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An approach preventing contact to ambient air during transfer from liquid environment

for electrochemical treatment to UHV environment for surface analysis by X-Ray

Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry was

applied to study the mechanisms of Cr and Mo enrichments in the passive oxide

film formed on 316L austenitic stainless steel. Starting from the air-formed native

oxide-covered surface, exposures were conducted in aqueous sulfuric acid solution first

at open circuit potential and then under anodic polarization in the passive range. At open

circuit potential the thickness of the bi-layered oxide film was observed to decrease and

the enrichments of both Cr(III) and Mo, mostly Mo(VI), to markedly increase as well as

the film hydroxylation. This is due to preferential dissolution of the Fe(III) oxide/hydroxide,

not compensated by oxide growth in the absence of an electric field established by

anodic polarization. Anodic polarization in the passive domain causes the bi-layered

structure of the oxide film to re-grow by oxidation of iron, chromium and molybdenum,

without impacting the Cr enrichment and only slightly mitigating the Mo enrichment.

De-hydroxylation of the inner layer is also promoted upon anodic polarization. These

results show that the treatment of the surface oxide film in acid solution at open circuit

potential enhances Cr and Mo enrichments and promotes hydroxylation. Passivation

by anodic polarization allows dehydroxylation, yielding more Cr oxide, without markedly

affecting the Mo enrichment, also beneficial for the corrosion resistance.

Keywords: stainless steel, passivation, oxide film, surface analysis, Cr enrichment

INTRODUCTION

Stainless steels (SS) are important technological materials of widespread application that combine
excellent mechanical and corrosion properties. The high corrosion resistance is provided by the
passive film, a surface oxide/hydroxide layer that is continuous and protective and does not
exceed a few nanometers in thickness when formed at ambient temperature, as observed on
Fe-Cr ferritic (Hashimoto et al., 1979; Seo and Sato, 1979; Hultquist et al., 1987; Mitchell and
Graham, 1987; Marcus and Olefjord, 1988; Mischler et al., 1988, 1991; Calinski and Strehblow,
1989; Castle and Qiu, 1989a,b; Kirchheim et al., 1989; Yang et al., 1994; Haupt and Strehblow, 1995;
Tan et al., 1995; Maurice et al., 1996; Oblonsky et al., 1998; Hamm et al., 2002; Schmuki, 2002;
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Keller and Strehblow, 2004) and Fe-Cr-Ni austenitic (Sugimoto
and Sawada, 1977; Ogawa et al., 1978; Olefjord, 1980; Olefjord
and Elfström, 1982; Yang et al., 1984; Olefjord et al., 1985; Brooks
et al., 1986; Clayton and Lu, 1986, 1989; Lu et al., 1989; Olefjord
and Wegrelius, 1990; De Vito and Marcus, 1992; Elbiache and
Marcus, 1992; Habazaki et al., 1992;Macdonald, 1992; Olsson and
Hörnström, 1994; Hakiki et al., 1998; Maurice et al., 1998, 2015;
Bojinov et al., 2001; Yamamoto et al., 2009) stainless steels. The
markedly Cr(III)-enriched composition of the passive film is a
key factor for the corrosion resistance. In aqueous environments,
it results from the competitive oxidation of iron and chromium
with faster dissolution of Fe(II)/Fe(III) compared to Cr(III)
species, especially in acid solutions (Keller and Strehblow, 2004).

On Fe-Cr-Ni austenitic stainless steels, the passive films
contain no or very little Ni(II) species and the metallic alloy
region underneath the oxide is enriched in nickel (Olefjord
and Elfström, 1982; De Vito and Marcus, 1992; Olsson and
Hörnström, 1994; Hakiki et al., 1998; Maurice et al., 1998,
2015; Bojinov et al., 2001; Yamamoto et al., 2009). SS grades
alloyed with a few at% Mo better resist localized corrosion by
pitting in chloride-containing environments. Their passive films
are slightly enriched in Mo(IV) or Mo(VI) species with no
alterations of the thickness (Olefjord and Elfström, 1982; Castle
and Qiu, 1989a; Lu et al., 1989; Olefjord and Wegrelius, 1990;
De Vito and Marcus, 1992; Hakiki et al., 1998). It has been
proposed that the presence of molybdenum would mitigate the
breakdown of the passive film preceding the initiation of localized
corrosion (Sugimoto and Sawada, 1977; Olefjord, 1980; Olefjord
and Elfström, 1982; Brooks et al., 1986; Clayton and Lu, 1986,
1989; Castle and Qiu, 1989a,b; Lu et al., 1989; Macdonald, 1992;
Tan et al., 1995; Bojinov et al., 2001) or promote the passive film
repair after breakdown (Ogawa et al., 1978; Hashimoto et al.,
1979; Olefjord, 1980; Olefjord and Elfström, 1982; Yang et al.,
1984).

More recently, it has been reported that the Cr(III)
enrichment in the passive film may not be homogeneous at the
nanometer scale (Massoud et al., 2014; Maurice et al., 2015)
and that the heterogeneities of the Cr local distribution may be
responsible for the passive film breakdown leading to the local
failure of the corrosion resistance (Maurice and Marcus, 2018).
The mechanisms of formation of the passive film include a pre-
passivation stage during which a native oxide film is formed,most
often in ambient air, and a subsequent stage where the native
oxide film is altered, once exposed to the aqueous environment,
to become the passive film. Hence, a thorough investigation of
the Cr(III) enrichment mechanisms is necessary to develop the
comprehensive knowledge on how to improve the resistance
to local failure of passivity. It must address the initial stages
of oxidation leading to pre-passivation of the SS surface (Ma
et al., 2018, 2019) as well as the alterations of the native oxide
film brought by immersion in the aqueous environment and by
electrochemical anodic polarization in the passive range (Wang
et al., 2019).

In the present study, we addressed the mechanisms by which
the Cr and Mo enrichments in the native surface oxide film are
modified when exposing a polycrystalline austenitic 316L SS to
an acid aqueous solution. Time-of-Flight Secondary Ion Mass

Spectroscopy (ToF-SIMS) elemental depth profile analysis and
X-ray Photoelectron Spectroscopy (XPS) compositional surface
analysis were applied to interrogate the modifications induced by
immersion without and with application of anodic polarization
in the passive domain. An experimental protocol avoiding
contact to ambient air of the samples during transfer from
liquid environment for electrochemical treatment to the different
UHV platforms for surface analysis was adopted, enabling us
to highlight the key effect of immersion under open circuit
conditions on the Cr and Mo enrichments.

EXPERIMENTAL

Polycrystalline 316L austenitic SS samples of bulk composition
Fe−19Cr−13Ni−2.7Mo (wt%) (Fe−20Cr−12Ni−1.6Mo at%)
were used. The surfaces were prepared by mechanical polishing
first with emery paper of successive 1,200 and 2,400 grades
and then with diamond suspensions of successive 6, 3, 1, and
0.25µm grades. Ultrasonicated baths of acetone, ethanol and
Millipore R© water (resistivity > 18 M� cm) were successively
used for cleaning and rinsing after each polishing step. Filtered
compressed air was used for drying.

Similarly to approaches developed in the past for surface
analytical studies of passivity (Marcus et al., 1980; Olefjord
and Elfström, 1982; Haupt et al., 1985), the experimental
protocol was designed to avoid ambient air exposure of the
electrochemically-treated samples. The samples, as received from
surface preparation, were introduced in an Ar-filled (1P =

∼200 Pa) glove box (Jacomex, France) equipped with a 3-
electrode electrochemical cell for electrochemical treatment. The
3-electrode electrochemical cell was controlled by a Gamry 600
potentiostat. It included a Pt grid as counter electrode and
saturated calomel reference electrode. The area (0.5 cm2) of
the working electrode was delimited by a Viton O-ring. The
electrolyte was a 0.05M H2SO4 aqueous solution prepared from
ultrapure chemicals (VWR R©) andMillipore R© water and bubbled
with argon prior to introduction in the glove box. Oxygen
and water vapor concentrations in the glove box evolved from
<250 and <1,000 ppm after introduction of the electrolyte
to <55 and < 200 ppm after performing the electrochemical
treatments, respectively.

The samples, covered by the native oxide film formed in air,
were first stored under Ar atmosphere, then immersed at open
circuit potential (−0.26 ≤ UOCP ≤ −0.22 V/SCE) for 30min
and then passivated by a potential step to UPass = 0.5 V/SCE for
30min. The selected UPass value corresponded to the minimum
of passive current measured by linear sweep voltammetry
(Figure 1). No cathodic pre-treatment was performed in order
to avoid any reduction-induced alteration of the initial native
oxide film exposed at UOCP. After electrochemical treatment,
the samples were emerged from the electrolyte at free potential,
rinsed with Millipore R© water and dried with argon. They were
then installed under argon in containers that were air tight sealed
for transfer to surface analysis by XPS and ToF-SIMS.

The air tight sealed containers with the samples under
Ar atmosphere were transferred from the glove box used for
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electrochemical treatment to two separate Ar-filled glove boxes,
one attached to the XPS spectrometer and the other attached to
the ToF-SIMS spectrometer. In these glove boxes, the air tight
sealed containers were opened under argon (1P = ∼30 Pa, [O2]
< 5 ppm, [H2O]< 1 ppm) and the samplesmounted on theUHV

FIGURE 1 | Polarization curve for the native oxide-covered 316L SS sample

recorded in 0.05M H2SO4 in the Ar-filled glove box after initial stabilization at

open circuit potential for 30min (dU/dt = 5 mV/s).

holders for direct transfer to UHV. The three samples selected
for comparative analysis were: (i) the initial native oxide-covered
sample, as received from surface preparation and exposed to
Ar atmosphere of the glove boxes, (ii) the sample treated at
UOCP and (iii) the sample treated at UPass. For each sample, XPS
analysis was performed prior to ToF-SIMS depth profile analysis
because of the locally destructive nature of SIMS. The air tight
sealed containers were used for transfer between the XPS and
ToF-SIMS platforms.

XPS analysis was performed with a Thermo Electron
ESCALAB 250 spectrometer (VG Scientific, United Kingdom)
operating at about 10−9 mbar. The X-ray source was an AlKα

monochromatized radiation (hν = 1486.6 eV). Survey spectra
were recorded with a pass energy of 100 eV at a step size of
1 eV. High resolution spectra of the Fe 2p, Cr 2p, Ni 2p, Mo
3d, O 1s, S 2p, and C 1s core level regions were recorded with a
pass energy of 20 eV at a step size of 0.1 eV. The take-off angle
of the analyzed photoelectrons was 90◦. The binding energies
(BE) were calibrated by setting the C 1s signal corresponding to
olefinic bonds (–CH2-CH2-) at 285.0 eV. Spectral reconstruction
was performed by curve fitting with the CasaXPS software.
Shirley type background subtraction and Lorentzian/Gaussian
(70%/30%) peak shapes were used. Asymmetry of the peaks
was taken into account for the metallic components (Cr0, Fe0,
Mo0, Ni0). Symmetric but broader peak envelopes were used

FIGURE 2 | ToF-SIMS depth profiles for the native oxide film on 316L SS: (a) 18O−, CrO−
2 , FeO−

2 , NiO−
2 , MoO−

2 , Cr−2 , Fe−2 , and Ni−2 secondary ions, (b) CrO−
2 and

FeO−
2 secondary ions, (c) FeO−

2 and MoO−
2 secondary ions, (d) CrO−

2 / FeO−
2 intensity ratio.
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to account for the multiplet splitting of the oxide components
(Cr3+, Fe3+, Mo4+/6+).

A ToF-SIMS 5 spectrometer (Ion ToF—Munster, Germany)
operated at about 10−9 mbar was used for depth profile elemental
analysis. The analysis interlaced topmost surface analysis in static
SIMS conditions using a pulsed 25 keV Bi+ primary ion source
delivering 1.2 pA current over a 100 × 100 µm2 area with
sputtering using a 1 keV Cs+ sputter beam giving a 32 nA
target current over a 600 × 600 µm2 area (300 × 300 µm2 for
the sample treated at Upass). Analysis was centered inside the
eroded crater to avoid edge effects. The profiles were recorded
with negative secondary ions which have higher yield for oxide
matrices than for metallic matrices. The Ion-Spec software was
used for data acquisition and processing.

RESULTS AND DISCUSSION

Bi-layered Chemical Structure of the
Surface Oxide Films
Figure 2 presents the ToF-SIMS analysis of the elemental in-
depth distribution for the native oxide-covered sample. In
Figure 2a, the intensities of selected secondary ions characteristic
of the oxide film (18O−, CrO−

2 , FeO
−
2 , NiO

−
2 , and MoO−

2 ) and
substrate (Cr−2 , Fe

−
2 , and Ni−2 ) are plotted in logarithmic scale

vs. sputtering time. The position of the “modified alloy” region
between the oxide film andmetallic bulk substrate regions, where
Ni is found enriched in agreement with previous studies on
austenitic stainless steels (Olefjord and Elfström, 1982; De Vito
and Marcus, 1992; Olsson and Hörnström, 1994; Hakiki et al.,
1998; Maurice et al., 1998, 2015; Bojinov et al., 2001; Yamamoto
et al., 2009; Wang et al., 2019), was defined using the Ni−2 ions
intensity profile and placed between 70 and 130 s of sputtering.
This region is in principle metallic and does not contain any
oxide species in a stratified model of the surface composition.
The residual oxide species observed in this region in the ToF-
SIMS profile may, at least partially, result from a profiling artifact
caused by surface roughness due to the fact that the primary ions
and sputtering ions impinge the surface at different angles. In
the oxide film region, the most intense profile of the alloying
elements are those of the CrO−

2 and FeO−
2 ions followed by the

MoO−
2 ions. The NiO−

2 ions are the least intense.
Figure 2b shows that the FeO−

2 and CrO−
2 ions profiles peak at

different positions, at 20 and 40 s, respectively. This is consistent
with the native oxide film having a bilayer structure with iron
and chromium oxides more concentrated in the outer and inner
layers, respectively, as commonly reported for oxide films on
stainless steels (Marcus and Olefjord, 1988; Mischler et al., 1991;
Maurice et al., 2015; Wang et al., 2019). The interface between
outer and inner layer was positioned at 30 s which is the median

FIGURE 3 | ToF-SIMS depth profiles for 316L SS immersed in 0.05M H2SO4 at UOCP for 30 min: (a) 18O−, CrO−
2 , FeO−

2 , NiO−
2 , MoO−

2 , Cr−2 , Fe−2 , and Ni−2
secondary ions, (b) CrO−

2 and FeO−
2 secondary ions, (c) FeO−

2 and MoO−
2 secondary ions, (d) CrO−

2 / FeO−
2 intensity ratio.

Frontiers in Materials | www.frontiersin.org 4 September 2019 | Volume 6 | Article 232

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Wang et al. Passivity Mechanisms on Stainless Steel

FIGURE 4 | ToF-SIMS depth profiles for 316L SS passivated in 0.05M H2SO4 at UPASS = 0.5 V/SCE for 30 min: (a) 18O−, CrO−
2 , FeO−

2 , NiO−
2 , MoO−

2 , Cr−2 , Fe−2 ,

and Ni−2 secondary ions, (b) CrO−
2 and FeO−

2 secondary ions, (c) FeO−
2 and MoO−

2 secondary ions, (d) CrO−
2 / FeO−

2 intensity ratio.

sputtering position between the two intensity maxima (Wang
et al., 2019). Figure 2c shows that the MoO−

2 ions profile peaks
at the same position as the FeO−

2 profile, meaning that Fe oxide
and Mo oxide are concentrated in the outer layer and confirming
previous data for native oxide film on 316L SS (Wang et al., 2019).
Figure 2d shows that, starting from the extreme surface, the
CrO−

2 /FeO
−
2 intensity ratio continuously increases in the outer

and inner parts of the oxide film before reaching saturation in
the inner layer.

For the sample treated at UOCP (Figure 3), the “modified
alloy” region was positioned between 45 to 110 s using the same
method, suggesting a significant thickness decrease of the oxide
film. The FeO−

2 and CrO−
2 intensity maxima are at 12 and

20 s of sputtering, respectively, with the median position at 16 s
for the interface between outer and inner layers of the oxide
film (Figure 3b). Compared to the native oxide film, the outer
layer is much thinner (16 instead of 30 s) and the inner layer
less altered (33 instead of 40 s) after treatment at UOCP. The
maxima of the MoO−

2 and FeO−
2 ions profiles are still observed

at the same sputtering time in the outer layer, however with a
marked decrease in intensity for the FeO−

2 ions compared to
the MoO−

2 ions suggesting the marked preferential loss of iron
oxide (Figure 3c). Consistently, the profiles of the CrO−

2 /FeO
−
2

intensity ratio, still increasing from extreme surface to inner part
in the oxide film region, is overall higher (∼6 vs.∼3 at saturation

in the inner layer), suggesting an increase of the Cr enrichment
of the oxide film due to iron oxide dissolution induced by
immersion in sulfuric acid at open circuit potential.

For the sample treated at UPASS (Figure 4), the “modified
alloy” region is observed between 18 and 36 s using the same
positioning method. However, due to the smaller sputtered area
during analysis (300 × 300 µm2 instead of 600 × 600 µm2),
the sputtering rate was∼4 times higher in this experiment. After
correction, this “modified alloy” region is between 72 and 144 s,
which is similar to that of the native oxide-covered sample (70–
130 s). Figures 4b,c shows that the bilayer structure persists after
passivation with molybdenum concentrated in the outer layer.
The interface between outer and inner layer was positioned at
28 s (after correction of the sputtering rate), meaning that the
thickness of passive film is quite similar to that of the native oxide
film and larger than after treatment at UOCP. The CrO−

2 /FeO
−
2

intensity ratio shows a similar increasing profile than for the
other two samples and reaches the value of ∼6 at saturation in
the inner layer, like for the film after treatment at UOCP and
suggesting similar enrichment in Cr in the inner layer of the
passive film.

These data confirm that the in-depth chemical structure of
the surface oxide films formed on 316L SS is bi-layered. This
duplex structure is already formed in the initial native oxide film
formed in air and persists after treatment at UOCP and UPass.
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FIGURE 5 | XPS core level spectra and their reconstruction for the native oxide film on 316L SS: (a) Cr 2p3/2, (b) Fe 2p3/2, (c) Mo 3d5/2−3/2, and (d) O 1s regions

(take-off angle: 90◦).

Chromium oxide accumulates in the inner part to form the
barrier layer of the oxide film whereas iron and molybdenum
oxide accumulates in the outer part of the film that can be
described as the exchange layer in contact with the environment.
In sulfuric acid, the observed changes are the positions of the
interfaces, reflecting the thickness variations of the oxide films,
and the intensity ratios of the secondary ions characteristic of the
oxidized alloying elements present in the films and reflecting the
variations of the Cr and Mo enrichments induced by immersion
and anodic passivation. Iron oxide preferentially dissolves but
this is partially counter-balanced by anodic oxidation. The XPS
data presented hereafter allow us to quantitatively discuss these
electrochemically induced thickness and compositional changes.

Thickness and Composition of the Surface
Oxide Films
The XPS Cr 2p3/2, Fe 2p3/2, Mo 3d, and O 1s core level
spectra recorded for the native oxide-covered sample are shown
in Figure 5 and those measured after treatment at UOCP and
UPass are shown in Figures 6, 7, respectively. Table 1 compiles
the values of the binding energies (BE), full widths at half
maximum (FWHM) and relative intensities of the component
peaks used for reconstruction of the experimental curves by curve
fitting. It also includes the measured Ni 2p3/2, S 2s, and S 2p
peak components.

Following a previously proposed procedure (Yamashita and
Hayes, 2008; Biesinger et al., 2011;Wang et al., 2019), the Fe 2p3/2
spectra were fitted with seven peaks, as exemplified in Figure 5

and detailed in Table 1. The first peak (Fe1) corresponds to
metallic Fe0 in the substrate. The next five peaks (Fe2-Fe6) form
a series at fixed BE intervals, FWHMs, and relative intensities and
correspond to FeIII oxide in the surface oxide layers as previously
determined from reference samples (Marcus et al., 1980; Haupt
et al., 1985; Yamashita and Hayes, 2008; Biesinger et al., 2011).
The additional peak (Fe7), needed at higher BE to optimize the
fit, corresponds to FeIII hydroxide also in the oxide films. No
series of five peaks, at lower BEs and associated to FeII oxide
(Biesinger et al., 2011), was needed for reconstruction. After
treatment at UOCP (Figure 6, Table 1), the FeIII to Fe0 intensity
ratio markedly decreases, reflecting the loss of oxidized iron in
the surface oxide film in agreement with the ToF-SIMS data.
Within the range of ±0.1 eV allowed for fitting, one observes
no significant changes of the BE and FWHM values of the
metallic and oxidized iron components. After treatment at UPass

(Figure 7, Table 1), the FeIII to Fe0 intensity ratio increases,
indicating re-oxidation of iron. The BE and FWHM values
remain unchanged.

Consistently, and also as proposed before (Biesinger et al.,
2011; Payne et al., 2011; Wang et al., 2019), seven peaks were
also used for reconstructing the Cr 2p spectra (see e.g., Figure 5,
Table 1). The first one (Cr1) is associated to metallic Cr0 in
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FIGURE 6 | XPS core level spectra and their reconstruction for 316L SS immersed in 0.05M H2SO4 at UOCP for 30 min: (a) Cr 2p3/2, (b) Fe 2p3/2, (c) Mo

3d5/2−3/2, and (d) O 1s regions (take-off angle: 90◦).

the substrate, the next five peaks (Cr2-Cr6), also forming a
well-defined series as previously determined from reference
samples (Yamashita and Hayes, 2008; Biesinger et al., 2011; Payne
et al., 2011), to CrIII oxide in the surface oxide layers, and the
additional peak (Cr7) to CrIII hydroxide in the oxide film. No
CrVI peak expected at a BE of ∼579.5 eV (Biesinger et al., 2011)
was needed for curve fitting. After treatment at UOCP (Figure 6,
Table 1), the CrIII(ox) to Cr0 intensity ratio slightly decreases
but the CrIII(hyd) to Cr0 intensity ratio markedly increases,
indicating significant hydroxylation of chromium in the surface
oxide. After treatment at UPass (Figure 7, Table 1), the CrIII(ox)
to Cr0 intensity ratio increases markedly but the CrIII(hyd) to
Cr0 intensity ratio only slightly, indicating re-oxidation and
dehydroxylation of chromium. BE and FWHM values show no
significant variations after treatment at UOCP and UPass.

The Mo 3d spectra were fitted with three 5/2–3/2 spin-orbit
doublets (see e.g., Figure 5, Table 1; Yang et al., 1984; Brooks
et al., 1986; Clayton and Lu, 1989; De Vito and Marcus, 1992;
Di Castro and Ciampi, 1995; Biesinger et al., 2011; Maurice
et al., 2015; Wang et al., 2019). One (Mo1/Mo1’) corresponds
to metallic Mo0 in the substrate and the other two, (Mo2/Mo2′)
and (Mo3/Mo3′), to MoIV and MoVI in the surface oxide layers,
respectively. The MoVI to MoIV intensity ratio is 6.4 in the native
oxide film, indicating that Mo(VI) species are mostly present.

After treatment at UOCP (Figure 6, Table 1), the MoIV+VI to
Mo0 intensity ratio slightly increases in agreement with the Mo
enrichment in the oxide outer layer observed by ToF-SIMS. It
further increases after treatment at UPass (Figure 7, Table 1).
The MoVI to MoIV ratio also increases after treatment at UOCP

(7.1) and further after treatment at UPass (7.4), indicating further
enrichment in Mo(VI) species after electrochemical treatment.
An additional peak S1, assigned to the S 2s core level, was
necessary for reconstruction of the Mo 3d spectra measured
after the electrochemical treatments (Figures 6, 7, Table 1). The
presence of sulfur originating from the sulfuric acid electrolyte
was confirmed by the presence of a S 2p doublet assigned to
sulfate species (Table 1), most likely adsorbed at the surface of
the oxide films (Table 1).

The Ni 2p3/2 spectra were fitted using a single peak
corresponding to metallic Ni0 in the substrate (Table 1; Haupt
and Strehblow, 1995; Maurice et al., 2015; Wang et al., 2019),
evidencing that the Ni oxide species measured by ToF-SIMS
were at trace level below the detection limit of XPS in all three
cases (< 0.5 at%).

The O 1s spectra were fitted with three components O1, O2,
and O3 assigned to oxide (O2−), hydroxide (OH−) and water
(H2O) ligands in the surface oxide films, respectively (see e.g.,
Figure 5, Table 1; Clayton and Lu, 1986; Castle and Qiu, 1989b;
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FIGURE 7 | XPS core level spectra and their reconstruction for 316L SS passivated in 0.05M H2SO4 at UPASS = 0.5 V/SCE for 30 min: (a) Cr 2p3/2, (b) Fe 2p3/2,

(c) Mo 3d5/2−3/2, and (d) O 1s regions (take-off angle: 90◦).

Biesinger et al., 2011; Maurice et al., 2015; Wang et al., 2019). The
OH−/O2− intensity ratio increases from 0.58 for the native oxide
film to 1.72 after treatment at UOCP and then decreases to 1.24
after treatment at UPass. Similarly, the H2O/O2− intensity ratio
increases from 0.12 to 0.68 and then decreases to 0.39. Clearly,
these variations reflect the markedly increased hydroxylation of
the initial air-formed oxide film after immersion in the aqueous
solution at OCP, showing that the oxide film not only decreases
in thickness and gets enriched in Cr and Mo due to preferential
iron oxide dissolution but also incorporates muchmore hydroxyl
and water ligands. Anodic passivation causes competitive re-
oxidation of the metallic elements leading to the oxide film
growth in thickness, with the preferential formation of oxide
ligands since the fractions of hydroxyl andwater ligands decrease.

Based on the ToF-SIMS results, the 2-layer model, previously
proposed to calculate the thickness and composition of the outer
and inner layers of the oxide films as well as the composition of
themodified alloy underneath the oxide films (Wang et al., 2019),
was used to process the XPS intensity data. This model assumes
a mixed iron-chromium hydroxide outer layer and a mixed iron-
chromium oxide inner layer. Molybdenum oxide is included in
the outer layer and neglected in the inner layer. Assignment
of the intensities of the different components was as follows:
Cr2-Cr6 and Fe2-Fe4 components to the oxide film inner layer,

Cr7, Fe5-Fe7, and Mo2-Mo3 components to the oxide film outer
layer and Cr1, Fe1, Mo1, and Ni1 components to the modified
alloy region underneath the oxide film. The results are presented
in Table 2. The overall compositions of the oxide films were
obtained by weighting the cation concentration value of each
element by the fractional thickness of the inner and outer layers.

Let us first discuss the initial native oxide film. The total
thickness is found to be 2.2 nm with outer and inner layers of
0.7 and 1.5 nm thickness, respectively. This total value is very
close to that (2 nm) found following the same procedure on the
same as-prepared surface of polycrystalline 316L samples (Wang
et al., 2019). The overall composition of the film shows that
chromium is already enriched in the air-formed native oxide
film with CrIII ions representing 41% of the metal cations in
the film. Consistently, Cr0 is found depleted (17 at% instead of
20 at% in the bulk alloy) in the modified alloy underneath the
oxide film. Nickel, not in measurable amount in the oxide film, is
confirmed to be enriched in the alloy underneath the oxide film
(26 at% instead of 12 at% in the bulk alloy) in agreement with
the ToF-SIMS profile. Concerning molybdenum, the calculated
composition shows that it is enriched in the native oxide film
(4 at% globally and 13 at% in the oxide outer layer instead of
1.6 at% in the bulk alloy). It is also found enriched in the alloy
underneath the oxide film (4 at% instead of 1.6 at% in the bulk
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TABLE 1 | BE, FWHM, and relative intensity values of the components measured by XPS on polycrystalline 316L SS after formation in ambient air of the native oxide film,

after immersion for 30min at OCP in 0.05M H2SO4, and after passivation for 30min at 0.5 V/SCE in 0.05M H2SO4.

Native oxide film OCP oxide film Passive oxide film

Core level Peak Assignment BE

(±0.1 eV)

FWHM

(±0.1 eV)

Intensity

(%)

BE

(±0.1 eV)

FWHM

(±0.1 eV)

Intensity

(%)

BE

(±0.1 eV)

FWHM

(±0.1 eV)

Intensity

(%)

Fe 2p3/2 Fe1 Fe0 (met) 706.9 0.8 42.4 706.8 0.8 71.0 706.9 0.8 59.6

Fe2 FeIII (ox) 708.8 1.4 10.7 708.7 1.2 7.2 708.8 1.2 8.8

Fe3 FeIII (ox) 709.9 1.1 9.6 709.7 1.1 6.5 709.8 1.1 7.9

Fe4 FeIII (ox) 710.7 1.0 7.5 710.7 1.1 5.0 710.7 1.1 6.2

Fe5 FeIII (ox) 711.7 1.4 4.3 711.7 1.3 2.9 711.7 1.3 3.5

Fe6 FeIII (ox) 713.0 2.1 4.3 712.8 1.9 2.9 712.8 2.1 3.5

Fe7 FeIII (hyd) 711.8 2.7 21.3 711.9 2.7 4.5 711.9 2.7 10.5

Cr 2p3/2 Cr1 Cr0 (met) 574.1 1.1 28.1 574.0 1.1 28.3 574.0 1.1 19.5

Cr2 CrIII (ox) 576.0 1.3 24.6 576.2 1.4 14.2 576.1 1.5 19.2

Cr3 CrIII (ox) 577.0 1.3 23.9 577.2 1.4 13.8 577.1 1.5 18.6

Cr4 CrIII (ox) 577.8 1.3 13.0 578.0 1.4 7.5 577.9 1.5 10.1

Cr5 CrIII (ox) 578.8 1.3 4.9 579.0 1.4 3.1 578.9 1.5 4.2

Cr6 CrIII (ox) 579.2 1.3 2.5 579.4 1.4 2.0 579.3 1.5 2.7

Cr7 CrIII (hyd) 577.2 2.5 3.1 577.2 2.5 31.1 577.2 2.5 25.7

Ni 2p3/2 Ni1 Ni0 (met) 852.8 1.0 100 852.7 1.0 100 852.8 1.0 100

Mo 3d5/2 Mo1 Mo0 (met) 227.6 0.5 32.2 227.5 0.5 31.3 227.6 0.5 26.1

Mo2 MoIV (ox) 229.4 1.0 3.8 229.3 1.1 3.6 229.3 1.1 4.1

Mo3 MoVI (ox) 232.2 2.3 24.3 232.3 2.5 25.4 232.2 2.3 30.2

Mo 3d3/2 Mo1′ Mo0 (met) 230.7 0.8 21.2 230.7 0.8 20.6 230.7 0.8 17.2

Mo2′ MoIV (ox) 232.6 1.0 2.5 232.4 1.1 2.4 232.4 1.1 2.7

Mo3′ MoVI (ox) 235.3 2.3 16.0 235.4 2.5 16.7 235.3 2.5 19.9

O 1s O1 O2− 530.1 1.2 58.6 530.2 1.2 29.4 530.3 1.2 38.1

O2 OH− 531.5 1.7 34.1 531.7 1.7 50.7 531.7 1.8 47.3

O3 H2O 532.8 2.5 7.3 532.8 2.5 19.9 532.8 2.5 14.7

S 2s S1 SO2−
4 – – – 233.0 1.5 100 232.9 1.6 100

S 2p3/2 S2 SO2−
4 – – – 168.9 1.2 64.34 168.8 1.3 66.90

S 2p1/2 S3 SO2−
4 – – – 170.1 1.2 35.66 170.1 1.3 33.10

alloy). Compared to the more hydroxylated native oxide film
formed on the same as-prepared surface of polycrystalline 316L
samples (OH−/O2− intensity ratio of 0.93 instead of 0.58 in the
present case; Wang et al., 2019), the present data show lower
CrIII (41 vs. 55% of the metal cations) and MoIV/VI (4 vs. 6%)
enrichments in the oxide film. This might be due to an aging
effect, some studies having reported a decreasing Cr/Fe balance
in the native oxide with aging in air (Yang et al., 1994; Maurice
et al., 1996, 1998).

After treatment in sulfuric acid at UOCP, the results reported
in Table 2 confirm the overall thickness decrease of the oxide
film observed by ToF-SIMS. However, this decrease affects the
inner layer only, in contrast with the ToF-SIMS data. The overall
composition of the film shows the loss of Fe and the related
increases of the Cr and Mo enrichments suggested by ToF-
SIMS but the hierarchy of the Cr/Fe ratio between outer and
inner layers is not respected. These discrepancies originate from
the assignment of the Cr7 component, markedly increased in
intensity. Since immersion at OCP causes iron oxide dissolution
and pronounced hydroxylation of the film, it can be reasonably

assumed that not only the outer layer but also the inner layer
is hydroxylated, and thus that a fraction of the intensity of the
Cr7 component can be assigned to the inner layer. The values
reported in brackets in Table 2 have been calculated assigning
50% of the Cr7 intensity to the oxide inner layer. The hierarchy of
the Cr/Fe ratio between outer and inner layers is now reproduced
as well as the decrease in thickness of both the outer and inner
layers. Based on these assumptions, the composition in the outer
and inner layers are calculated as 26FeIII-48CrIII-26MoIV/VI and
23FeIII-77CrIII, respectively, vs. 82FeIII-5CrIII-13MoIV/VI and
42FeIII-58CrIII for the native oxide. The overall composition of
the film also reflects the compositional changes, independently
of the balance in the assignment of the Cr7 peak. The CrIII

and MoIV/VI concentrations increase up to 68.5 and 7.6% in the
oxide film, respectively, after treatment at UOCP, as a result of
the preferential loss of iron oxide by dissolution. In the modified
alloy underneath the oxide film, the calculated values confirm
the Ni enrichment and suggest no preferential consumption
at UOCP of one of the alloying elements if one considers a
±1 at% accuracy.
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TABLE 2 | Thickness and composition of the air-formed native oxide film on

polycrystalline 316L SS and variations after immersion for 30min at OCP in

0.05M H2SO4, and after passivation for 30min at 0.5 V/SCE in 0.05M H2SO4 as

calculated from the XPS data.

Global

film

Outer

layer

Inner

layer

Modified

alloy

Native

oxide film

d (nm) 2.2 0.7 1.5 /

[Fe] (at%) 54.7 82.0 42.0 54.0

[Cr] (at%) 41.1 5.0 58.0 17.0

[Ni] (at%) / / / 26.0

[Mo](at%) 4.1 13.0 / 4.0

Ratio Cr/Fe 0.8 0.1 1.4 /

OCP oxide

film

d (nm) 1.8 (1.7) 0.8 (0.5) 1.0 (1.2) /

[Fe] (at%) 24.1 (23.9) 18.0 (26.0) 29.0 (23.0) 52.0 (52.0)

[Cr] (at%) 68.3 (68.5) 65.0 (48.0) 71.0 (77.0) 20.0 (20.0)

[Ni] (at%) / / / 24.0 (24.0)

[Mo](at%) 7.6 (7.6) 17.0 (26.0) / 4.0 (4.0)

Ratio Cr/Fe 2.8 (2.9) 3.6 (1.8) 2.4 (3.3) /

Passive

oxide film

d (nm) 2.2 0.8 1.4 /

[Fe] (at%) 26.1 28.0 25.0 52.0

[Cr] (at%) 67.7 55.0 75.0 18.0

[Ni] (at%) / / / 26.0

[Mo](at%) 6.5 18.0 / 3.0

Ratio Cr/Fe 2.6 2.0 3.0 /

Clearly, these data show that the loss of oxide is caused
by the preferential dissolution of iron oxide at open circuit
potential. It is also shown that oxide growth is too slow
to compensate the loss of oxide due to dissolution and,
if occurring, does not preferentially consumes one of the
alloying elements. To our knowledge, this is observed for
the first time on an oxide pre-covered SS surface thanks to
the transfer from liquid to UHV environments avoiding the
contact with ambient air. Such a procedure was previously
applied to ferritic Fe-17Cr samples but starting from an oxide-
free surface, not an oxide pre-covered surface, and showed
the preferential growth of Cr(III) oxide at anodic potential
(Keller and Strehblow, 2004). The present data highlight that
the alterations of the surface oxide film caused by immersion at
open circuit potential results from the preferential dissolution of
iron oxide.

After passivation at UPASS and compared to the treatment
at UOCP, the overall thickness of the oxide film increases with
both partitions growing (Table 2), which confirms the ToF-
SIMS observation. The steady state thickness of the passive
film increases due to faster growth of the surface oxide film.
There are no significant variations of the overall composition
of the oxide film and of the composition of the modified alloy
region if one considers a ±1 at% accuracy of the calculated
values, indicating that all alloying element are consumed at
UPASS but with iron oxide preferentially dissolving in order
to maintain the Cr enrichment. Cr remains enriched in both
layers of the passive film and more predominantly in the
inner layer. In the hydroxide outer layer, Mo would be

less enriched than before re-growth of the oxide film under
anodic polarization.

Compared to the native oxide film, there is no significant
thickness variation after passivation at UPASS. However, the
composition of the oxide film is markedly modified with further
Cr(III) enrichment in both layers and Mo(IV-VI) enrichment
in the outer layer, in agreement with the previous studies on
the same polycrystalline 316L surface (Wang et al., 2019) and
on a single-crystalline model Fe-Cr-Ni-Mo surface (Maurice
et al., 2015). Thanks to the transfer procedure adopted here
and avoiding the contact with ambient air, it is shown here
that the preferential dissolution of Fe(III) is at the origin of
these enrichments and essentially takes place at open circuit
potential in the absence of any applied anodic polarization.
Anodic passivation causes competitive re-growth of the oxide
film and dehydroxylation of Fe(III), Cr(III) andMo(IV-VI) oxide
species It increases the steady state thickness of the passive
film despite dissolution still occurring and counteracting the
formation of the oxide species. The preferential dissolution
of Fe(III) oxide species persists to maintain the Cr and
Mo enrichments.

CONCLUSION

Starting from the air-formed native oxide-covered surface, ToF-
SIMS and XPS were combined to study the mechanisms of Cr
and Mo enrichments leading to passivation of 316L austenitic
stainless steel.

The native oxide film formed in ambient air on the 316L
surface prepared by mechanical polishing was found to have a
thickness of 2.2 nm. It is a mixed Cr(III)-Fe(III) hydroxylated
oxide with a bi-layered structure highly enriched in Cr(III) oxide
in the inner layer. Iron is concentrated as Fe(III) hydroxide in
the outer layer together with molybdenum, mostly present as
Mo(VI). Nickel is below the XPS detection limit. Immersion
at open circuit potential in aqueous acid solution causes
hydroxylation and preferential dissolution of Fe(III) from both
layers of the film, decreasing the thickness and promoting the
enrichments in Cr andMo. In the absence of an anodizing electric
field, oxide growth and thickness increase do not happen. Upon
anodic polarization in the passive domain, dehydroxylation is
promoted in the inner layer and oxidation of iron, chromium and
molybdenum takes place, leading to re-growth of the oxide film
and increase of the steady-state thickness without affecting the
overall Cr enrichment but slightly mitigating theMo enrichment.
Cr and Mo enrichments persist owing to preferential dissolution
of Fe(III).

These results were obtained using an experimental
approach preventing contact to ambient air of the samples
during transfer from liquid environment for electrochemical
treatment to UHV environment for surface analysis. They
show that the treatment of the surface native oxide film
in acid solution, in the absence of applied electric field,
promotes the Cr and Mo enrichments known as beneficial
to the resistance to passivity breakdown and initiation of
localized corrosion.
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