited to E-cadherin junctional complexes through the interaction with the 2nd PDZ 

domain of MAGI-1, whereas the C-terminus of -catenin interacts with PDZ5. The 
colocalization of PTEN and PI3K and their antagonistic activities on PIP3 levels 
allows the subtle regulation of junctional complex activities (Kotelevets et al. 2001; 
2005; Chastre et al. 2009). Subsequently, we identified by yeast two-hybrid analysis 
human DLG, a protein with multiple PDZ domains, as a binding partner for the PTEN 
PDZ-BD and demonstrated Dlg1-PTEN interaction in colonic HT-29 epithelial cells 
(Kotelevets, unpublished data).  

Recently, Zaric et al identified MAGI-1 as a celecoxib-induced inhibitor of Wnt/-
catenin signalling with tumour- and metastasis-suppressive activity in colon cancer 
cells. They reported that this Cox-2 inhibitor upregulated MAGI-1 in human colonic 
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cell lines, and that MAGI-1 overexpression attenuated primary tumour growth and 
spontaneous lung metastasis in an orthotopic model of colorectal cancer (Zaric et al. 
2012). One interesting point that was not addressed in their study concerns the role 
of PTEN in this process. Interestingly, another study reported that celecoxib 
promoted the membrane translocation of PTEN and the inactivation of Akt. (Zhang 
and Gan 2017). Taken together, these data suggest that inhibition of Cox-2 leads to 
increased expression of MAGI-1 and the subsequent targeting of PTEN to the 
plasma membrane. 
The widespread occurrence of PDZ domains as organizers of signalling pathways 
makes them an important subject for biological studies. Changes in the expression of 
several PDZ domain-containing proteins have been associated with cancers 
(Nagayama et al. 2004; Park et al. 2006). The therapeutic usefulness of inhibiting 
PDZ-based protein-protein interactions has been clearly demonstrated by using 
peptide and nonpeptide small molecules (Aarts et al. 2002; LeBlanc et al. 2010). 
Because PDZ domains have well-defined binding sites, they are promising targets for 
drug discovery. However, there is still much to learn about the function of these 
domains before drugs targeting PDZ interactions can become a reality. The first cell-
permeable inhibitor of a PDZ interaction was reported in a study that described how 
the interaction between the PDZ domain of MAGI and the PDZ motif of PTEN was 
irreversibly blocked by a low-molecular-mass compound. The interaction between 
MAGI and PTEN is thought to regulate the activity of the kinase Akt/PKB. Compound 
treatment of HCT116 cells expressing endogenous PTEN, MAGI and Akt/PKB 
showed enhanced AKT activity (Fujii et al. 2003). By creating analogue libraries, the 
structure of the compound was suggested to be a useful starting point for finding 
class- and domain-selective inhibitors. Further chemical optimization could render the 
compound useful as a tool for exploring the effects and side effects of inhibiting PDZ 
interactions in vivo (Fujii et al.2006). 
 

The multifunctional scaffolding proteins -arrestins (-arrs) control distinct functional 

outputs of PTEN to regulate cell proliferation, migration and multicellular assembly. -
arr binding to PTEN increases its lipid phosphatase activity and inhibits cell 

proliferation. However, during cell migration of glioma cells, -arr binds the C2 
domain of PTEN to inhibit its lipid phosphatase-independent anti-migratory function 

(Lima-Fernandes et al. 2011). -arr1 also binds the C2 domain of PTEN as part of a 
membrane-associated regulatory complex incorporating the Cdc42 GTPase-
activating protein ARHGAP21 and Cdc42 (Figure). This complex controls Cdc42-
dependent mitotic spindle formation and lumen formation in 3D cultures of colorectal 
cancer cells. Disruption of the complex provokes mitotic spindle misorientation and 
abnormal multilumen formation that are evocative of colorectal cancer (Javadi et al. 
2017).              
 

PTEN interacts via its phosphatase domain with homodimers of the p85 regulatory 
subunit of the PI3K (PIK3R1). Importantly, this interaction positively regulates  the  
lipid  phosphatase  activity  of  PTEN and  impairs PTEN degradation by competing 
with the E3 ligase WWP2 (Rabinovsky et al. 2009; Chagpar et al. 2010; Cheung et 
al. 2015). Thus, PIK3CA overexpression or PIK3R1 mutations could lead to PI3K 
pathway hyperactivation by decreasing PTEN expression and activity. 
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Many disparate proteins interact with PTEN and negatively regulate its tumour 
suppressing activity by a wide variety of mechanisms. These proteins include DJ-1, 
α-mannosidase 2C1 (Man2C1), shank-interacting protein–like 1 (SIPL1), and 
PI(3,4,5)P3-dependent RAC exchange factor2a (PREX2a)  (He et al. 2011; He et al. 
2010; Fine et al. 2009). Man2C1, PREX2a and SIPL1 bind directly to PTEN and 
inhibit its lipid phosphatase activity.  
Furthermore, paxillin, an important adaptor protein of focal adhesions, was identified 
as an interaction partner of PTEN (Herlevsen et al. 2007). A recent study showed 
that PTEN downregulates paxillin expression in human colon cancer tissues via the 
PI3K/AKT/NF-κB pathway and that paxillin expression contributes to colon 
tumourigenesis (Zhang et al. 2015). 
   
Greater understanding of the pathophysiological relevance in vitro and in vivo will be 
critical in strategies for developing drugs toward modulating protein-protein 
interactions. 
 
2.6  Controlling PTEN conformation and subcellular localization 
In addition to the bioactive small molecules targeting positive or negative PTEN 
regulators mentioned above, the development of alternative strategies to control 
PTEN conformation and subcellular localization might constitute powerful 
approaches to restore or enhance PTEN tumour suppressor activity. As a proof of 
concept, Nguyen et al screened a library of randomly mutated human PTEN and 
identified mutations that increase its recruitment to the plasma membrane. This 
enhanced PTEN (ePTEN) exhibited an eightfold increase in ability to suppress PIP3 
signalling (Nguyen et al. 2014). These findings open up interesting new perspectives 
on pharmacological strategies that could therefore be harnessed to achieve 
enhanced forms of PTEN using small molecule conformational activators/stabilisers. 
In relation to this, an intramolecular bioluminescence resonance energy transfer 
(BRET)-based biosensor of PTEN with PTEN sandwiched between the energy donor 
Renilla luciferase (Rluc) and the energy acceptor yellow fluorescent protein (YFP) 
was recently described that can report signal-dependent conformational changes of 
PTEN in live cells (Lima-Fernandes et al. 2014; Misticone et al. 2016). The PTEN 
biosensor could therefore potentially be used as conformational readout in high-
throughput screens to identify small molecules that enhance or restore PTEN 
function. 
Another interesting point concerns the balance in the subcellular localisation of PTEN 
at the plasma membrane, in the cytosol, mitochondria, endoplasmic reticulum and 
nucleus. Some strategies succeeded in targeting PTEN to the plasma membrane 
(Meng et al. 2016; Zhang and Gan 2017) to exert tumour suppressor activity. 
Whether the nuclear pool of PTEN is affected remains an interesting question. 
Enhancing PTEN targeting to the endoplasmic reticulum may promote Ca2+ release 
and sensitivity to apoptosis. As stated above promoting PTEN nuclear exclusion 
should sensitize cancer cells to genotoxic agents. Based on the observation that 
cancer cells are more prone to export nuclear PTEN, further studies are required to 
delineate the benefit to induce pharmacological nuclear exclusion of PTEN and the 
impact on neighbouring non-transformed cells. 
Another level of complexity resides in the heterogeneous PTEN distribution at the 
plasma membrane and its contribution as a member of molecular signalling 
complexes. During chemotaxis, PTEN and PI3K exhibit a reciprocal pattern of 
localization, PI3K being located at the leading edge and PTEN at the rear (Li et al. 
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2005). PTEN is also recruited to E-cadherin junctional domains and likewise PTEN is 

also recruited to the plasma membrane with -arr2 following GPCR stimulation. 
Complementary approaches, such as the development of permeant bi-functional 
nanobodies might allow to target PTEN in specific subdomains. 
 
 
3. Toward targeted therapies  
Experimental models of carcinogenesis using transgenic mice reveal that PTEN 
inactivation cooperates with the main genetic alterations identified in human CRC, 
including KRAS activation, and APC and TGFBR2 inactivation, to promote cancer 
progression (Davies et al. 2014; Shao et al. 2007; Marsh et al. 2008; Yu et al 2013). 
Restoring PTEN expression/activity should therefore benefit all patients with 
colorectal cancer, regardless of the subtype. Nevertheless, particular attention should 
be devoted in the case of activation of downstream effectors controlled by PTEN, 
such as Akt1 mutation (Carpten et al. 2007). 
It should be underlined that as for other targeted therapies, the strategy proposed 
here will require the identification of patients who are most likely to respond to the 
treatment and to define the appropriate and personalized approach to restore PTEN 
activity. Due to the higher rate of PTEN mutations in the subgroup of patients with 
CRC high microsatellite instability (15% of CRC), the MSI-h status of the tumour will 
direct to PTEN sequencing. Typing of CRC for MSI and analysis of gene mutations, 
e.g. KRAS are performed routinely in clinical practice. In the case of PTEN deletion 
or mutation, (since genome editing is far away from being used in the clinic) an 
alternative approach would be to take advantage of PTEN deficiency-related defects 
in homologous recombination. This defect sensitizes tumour cells to inhibitors of 
polyadenosine diphosphate ribose polymerase (PARP), involved in the repair of DNA 
double-strand breaks (Dillon and Miller 2014). Five clinical trials are evaluating the 
efficiency of PARP inhibitors in connection with PTEN status (NCT02286687, 
NCT02401347, NCT03207347, NCT03016338, NCT02576444) 
In as far as PTEN is wild-type, immunohistological analysis of PTEN accumulation, 
subcellular localisation, and activation of downstream PI3K targets (Akt, S6k) could 
be monitored to provide information on the level of dysregulation (transcriptional, 
post-transcriptional, post-translational).  
Ex vivo testing of organotypic CRC slices cultured on porous membrane supports 
would permit to simultanenously screen a series of selected compounds, based on 
the level of PTEN dysregulation identified by immunochemistry and to assess the 
restoration of the activity of the tumour suppressor. A series of permeant fluorescent 
labeled probes are now available to monitor in situ tissue response to treatment : live 
or dead cells, enzyme activities (e.g. caspases). Proof of concept to test individual 
tumour responses to anti-cancer drugs was recently provided using a 96-well plate-
based microfluidic device that allows to expose organotypic slices to multiple 
compounds either simultaneously or sequentially (Chang et al. 2014).  
It is also conceivable to optimize the identification of PTEN defects in these 
organotypic slices using fluorescently-labelled permeant nanobodies targeting 
selective PTEN epitopes and/or downstream effector systems FRET could then be 
used as readout to report changes in PTEN conformation or subcellular localisation, 
or upon molecular assembly of signalosomes, e.g. TORC1 complex. 
 
4. Conclusions and prospects 



 15 

This review illustrates the diversity and complexity of the mechanisms that can 
downregulate PTEN function during carcinogenesis. Restoring/enhancing PTEN 
activity in colonic cancer cells may represent a promising therapeutic approach, since 
it would be predicted to directly impact cell growth, trigger apoptosis, but also 
increase tumour cell sensitivity to therapeutic agents.  This is a critical issue, since 
anti-cancer treatments have dose-limiting toxicities. 
Further studies are required to elucidate the cross-talk between PTEN and other 
(anti/)oncogene pathways during carcinogenesis, and their significance in terms of 
resistance to chemotherapies. Nevertheless, knowledge gleaned in how PTEN 
signalling is regulated will provide the basis to explore the potential of a personalized 
approach to restore/enhance PTEN activity in cancer.  
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Schematic overview of PTEN structure, biological functions and regulation by 
epigenetic, transcriptional, post-transcriptional and post-translational 
mechanisms 
Upper Panel : Structure of canonical PTEN and post-translational modifications 
 
Lower Panel : Effector systems controlling PTEN accumulation, activity and 
subcellular localisation. For details see the text. 
 
 


