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Four petals characterize the flowers of most species in the Brassicaceae family, and this phenotype is generally robust to genetic
and environmental variation. A variable petal number distinguishes the flowers of Cardamine hirsuta from those of its close
relative Arabidopsis (Arabidopsis thaliana), and allelic variation at many loci contribute to this trait. However, it is less clear
whether C. hirsuta petal number varies in response to seasonal changes in environment. To address this question, we assessed
whether petal number responds to a suite of environmental and endogenous cues that regulate flowering time in C. hirsuta. We
found that petal number showed seasonal variation in C. hirsuta, such that spring flowering plants developed more petals than
those flowering in summer. Conditions associated with spring flowering, including cool ambient temperature, short
photoperiod, and vernalization, all increased petal number in C. hirsuta. Cool temperature caused the strongest increase in
petal number and lengthened the time interval over which floral meristems matured. We performed live imaging of early flower
development and showed that floral buds developed more slowly at 15°C versus 20°C. This extended phase of floral meristem
formation, coupled with slower growth of sepals at 15°C, produced larger intersepal regions with more space available for petal
initiation. In summary, the growth and maturation of floral buds is associated with variable petal number in C. hirsuta and
responds to seasonal changes in ambient temperature.

The change of seasons provides predictable cues for
life history transitions in plants and animals. Seasonal
variation in day length and in the intensity of sunlight
that warms the earth’s surface provide cues for ani-
mals to hibernate or to migrate and plants to flower or
seeds to be dormant. This plasticity allows organisms to
maximize their performance in a complex and changing

environment and is subject to genetic variation and
selection. Plant flowering time is a classic example of
developmental plasticity where the mechanisms of
transducing environmental stimuli into plant response
are well understood.While the floral transition responds
to environmental cues, flower development is normally
robust to environmental variation, such that a predict-
able number of each type of floral organ is produced in
each flower. This regularity of perianth and sexual or-
gans, in addition to being used by taxonomists for plant
identification, is crucial for reproductive success by en-
suring efficient pollination. But how flowers form a ste-
reotypic and stable architecture is not well understood.

Sepals, petals, stamens, and carpels acquire their
unique identities via the combinatorial action of four
classes of floral organ identity genes according to the
ABCE model (Coen and Meyerowitz, 1991; Pelaz et al.,
2000; Honma andGoto, 2001; Krizek and Fletcher, 2005).
Less is known about how a predictable number of each
of these floral organs is formed; however, a key input
into this process is the control of floralmeristem size. For
example, meristem size in Arabidopsis (Arabidopsis
thaliana) is regulated by a negative feedback loop
between WUSCHEL (WUS) and CLAVATA (CLV) pro-
teins that maintains a stable number of stem cells in the
meristem (Brand et al., 2000; Schoof et al., 2000). Loss of
WUS or gain of CLV3 function results in fewer floral stem
cells and flowers with fewer organs (Laux et al., 1996;
Brand et al., 2000). Conversely, mutations in CLV genes
result in excess floral stem cells due to WUS derepres-
sion, leading to flowers with extra organs (Kayes and
Clark, 1998; Fletcher et al., 1999; Schoof et al., 2000;
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Clark et al., 1997). The floral stem cell pool initiates and
proliferates in response to WUS expression during flower
stages 1 and 2, prior to the activation offloral organ identity
genes at stage 3, and the remaining floral stem cells dif-
ferentiate in stage 6whenAGAMOUS (AG) repressesWUS
expression (Lenhard et al., 2001; Lohmann et al., 2001).
Therefore, the correct number of floral stem cells is estab-
lished early in floral meristem development and main-
tained until all four whorls of floral organs have formed.
In addition to the size of the floral stem cell pool, the

timing of floral organ differentiation at stage 3 is critical
to produce the correct number of floral organs per
whorl. Three MADS-box genes that regulate flowering
time in Arabidopsis: SHORT VEGETATIVE PHASE
(SVP), AG-LIKE24 (AGL24), and SUPPRESSOR OF
OVEREXPRESSION OF CO1 (SOC1), also regulate the
timing of floral organ patterning. The proliferative phase
of floral meristemmaturation is cut short by precocious
differentiation in svp agl24 soc1 triple mutants, resulting
in fewer floral organs (Liu et al., 2009). These flowering
time regulators normally delay floral organ differenti-
ation until stage 3 by recruiting chromatin regulators to
repress expression of the class E gene SEPALLATA3
(SEP3; Liu et al., 2009). In this way, SEP3 is prevented
from precociously activating the floral organ iden-
tity genes APETALA3 (AP3), PISTILLATA, and AG
(Kaufmann et al., 2009; Liu et al., 2009). This repression is
relieved once AP1 accumulates in the floral meristem
and subsequently represses SVP, AGL24, and SOC1
(Yu et al., 2004; Liu et al., 2007). AP1 is activated by the
floral regulator LEAFY (LFY;Weigel et al., 1992;Wagner
et al., 1999), which also activates the expression of AP3,
PISTILLATA, and AG (Parcy et al., 1998), such that SEP3
and LFY coordinately regulate the expression of floral
organ identity genes. This regulatory loop ensures that
floral organ differentiation is delayed until the floral
meristem has proliferated through to stage 3. Therefore,
the timing of floral meristem maturation is regulated by
flowering time genes and is essential to produce a ste-
reotypic number of floral organs per flower.
Meristem maturation in tomato plants can be mod-

ulated by genetic and environmental inputs to produce
diverse shoot architectures (Park et al., 2014). For ex-
ample, distinct branching patterns in both mutant and
wild tomatoes can be explained by varied rates of apical
and lateral meristemmaturation (Park et al., 2012). This
suggests that small shifts in the timing of meristem
maturation can produce considerable morphological
variation. However, floral meristem development is
more constrained to produce a stereotypic flower with
an invariant number of floral organs. For example,most
plants in the Brassicaceae family have four-petal flow-
ers, like Arabidopsis. The production of four petals in
Arabidopsis requires genes that control meristem size,
lateral organ outgrowth, and polarity, but also genes
that confer petal identity and establish boundaries that
demarcate the position of petals on the floral meristem
(Irish, 2008; Huang and Irish, 2016). A critical step in
this process is the suppression of growth in the regions
between sepals, which creates space for auxin-induced

petal initiation on the floral meristem (Huang et al.,
2012; Lampugnani et al., 2013). Disrupting this mech-
anism, for example in double mutants between petal loss
(ptl) and auxin resistant1, results in flowers that specif-
ically lack petals (Lampugnani et al., 2013). Therefore,
regulation of both growth and patterning in early
flower development is essential to produce the stereo-
typic number of four petals in Arabidopsis flowers.

C. hirsuta is a close relative of Arabidopsis that shows
petal number variation. Petal number in C. hirsuta
varies from zero to four, which distinguishes its flowers
from Arabidopsis and from most other Brassicaceae
species. This quantitative variation characterizes C.
hirsuta at the species level but also discriminates be-
tween different populations of C. hirsuta. The genetic
architecture of this trait has been analyzed in five dif-
ferent recombinant inbred line populations ofC. hirsuta,
and at least 15 quantitative trait loci (QTL) have been
identified that control petal number variation (Pieper
et al., 2016). These natural alleles have small to mod-
erate effects and influence the trait in both directions,
which probably contributes to maintaining variation in
C. hirsuta petal number (Pieper et al., 2016). Petal
number also varies between individual flowers on a
single plant. This variation is strongly influenced by
plant ageing, such that petal number per flower de-
clines as a plant ages. Another phenotype that shows
this temporal trend is the declining number of tri-
chomes on the abaxial side of sepals as a plant ages
(Shikata et al., 2009; Yu et al., 2010), and both of these
age-dependent traits share a common genetic basis in
C. hirsuta (Pieper et al., 2016). Therefore, common
QTL affect both petal number and sepal trichome number
and act in an age-dependent manner. In addition, there is
considerable stochastic variation in petal number between
flowers initiated at the same position in isogenic individ-
uals, which is also under genetic control (Monniaux et al.,
2016). Yet significant differences in mean petal number
were also observed between isogenic individuals grown in
separate experiments (Pieper et al., 2016), raising the pos-
sibility that C. hirsuta petal number may vary in response
to environmental fluctuations. Therefore, variation in C.
hirsuta petal number is genetically determined, but it is an
open question whether, and to what extent, this pheno-
type also responds to environmental cues.

Seasonal cues, such as day length (photoperiod),
winter cold (vernalization), and ambient temperature,
promote flowering of Arabidopsis in the longer, warmer
days of spring in temperate regions. These cues are inte-
grated with endogenous flowering signals, such as the
age of the plant and levels of the growth hormone GA.
Defined pathways transduce these external and internal
signals and converge to activate flowering-promoting
genes, such as LFY and AP1 (Andrés and Coupland,
2012). Key genes that integrate these diverse pathways
includeFLOWERINGLOCUST (FT) andSOC1 (Kardailsky
et al., 1999; Kobayashi et al., 1999; Samach et al., 2000).
Transport of the FT protein from where it is expressed
in leaves to the shoot apex activates transcriptional
reprogramming of the meristem to initiate flowering,
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and SOC1 is the earliest up-regulated gene in response to
flowering cues such as day length (Samach et al., 2000;
Corbesier et al., 2007; Torti et al., 2012). An age-sensing
pathway that involves two microRNAs, miR156 and
miR172, and their respective transcription factor targets,
SQUAMOSA BINDING PROTEIN-LIKE (SPL) and
APETALA2-LIKE (AP2-like) proteins, ensures that
flowering does not happen until the plant is mature
(Huijser and Schmid, 2011). As the plant ages, de-
clining levels of miR156 allows SPL transcripts to ac-
cumulate and promote flowering, while increasing
levels of miR172 relieves the floral inhibition caused
by AP2-like genes (Mathieu et al., 2009; Wang et al.,
2009; Wu et al., 2009; Hyun et al., 2016). A number of
MADS-box proteins form complexes that inhibit flow-
ering by repressing the expression of floral inducers,
including FT and SOC1 (Hartmann et al., 2000; Lee et al.,
2007; Li et al., 2008). For example, SVP complexes with
FLOWERING LOCUS C (FLC) to permit flowering only
once FLC levels are sufficiently reduced by progressive
chromatin changes in response to prolonged vernaliza-
tion (Michaels and Amasino, 1999; Bastow et al., 2004;
Sung and Amasino, 2004; Li et al., 2008). In addition,
repressive complexes of SVP with FLOWERING LOCUS
M or MADS AFFECTING FLOWERING2 decline at
warmer temperatures, contributing to thermoresponsive
flowering (Ratcliffe et al., 2003; Gu et al., 2013; Lee et al.,
2013; Posé et al., 2013; Airoldi et al., 2015; Sureshkumar
et al., 2016).

Although ambient temperature is an important sig-
nal for growth and development, the mechanisms by
which plants perceive this signal are not yet fully un-
derstood. Thermosensing is an important function of
the red-light photoreceptor phytochrome B in Arabi-
dopsis, particularly at night (Jung et al., 2016; Legris
et al., 2016). Phytochromes sense light by switching
between an inactive and active form. Warm tempera-
tures deplete the active phytochrome pool and disrupt
the transcriptional output of phytochrome B signaling
(Jung et al., 2016; Legris et al., 2016). In this way,
temperature information is perceived and transduced
through the light-sensing pathway to regulate ther-
momorphogenesis. The histone variant H2A.Z is an-
other potential thermosensor (Talbert and Henikoff,
2014). It has been proposed that nucleosomes con-
taining H2A.Z wrap DNA more tightly than H2A-
containing nucleosomes, making it less accessible for
transcription factors (Kumar andWigge, 2010). H2A.Z
nucleosomes are depleted at warmer temperatures,
providing a mechanism for temperature-regulated ex-
pression of genes such as FT (Kumar andWigge, 2010).
Therefore, these mechanisms are likely to contribute to
the thermoresponsiveness of growth and flowering in
Arabidopsis.

Here, we find seasonal variation in the number of
petals produced by C. hirsuta flowers. Spring flowering
plants produce more petals per flower than summer
flowering plants. We characterize the developmental
plasticity of petal number and show that it varies
in response to ambient temperature, photoperiod,

simulated shade, vernalization, and GA levels. In par-
ticular, we show that cooler temperatures, experienced
by plants flowering in spring compared to summer,
strongly correlate with a higher number of petals per
flower. Using live imaging to quantify growth at early
stages of flower development, we show that the mat-
uration of floral buds is more gradual at cooler tem-
peratures, resulting in wider regions between sepals
that influence petal initiation.

RESULTS

Petal Number Varies According to Season and Age

Petal number varies from zero to four among the
flowers produced by an individual C. hirsuta plant (Fig.
1A). Variation in floral organ number is mostly re-
stricted to petals, as C. hirsuta flowers produce a fixed
number of four sepals and two carpels (Fig. 1B). C.
hirsuta flowers usually lack the two lateral stamens
present in Arabidopsis (Fig. 1B), although lateral sta-
men number can vary in both species (Muller, 1961;
Smyth et al., 1990; Hay et al., 2014). Variation in the
number of lateral stamens and petals is not correlated in
C. hirsuta (Supplemental Table S1; r = 0.11). To inves-
tigate the developmental basis of petal number varia-
tion, we examined the ontogeny of floral organs in C.
hirsuta (Fig. 1, C–J; Supplemental Fig. S1; Supplemental
Tables S1 and S2). Sepals initiated first, forming creased
buttresses in stage 3 meristems, growing over the floral
meristem at stage 5 to completely enclose the floral bud
by stage 6 (Fig. 1, C–H). Petal primordia developed just
interior to the intersepal regions at stage 4, and two
pairs of medial stamen primordia emerged interior to
petals on the floral meristem (Fig. 1D). By stage 5, small
petal and stamen primordia were clearly visible (Fig. 1,
E and F). Carpel primordia consumed the center of the
floral meristem in stage 6 flowers where the sepals had
enclosed the bud and interleaved at their tips (Fig. 1, G
and H). Small petal primordia were either clearly pre-
sent or absent at the base of well-developed stamens in
stage 8 flowers when viewed in longitudinal sections or
scanning electron micrographs with obscuring sepals
dissected away (Fig. 1, E, G, I, and J). Therefore, the
variable petal number observed in mature C. hirsuta
flowers seems to originate from early events during
petal initiation, rather than later events in petal growth.

To investigate the relevance of petal number varia-
tion for the natural growth of C. hirsuta, we counted
petal number in local stands of C. hirsuta around Ox-
ford, UK. We found that petal number varied in all the
plants we counted, similar to our observations in green-
house conditions (Fig. 1K). But what was striking was
the seasonal difference in average petal number be-
tween spring- and summer-flowering C. hirsuta plants.
Local stands of C. hirsuta that flowered in summer
months (July/August) produced an average of only
1.14 6 0.08 petals per flower compared to 3.78 6 0.03
petals per flower in populations that flowered in
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spring months (March/April; Fig. 1K). This difference
was highly significant (P , 0.001, Mann-Whitney U
test). To understand what component of this seasonal
trend might reflect developmental plasticity versus
genetic differences between populations, we grew
isogenic C. hirsuta plants under field conditions in
different seasons. We performed these experiments
at a field site at MPIPZ, Cologne, Germany, during
April/May 2016 (spring) and August 2016 (summer),
using the C. hirsuta Ox accession. We found a highly
significant difference in petal number between these
flowering seasons: Summer-flowering plants pro-
duced on average only 1.48 6 0.11 petals per flower
compared to 2.65 6 0.08 petals per flower in spring-
flowering plants (Fig. 1L; P, 0.001, Mann-WhitneyU
test). Therefore, the flowers of isogenic C. hirsuta
plants vary their petal number in response to seasonal
cues.

To investigate the environmental regulation of C.
hirsuta petal number, we examined climate data
recorded at the Cologne field site during our experi-
ments. Although numerous climatic conditions, in-
cluding day length, differed between these spring and
summer field experiments (Supplemental Fig. S2), we
found a large difference in mean daily temperature
(spring, 13.5°C6 0.6°C; summer, 19.3°C 6 0.5°C; P ,
0.001, Mann-Whitney U test; Supplemental Fig. S2).
Thus, C. hirsuta plants flowering in spring experi-
enced lower ambient temperatures and produced
higher petal numbers than summer-flowering plants.

In addition to this seasonal trend, we had previously
described a temporal trend in petal number during
plant ageing in C. hirsuta (Monniaux et al., 2016; Pieper
et al., 2016). We found that average petal number per
flower also declined as the plants aged in field condi-
tions (denoted by floral node number, Fig. 1M), similar

Figure 1. Petal number varies according to season and age inC. hirsuta.A, Petal number varies between zero (0 p) and four (4 p) in
the flowers of a single inflorescence inC. hirsuta. B, Box plot of floral organ counts per flower inC. hirsuta. C, Longitudinal section
through a stage 3 floral bud shows growth of the abaxial (ab) sepal is advanced compared to the adaxial (ad) sepal. D, Scanning
electron micrograph of a stage 4 floral bud shows outgrowth of all four sepals and early petal and stamen primordia. E and F,
Longitudinal section (E) and scanning electronmicrograph (F) of stage 5 floral buds show sepals growing over the floral meristem,
prominent stamen primordia, and small petal primordia. G andH, Longitudinal section (G) and scanning electronmicrograph (H)
of stage 6 flowers show sepals enclosing the bud with their tips folding within the bud. Section shows developing stamen and
carpel primordia but no petal primordia. I and J, Longitudinal section (I) and scanning electron micrograph (J) of older floral buds
show that petal primordia are either present or absent (arrow, J) in whorl two. K, Box plot of petals per flower in spring and summer
flowering populations of C. hirsuta, n = 419 flowers. L, Box plot of petals per flower in the C. hirsutaOx accession grown in late
spring and summer field conditions, n = 468 flowers. M, Average petal number per flower at consecutive floral nodes inC. hirsuta
Ox plants grown in summer (white circles) and late spring (black circles) field conditions, n = 10 plants in each condition, error
bars show SE. The first floral node is labeled as 1. Pairwise comparisons by Mann-Whitney U test. Significance levels: ***P ,
0.001, **P, 0.01, *P, 0.05. Box plots show 25th to 75th percentiles; whiskers extend down to 10th and up to 90th percentiles;
black line showsmedian; red line showsmean. Numbers in C to H indicate floral stage; st, stamen; p, petal; c, carpel. Scale bars =
20 mm (C–J).
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to greenhouse-grown plants (Monniaux et al., 2016;
Pieper et al., 2016). This trend was apparent in the C.
hirsuta Ox accession, irrespective of whether the plants
flowered in spring or summer (Fig. 1M). However, the
lower average petal number in summer-flowering
plants was reflected in lower petal numbers at all flo-
ral nodes (Fig. 1M). In addition, fewer flowers were
produced in summer- compared to spring-flowering
plants (Fig. 1M). Therefore, both endogenous ageing
and external environmental cues regulate petal number
variation in C. hirsuta.

C. hirsuta Flowers in Long Days

Since flowering time in Arabidopsis also responds to
ageing and seasonal cues, we first characterized this
process in C. hirsuta, before further exploring how these
same cues might affect petal number. To describe how
photoperiod influences the floral transition inC. hirsuta,
we grew plants for 3 weeks in moderately short days
(10 h light:14 h dark), where the plants produced a
vegetative rosette (Fig. 2A) and then transferred the
plants to long days (16 h light:8 h dark). Within 5 to 6 d
after transfer, the apical meristem switched from pro-
ducing leaf primordia to floral buds (Fig. 2, B–D). The
inflorescence later bolted to produce an indeterminate
raceme bearing secondary flowering branches and
single lateral flowers (Fig. 2E). For the first 11 d after
transfer to long days, almost three floral buds were
produced per day before slowing to a rate of one to two
buds per day (Fig. 2F). To examine the photoperiodic
induction of flowering at a molecular level, we mea-
sured transcript levels of the C. hirsuta AP1 and SVP
genes (ChAP1 and ChSVP) in vegetative seedlings, early
inflorescence meristems (;5 to 10 floral buds produced)
and in inflorescences at anthesis (Fig. 2G). Levels of
ChAP1mRNAdoubled in early inflorescencemeristems,
while inflorescence shoots at anthesis showed a 21-fold
increase, likely due to the high number of developing
flowers at this stage (Fig. 2G). ChSVP expression levels
increased from the vegetative to early inflorescence to
older inflorescences at anthesis, probably due to the in-
creasing number of early floral buds (Fig. 2G). Taken
together, these data show that long-day photoperiods
induce flowering in C. hirsuta.

To determine the relationship between photoperiod
length and floral induction, we compared flowering
time in C. hirsuta plants grown under short-day
(8 h:16 h light/dark), neutral-day (12 h:12 h light/
dark), and long-day (16 h:8 h light/dark) conditions.
We assessed the floral transition morphologically, by
counting the total number of rosette leaves produced,
and temporally, by recording the number of days
postgermination when floral buds became visible on
the inflorescence, when the bolting stem reached 5 cm,
and at anthesis.We found that these temporal measures
of flowering time were largely correlated (Supplemental
Fig. S3), so we report the timing of visible floral buds
throughout. We defined the floral maturation interval as

the number of days between the appearance of floral
buds and anthesis. Consistent with our previous ex-
periment, we found that flowering time in C. hirsuta
was significantly accelerated by growth in long days,
as plants produced fewer rosette leaves and transi-
tioned earlier to flowering (Fig. 2H). Compared to
neutral days, floral maturation was particularly fast
in long-day conditions but also accelerated in short
days (Fig. 2H). Growth in short days significantly
delayed the time to flowering, compared to other
photoperiods, although plants produced a similar
number of rosette leaves in both neutral and short
days (Fig. 2H; Supplemental Fig. S3). Altogether, our
data suggests that the critical photoperiod for floral
induction in C. hirsuta lies between 8 and 12 h.

Onset of Flowering in C. hirsuta Is Accelerated by
Simulated Shade, Cooler Ambient Temperatures,
and Vernalization

To investigate the effect of other external cues on C.
hirsuta flowering time, we altered light quality and tem-
perature under neutral day conditions in order to mini-
mize the effects of photoperiod (Fig. 2, H and I;
Supplemental Tables S3 and S4). Growth in far-red
light significantly accelerated flowering time in C.
hirsuta (Fig. 2H). This is a typical shade avoidance
response to simulated shade conditions. These plants
produced fewer rosette leaves, transitioned earlier to
flowering, and showed rapid maturation of floral
buds to flowers (Fig. 2H). Growth in blue light on the
other hand, did not affect flowering time (Fig. 2H).

We found that flowering time was significantly ac-
celerated at cooler ambient temperatures when plants
were grown at 15°C compared to 20°C (Fig. 2H). How-
ever, growth at 15°C also resulted in very slow floral
maturation (Fig. 2H). Therefore, at cooler temperatures,
floral budsmatured intoflowers over amuch longer time
interval, despite an accelerated flowering time. We also
determined thatflowering time inC. hirsuta responded to
vernalization. Growth at approximately 4°C for up to
4 weeks significantly accelerated the transition to flow-
ering and resulted in fewer rosette leaves (Fig. 2I;
Supplemental Fig. S3). Given that C. hirsuta plants
responded to vernalization and that plants in our
neutral day conditions experienced cool (15°C) tem-
peratures for approximately 50 d of vegetative growth,
the accelerated flowering we observed at 15°C may re-
flect a mild vernalization response. Taken together, our
findings suggest that both flowering time and floral
maturation in C. hirsuta are sensitive to environmental
control.

Petal Number Is Sensitive to Environmental Cues

To further investigate the relationship between petal
number variation and environment that we observed in
our spring versus summer field experiments, we de-
termined whether petal number responded to the same
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Figure 2. C. hirsuta flowering is accelerated by long days, vernalization, cool ambient temperature, and simulated shade. A,
C. hirsuta vegetative rosette. B to D, Scanning electron micrographs of C. hirsuta plants following SD to LD transfer. B, shoot
apical meristem (SAM) initiating leaf primordia (L) 4 d after transfer; C, inflorescence meristem (IM) initiating floral meristem
primordia (FM) 5 d after transfer with the oldest primordium at stage 3; D, IM initiating FM 6 d after transfer with the oldest
primordium at stage 5. E, C. hirsuta flowering raceme. F, Line graph shows cumulative floral bud production starting 5 d after
SD to LD transfer. G, Relative expression levels ofChAP1 andChSVPmRNA in vegetative SAM, early IM (5–10 floral buds), and
IM at anthesis, shown as fold change of vegetative levels. Expression is compared pairwise to vegetative samples. H, Flowering
time, measured as number of rosette leaves and number of days after germination when the first floral buds are visible, and
floral maturation interval, measured as the number of days between visible floral buds and anthesis, were compared between
different photoperiods, ambient temperatures, and light qualities. ND, Neutral days (12:12); SD, short days (8:16); LD, long
days (16:8); WL, white light; BL, blue light; FRL, far-red light. I, Flowering time, measured as number of rosette leaves (left y
axis) and visible floral buds (right y axis), in response to vernalization at;4°C. Pairwise comparisons byMann-WhitneyU test.
Significance levels: ***P, 0.001, **P, 0.01, *P, 0.05. n = 26–28 (ND, 20°C,WL); n = 7–26 (LD, 20°C,WL); n = 26–29 (SD,
20°C,WL); n = 12–31 (ND, 15°C,WL); n = 29–31 (ND, 20°C, FRL); n = 22–31 (ND, 20°C, BL); n = 12 (vernalization). Error bars
show SE. Scale bars = 1 cm (A and E) and 100 mm (B–D).
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environmental cues that affected flowering time in C.
hirsuta. Specifically, we recorded petal number in the
same experiments described abovewhere wemeasured
flowering time (Supplemental Tables S3 and S4). Plants
grown in short days produced, on average, twice as
many petals per flower (1.53 6 0.06) compared to
plants grown in long days (0.696 0.06) or neutral days
(0.686 0.07; Fig. 3A). Therefore, the difference between
a 12-h and 16-h photoperiod significantly affected petal
number (P , 0.05, Tukey Kramer). Simulated shade
(far-red light) also increased petal number compared to
white or blue light (P , 0.01, Tukey Kramer; Fig. 3A,
Supplemental Fig. S4) as did 4weeks of vernalization at
approximately 4°C (P , 0.05, Tukey Kramer; Fig. 3B,
Supplemental Fig. S4). But we found that cool ambient
temperature produced the most significant increase in
petal number: Plants grown at 15°C developed an ad-
ditional ;2.5 petals per flower compared to those at
20°C, a greater than 4.5-fold increase (P , 0.001; Fig.
3A). This variation in petal number in response to am-
bient temperature showed a positive correlation with
the interval of floral maturation (r = 0.63, Pearson co-
efficient of correlation, P , 0.05). Therefore, petal
number increases when the maturation of floral buds is
more gradual at cooler temperatures.

To understand how distinct environmental factors
influenced petal number during the progressive ageing
of the plant, we assessed petal number at each succes-
sive floral node. A cooler ambient temperature of 15°C
dramatically increased the number of petals per flower
at all floral nodes, reflecting a sustained influence
throughout the ageing of the inflorescence (Fig. 3C).
This pattern of higher overall petal number, within the
context of a decline in petal number during ageing, is

similar to what we observed in spring versus summer
flowering plants in the field (Fig. 1M). Moreover, the
difference in mean daily temperature recorded at the
field site (spring, 13.5°C 6 0.6°C; summer, 19.3°C 6
0.5°C), was similar to the temperature difference used
in our controlled environment experiments (15°C ver-
sus 20°C), suggesting that ambient temperature was
likely to be a major factor influencing petal number in
the field experiments. Growth in short-day conditions
increased the number of petals per flower for the first
17 floral nodes before declining at later floral nodes to
the same values as long-day- or neutral-day-grown
plants (Fig. 3D). Therefore, the small difference in av-
erage day length between spring (15.3 h 6 0.1) and
summer (14.3 h6 0.1) field experiments is unlikely to be
sufficient to explain the observed difference in petal
number (Fig. 1M). In summary, different environmen-
tal factors have distinct effects on the age-dependent
decline in petal number in C. hirsuta.

Ambient Temperature Affects Petal Number via Growth
and Maturation of the Floral Bud

To investigate how ambient temperature affects petal
number, we quantified the progression of shape and
size of floral buds during early stages of floral devel-
opment in time-lapse images of C. hirsuta plants grown
at 15°C and 20°C (Fig. 4A; Supplemental Figs. S5 and
S6). By computing local curvature with the 3D image
analysis software MorphoGraphX (Barbier de Reuille
et al., 2015), we found that the shape of floral buds
differed between temperatures (Fig. 4, B and C). In
stage 4 flowers, flat regions formed between the sepals

Figure 3. Petal number in C. hirsuta responds to
photoperiod, ambient temperature, light quality,
and vernalization. A and B, Box plots compare
petal number per flower between different pho-
toperiods, ambient temperature, and light quality
(A), and in response to vernalization at ;4°C (B).
C and D, Average petal number per flower over
successive floral nodes in response to ambient
temperature (C) and to photoperiod (D); the first
floral node is labeled as 1; error bars show SE.
Petals/flower are scored in the first 25 floral nodes
in A and B. Pairwise comparisons by Mann-
WhitneyU test. Significance levels: ***P, 0.001,
**P, 0.01, *P, 0.05. ND, Neutral days (12:12);
SD, short days (8:16); LD, long days (16:8); WL,
white light; BL, blue light; FRL, far-red light. n =
26–28 (ND, 20°C, WL); n = 7–26 (LD, 20°C, WL);
n = 26–29 (SD, 20°C, WL); n = 12–31 (ND, 15°C,
WL); n = 29–31 (ND, 20°C, FRL); n = 22–31 (ND,
20°C, BL); n = 12 (vernalization). Box plots show
25th to 75th percentiles, whiskers extend down to
10th and up to 90th percentiles, black line shows
median, and red line shows mean.
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(arrows, Fig. 4B) as boundaries developed between the
growing sepals and the meristem (in blue, Fig. 4B).
These intersepal regions were wider in flowers grown
at 15°C than at 20°C (arrows, Fig. 4B). During stage 5, as
the boundaries separating sepals from the meristem
extended, the intersepal regions narrowed considerably
in flowers grown in 20°C, whereas at 15°C, these re-
gions remained wider (arrows, Fig. 4C).

The size of the floral bud was also larger in plants
grown at 15°C than at 20°C. For example, floral meri-
stem area was larger in stage 4 flowers grown at 15°C
(6597 mm2 6 135, n = 3) than at 20°C (5748 mm2 6 16,
n = 3, P, 0.05, Student’s t test), and the distance across
the meristem was larger in 15°C- than 20°C-grown
flowers (Fig. 4, D and E; Supplemental Fig. S8;
Supplemental Table S5). This difference in meristem

Figure 4. Ambient temperature affects the size of intersepal regions in C. hirsuta floral buds. A, Early floral development in
C. hirsuta was staged by the size and shape of sepals according to Supplemental Table S2. M, Floral meristem; LS lateral sepals;
AbS, abaxial sepal; AdS, adaxial sepal. All subsequent floral buds are oriented this way. Green dashed line indicates position of
optical sections shown in D. B and C, Local curvature computed withMorphoGraphX software in stage 4 (B) and stage 5 (C) floral
buds ofC. hirsuta at 20°C (top) and 15°C (bottom). Heat map indicates tissue curvature in 1022mm21, where flat is white, negative
curvature is blue, and positive curvature is red. Arrows indicate flat regions between sepals. Dashed blue lines approximate the
sepal-meristem boundaries when these are obstructed by sepal growth in C. D, Optical cross sections of stage 4 floral buds of
C. hirsuta at 20°C (top) and 15°C (bottom). Twomeasures of floral meristem size are indicated: the direct distance (yellow arrow)
and the curvilinear distance (red arrow) between lateral sepal boundaries. E, Bar plot of curvilinear distance across the floral
meristem (white) and epidermal cell area in the floral meristem (gray) of stage 4 floral buds of C. hirsuta at 20°C and 15°C.
Curvilinear distance is significantly different between temperatures (P = 0.02; Student’s t test). F, Areal growth computed with
MorphoGraphX software in time-lapse series of C. hirsuta floral buds at 20°C (top) and 15°C (bottom). Arrows indicate regions of
slower growth between sepals. Heat map indicates cell areal growth in percentage over intervals of 24 h (20°C, top) or 36 h (15°C,
bottom). Stage 3 is marked in yellow to highlight the considerable delay in development through this stage at 15°C. Note the 15°C
series is composed of two different time-lapse series (Supplemental Fig. S11), and the heat map is saturated for high growth in the
sepals in order to discriminate between growth in the floral meristem and intersepal regions. Scale bars = 20 mm.
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size did not correspond to an increase in cell size but
rather to an increase in cell number in flowers grown at
15°C compared to 20°C (Fig. 4E; Supplemental Fig.
S8). At stage 2, prior to floral organ formation, floral
buds were already significantly larger in plants grown
at 15°C compared to 20°C but had a similar shape
(Supplemental Fig. S9). Therefore, cool ambient tem-
perature increased the size of C. hirsuta floral buds
prior to the change in shape that emerged as sepals
grew out.

To investigate how larger intersepal regions were
produced in floral buds at cooler ambient tempera-
tures, we analyzed growth using time-lapse images of
C. hirsuta plants grown at 15°C and 20°C. By computing
areal growth withMorphoGraphX software (Barbier de
Reuille et al., 2015), we found that the wider intersepal
regions at 15°C did not arise from rapid, local growth of
these regions that would “push” sepals apart. Instead,
we found that intersepal regions were slow growing
(arrows in Fig. 4F), with growth rates more similar to
the meristem flanks than the fast-growing sepals (Fig.
4F). Furthermore, the rate at which floral buds matured
through successive developmental stages was con-
siderably slower at 15°C compared to 20°C: Flowers
grown at 20°C took 72 h to transition through stages
2 to 5, whereas this same transition took approximately
144 h in flowers grown at 15°C (Fig. 4F; Supplemental
Figs. S6, S7, and S10). This delay was particularly pro-
nounced during stage 3, when the floral bud was en-
larging but before the sepals became separated from the
meristem by boundaries (stages highlighted in yellow,
Fig. 4F). This delayed development was reflected in the
slower growth of sepals at 15°C than at 20°C, which
was slowed down more than meristem growth by cool
ambient temperature (Supplemental Fig. S10). The
meristem also grew for longer at 15°C before sepals
started to grow rapidly at stage 4, resulting in a larger
floral meristem (Fig. 4F). Thus, both a slower rate of
sepal growth and an extended phase of meristem en-
largement contributed to the difference in flower bud
shape between 15°C and 20°C. In effect, since sepals did
not increase in size as much as the meristem at 15°C, the
sepal boundaries did not completely separate the
meristem from whorl 1, leaving wide, flat regions be-
tween sepals in stage 5 flowers (arrows, Fig. 4, C and F).
Since wider intersepal regions were associated with
more petals in flowers grown at 15°C than 20°C (15°C,
mean = 3.3 6 0.1, n = 208; 20°C, mean = 1.6 6 0.1, n =
210, P, 0.001, Mann-WhitneyU test), these regions are
likely important for petal initiation in C. hirsuta.

To understandwhether the development of C. hirsuta
flowers grown at 15°C resembled Arabidopsis flowers,
we analyzed early stages of floral development in time-
lapse images of Arabidopsis plants grown at 20°C (Fig.
5A; Supplemental Fig. S7). This comparison revealed
considerable divergence in the development of four-
petaled flowers between species. For example, when
we computed local curvature (Barbier de Reuille et al.,
2015), we found a critical difference in shape between
floral buds of C. hirsuta and Arabidopsis. At stage 4, the

floral meristem of Arabidopsis was clearly separated
from the first whorl by sepal boundaries (in blue, Fig.
5B). The sepal boundaries were connected at stage
5 (Fig. 5C), leaving no flat regions between sepals like
the ones observed in C. hirsuta (Fig. 4C). Furthermore,
the curved distance across stage 4 floral meristems was
more similar between Arabidopsis (117.5 mm6 1.5, n =
4) and C. hirsuta at 20°C (115 mm 6 2.8, n = 4), even
though their petal number differed, than C. hirsuta
at 15°C (125 mm 6 1.5, n = 4; red arrow, Fig. 5D;
Supplemental Table S5). We used the ratio of curvilin-
ear/direct distance to measure meristem curvature
(Fig. 5D) and found that the Arabidopsis meristem is
more curved (ratio = 1.6, n = 4) than C. hirsuta (ratio =
1.3, n = 4 at 20°C and n = 4 at 15°C; Supplemental Table
S5). By analyzing areal growth (Barbier de Reuille et al.,
2015), we found broadly similar growth patterns be-
tween Arabidopsis and C. hirsuta flowers (Figs. 5E and
4F; Supplemental Fig. S5). However, regions of slower
growth between sepals (arrow, Figure 5E), which in-
fluence petal initiation in Arabidopsis (Lampugnani
et al., 2012), formed after the sepal boundaries com-
pletely separated the meristem from the first whorl (in
blue, Fig. 5, B and C). Therefore, the intersepal regions
in Arabidopsis are not flat and are physically separated
from the floral meristem by boundary cells with nega-
tive curvature (Fig. 5, B and C). Whereas in C. hirsuta,
the boundaries that physically separate each sepal from
the floral meristem are discontinuous, leaving flat
intersepal regions that connect the meristem with the
first whorl (Fig. 4, B and C). In summary, we found no
association between petal number and geometry or size
of the floral bud when comparing between species.

Environmental Factors Influence Age-Dependent Variation
in Sepal Trichome Number

The number of trichomes on the abaxial surface of
sepals varies in an age-dependent manner, similar to
the variation in C. hirsuta petal number (Pieper et al.,
2016). In fact, the decline in sepal trichomes and petals
is strongly correlated (Fig. 6A), and QTL analysis has
shown that these age-dependent traits share a com-
mon genetic basis (Pieper et al., 2016). To investigate
whether sepal trichome number responded to envi-
ronmental variation in a similar manner to petal num-
ber,we counted sepal trichomes in the same experiments
where we measured flowering time and petal number
(Supplemental Table S3). We found that plants grown in
short days developed significantly more sepal trichomes
per flower than either neutral-day- or long-day-grown
plants (P , 0.001, Mann-Whitney U test; Fig. 6B), and
this response to photoperiod was positively correlated
with petal number (r = 0.72, Pearson coefficient of cor-
relation, P, 0.001). Plants grown at 15°C also developed
more sepal trichomes per flower than those grown at
20°C (P, 0.001, Mann-WhitneyU test; Fig. 6B), and this
response also showed a strong positive correlation with
petal number (r = 0.91, Pearson coefficient of correlation,
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P , 0.001). The one exception to this trend was the re-
duction in sepal trichomes in plants grown in far-red
light, compared to white or blue light (P , 0.05, Tukey
Kramer; Fig. 6B; Supplemental Fig. S4), which was not
correlated with petal number.
To understandwhether the correlated response of petal

and sepal trichome number to environmental variation
reflected a common, age-dependent response of both
traits, we assessed the average number of sepal trichomes
at individual floral nodes. In comparison to petals (Fig.
3C),we found that sepal trichomenumberwas high in the
first floral nodes in plants grown at 15°C compared to
20°C and declined sharply (Fig. 6C). Growth in short-day
conditions affected the number of sepal trichomes in a
similar way as petals: high in the first floral nodes before
declining (Figs. 3D and 6D). Therefore, petal and sepal
trichome number share an age-dependent trend in their
response to environmental variation.

Petal Number Regulation by Endogenous Signals

To investigate whether the endogenous ageing
pathway may contribute to the observed trend in petal
number variation,we assessed petal number inC. hirsuta

genotypes with accelerated ageing. The abundance of
SPL transcripts regulates ageing in Arabidopsis and is
determined by the declining levels of miR156 through-
out a plant’s life (Wang et al., 2009; Wu et al., 2009). To
get an overview of SPL expression changes during the
transition from vegetative to floral development in
C. hirsuta, we examined transcript levels of ChSPL3,
ChSPL15, and ChSPL9 (Fig. 7A), which represent three
subgroups of miRNA-regulated SPL genes (Guo et al.,
2008). These genes were also chosen because they
contribute to the regulation of sepal trichome number
in Arabidopsis (Shikata et al., 2009; Yu et al., 2010;
Wei et al., 2012). We found that ChSPL3 expression in-
creased stepwise from vegetative to early inflorescence
to anthesis stages of development, while ChSPL9 ex-
pression increased from early inflorescence to anthesis
stages (Fig. 7A). ChSPL15 expression increased
between vegetative and early inflorescence stages
(Fig. 7A), as had been shown previously (Cartolano
et al., 2015), indicating that the expression level of
all three SPL genes increased during ageing in
C. hirsuta.

To assess the contribution of SPL activity to petal
number variation in C. hirsuta, we generated transgenic

Figure 5. Geometry of the intersepal regions in Arabidopsis floral buds differs from C. hirsuta. A, Early floral development in
Arabidopsis was staged by the size and shape of sepals according to Smyth et al. (1990). M, Floral meristem; LS, lateral sepals; AbS,
abaxial sepal; AdS, adaxial sepal. All subsequent floral buds are oriented this way. Green dashed line indicates position of optical
section shown in D. B and C, Local curvature computed with MorphoGraphX software in stage 4 (B) and stage 5 (C) floral buds of
Arabidopsis at 20°C. Heat map indicates tissue curvature in 1022 mm21, where flat is white, negative curvature is blue, and positive
curvature is red. Arrows indicate intersepal regions. Dashed blue lines approximate the sepal-meristem boundaries when these are
obstructed by sepal growth inC.D,Optical cross section of stage 4 floral bud showing twomeasures of floralmeristem size: the direct
distance (yellow arrow) and the curvilinear distance (red arrow) between lateral sepal boundaries. E, Areal growth computed with
MorphoGraphX software in time-lapse series of Arabidopsis floral buds at 20°C. Arrow indicates intersepal region with slower
growth. Heat map indicates cell areal growth in percentage over intervals of 24 h. Note the heat map is saturated for high growth in
the sepals in order to discriminate between growth in the floral meristem and intersepal regions. Scale bars = 20 mm.
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plants expressing miRNA-resistant versions of the
Arabidopsis genes SPL9 and SPL10 (pSPL9::rSPL9,
pSPL10::rSPL10; Wu et al., 2009). We found that flow-
ering time was accelerated in these miRNA-resistant
plants compared to wild type (Supplemental Table
S6), as measured by a reduction in rosette leaf number
(Fig. 7B) and days to anthesis (Fig. 7C). We also found a
reduced number of sepal trichomes in pSPL10::rSPL10
plants (Fig. 7, D and E; Supplemental Table S6), which
agrees with the repression of sepal trichomes by SPL10
in Arabidopsis (Shikata et al., 2009). However, we still
observed a temporal trend in the decline of sepal tri-
chomes in pSPL10::rSPL10 plants (Fig. 7E), suggesting
that additional factors contribute to this age-dependent
process in these plants. Taken together, these results
indicate that ageing is accelerated by the transgenic
expression of miRNA-resistant SPLs in C. hirsuta, par-
ticularly in pSPL10::rSPL10 plants. However, average
petal number per flower was not different between
these transgenic lines and wild type (Fig. 7, D and F;
Supplemental Table S6) and furthermore, each geno-
type showed the same decline in petal number during
plant ageing (Fig. 7F), suggesting that petal number
variation is insensitive to the accelerated ageing caused
by the expression of miRNA-resistant SPL9 and SPL10
in C. hirsuta.

The growth hormone GA is another endogenous sig-
nal that promotes flowering in Arabidopsis (Eriksson
et al., 2006; Andrés et al., 2014). To investigatewhetherC.
hirsuta petal number varies in response to GA levels, we
treated C. hirsuta with 0, 0.1, or 10 mM GA3. First, we
measured how flowering time in C. hirsuta responded to
these increasing GA3 levels under neutral day (12 h:12 h
light/dark) conditions. We found that flowering time
was accelerated by increasing concentrations of GA3,

with the number of rosette leaves and the time to visible
floral buds decreasing with progressive GA3 dose (Fig.
8A; Supplemental Table S7). We also observed an in-
crease in cauline leaf number in response to 10 mM GA3,
which likely reflected an acceleration of the reproductive
transition such that cauline leaves are produced at the
shoot apical meristem instead of rosette leaves (Fig. 8A).
Therefore, elevated GA levels promote flowering in
C. hirsuta. Although the average number of petals per
flower was unaltered in neutral-day conditions, we
found a clear dose response under long days (16 h:8 h
light/dark), with petal number steadily increasing in
response to increasing concentrations of GA3 (Fig. 8B;
Supplemental Fig. S6). In contrast to the dose response of
petal number to GA, the production of sepal trichomes
was strongly inhibited by 10 mM GA3 application in both
long days and neutral days (Fig. 8B), similar to Arabi-
dopsis (Gan et al., 2007). Therefore, our results suggest
that petal number variation in C. hirsuta responds to GA
during photoperiodic flowering.

DISCUSSION

The number of petals produced in C. hirsuta flowers
shows seasonal variation. Flowers produce more petals
in spring than in summer. Our findings indicate that the
cool ambient temperatures associated with spring
flowering have a considerable effect on petal number.
Growth at cool temperature extended the time interval
during which floral buds matured in C. hirsuta. In
particular, an extended phase of meristem formation
and slow sepal growth at 15°C compared to 20°C,
produced larger floral buds with wide, flat regions
between sepals. Petal number varied in response to

Figure 6. Variation in petal number is correlated
with sepal trichomes in C. hirsuta. A, Average
petal number (black circles) and sepal trichome
number (white circles) over consecutive floral
nodes are correlated (R2 = 0.72); the first floral
node is labeled as 1. B, Box plot compares sepal
trichome number per flower between different
photoperiods, ambient temperature, and light
quality. C and D, Average sepal trichome number
per flower over successive floral nodes in response
to ambient temperature (C) and to photoperiod
(D). Sepal trichomes/flower are averaged over the
first 25 floral nodes in B. Pairwise comparisons by
Mann-WhitneyU test. Significance levels: ***P,
0.001, **P , 0.01, *P , 0.05. ND, Neutral days
(12:12); SD, short days (8:16); LD, long days
(16:8); WL, white light; BL, blue light; FRL, far-red
light. n = 26–28 (ND, 20°C, WL); n = 7–26 (LD,
20°C, WL); n = 26–29 (SD, 20°C, WL); n = 12–31
(ND, 15°C, WL); n = 29–31 (ND, 20°C, FRL); n =
22–31 (ND, 20°C, BL). Error bars show SE. Box
plots show 25th to 75th percentiles, whiskers ex-
tend down to 10th and up to 90th percentiles,
black line shows median, and red line shows
mean.
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numerous other external and endogenous cues, in-
cluding photoperiod, simulated shade, vernalization,
and GA levels. Underlying this variation was a tem-
poral decline in petal number during plant ageing;
however, this trend was unaffected by the accelerated
ageing imposed by miRNA-resistant SPL9 or SPL10
expression. In summary, petal number is a quantitative
trait in C. hirsuta with a complex genetic architecture
(Pieper et al., 2016) that responds to environmental
variation.

Developmental Basis for Ambient Temperature Effect on
Petal Number

In Arabidopsis, and most other plants, a predictable
number of petals develop in each flower. This robust-
ness is lost in C. hirsuta, resulting in a variable number
of petals per flower (Monniaux et al., 2016; Pieper et al.,
2016). We have shown that this phenotype is influenced
by both genetic variation (Pieper et al., 2016) and here,
by environmental variation. Through a quantitative
analysis of early floral development at 15°C compared
to 20°C, we discovered that growth at cooler tempera-
tures extends the maturation of floral primordia over a
longer time in C. hirsuta. Slower maturation of the floral
bud increases the size of the floral meristem prior to
sepal growth and, coupled with a slower rate of sepal

growth, results in wide, flat regions between sepals that
are associated with the formation of more petals per
flower. Work in Arabidopsis has described a feed-
forward loop that regulates the onset of flower differ-
entiation at stage 3 and positive-feedback loops that
stably maintain this regulatory module (Liu et al., 2009;
Wagner, 2009). This temporal regulation ensures that the
proliferative phase of floral meristem formation is com-
pleted before flower differentiation begins at stage 3, in
order to support the formation of the correct number
of floral organs. Our findings suggest that in C. hirsuta,
ambient temperature may provide input to this regula-
tory module, such that floral meristem maturation
becomes more gradual at 15°C. Alternatively, ambient
temperature may be integrated by the canonical
WUS-CLV system to control floral stem cell number and
proliferation. However, it is important to note that only
petal number varies in response to temperature in C.
hirsuta, indicating that the change in floral meristem size
is not sufficient to elicit a general increase in floral organ
numbers (Clark et al., 1993, 1995; Running et al., 1998;
Fletcher, 2001). These observations suggest that petal
initiation inC. hirsuta is particularly sensitive to the space
available between sepals in the developing floral bud.

The genetic regulation of intersepal regions and their
role in petal initiation have previously been investi-
gated in Arabidopsis. The trihelix transcription factor

Figure 7. Petal number variation is insensitive to accelerated ageing inC. hirsuta. A, Relative expression ofChSPL3, ChSPL9, and
ChSPL15 transcripts in vegetative SAM (black), early IMwith 5 to 10 floral buds (light gray), and IM at anthesis (dark gray). Pairwise
differences in expression are significant for ChSPL3 between early IM and anthesis, and for ChSPL9/15 between vegetative SAM
and anthesis. B and C, Flowering time, measured by rosette leaf number (B) and time to anthesis (C) in transgenic lines expressing
miRNA-resistant versions of SPL9 and SPL10. D, Average petal number per flower (gray) and sepal trichomes per flower (white) in
pSPL9:rSPL9 and pSPL10:rSPL10 lines. E, Average sepal trichome number per flower is lower in all floral nodes in pSPL10:rSPL10
lines. F, Average petal number per flower is similar at successive floral nodes in wild-type, pSPL9::rSPL9, and pSPL10:rSPL10
plants. Pairwise comparisons byMann-WhitneyU test. Significance levels: ***P, 0.001, **P, 0.01, *P, 0.05. Petals and sepal
trichomes/flower are averages of the first 25 floral nodes. Error bars show SE.
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gene PTL is expressed in intersepal regions, and ptl
mutants show variable petal loss (Griffith et al., 1999;
Brewer et al., 2004). Petal initiation is thought to be
disrupted in ptl mutants as a consequence of growth
distortions in the intersepal regions, which influence
auxin accumulation in adjacent regions of the floral
meristem where petals initiate (Lampugnani et al.,
2012, 2013). Therefore, PTL regulates the size of the
intersepal regions and indirectly regulates petal num-
ber. CUP-SHAPED COTYLEDON transcription factor
genes also regulate the size of the intersepal regions,
and therefore petal number, by inhibiting the growth of
sepal tissues in the intersepal regions (Laufs et al., 2004;
Mallory et al., 2004; Baker et al., 2005; Lampugnani
et al., 2012). In this way, gain or loss of petals is due
to larger or smaller boundaries between sepals. This
process captures a common developmental logic for
auxin-mediated organ outgrowth that was previously
incorporated in computational models of phyllotaxis
and leaf serration (Smith et al., 2006; Bilsborough et al.,
2011). Therefore, similar modeling approaches are
likely to inform our understanding of the mechanism of
petal initiation.

We have also shown here that it is important to
consider the three-dimensional shape and local curva-
ture of floral buds and how space emerges between
sepals via growth. The intersepal regions of Arabi-
dopsis and C. hirsuta floral buds have very different
geometries. In Arabidopsis, the sepal whorl is com-
pletely separated from the floral meristem by boundary
cells with negative curvature. Whereas in C. hirsuta, the
boundaries that separate sepals and meristem are dis-
continuous, leaving the intersepal regions connected to
the meristem. Growth at cool temperatures increases
the size of these intersepal regions with an associated
increase in petal number per flower. One possibility is
that this larger intersepal space allows enough auxin to

accumulate in the adjacent floral meristem to drive
petal outgrowth. However, this remains to be tested.
Moreover, we showed that petal number varied in re-
sponse to other external and endogenous cues, in ad-
dition to ambient temperature, suggesting that petal
initiation in C. hirsuta may be influenced by multiple
different developmental paths.

Flowering Time and Petal Number Variation in C. hirsuta

Our findings show that flowering time in C. hirsuta
is mostly sensitive to the same environmental and
endogenous factors that are known to regulate Arabi-
dopsis flowering. Lengthened photoperiods acceler-
ated flowering time, as did vernalization, far-red
enriched light, increased GA levels, and precocious
ageing caused by miRNA-resistant SPL9 or SPL10 ex-
pression. In contrast to Arabidopsis, cooler ambient
temperatures of 15°C accelerated flowering time, but
this may be a mild vernalization effect caused by ex-
tended periods of vegetative growth at cool tempera-
tures under neutral days. Blue enriched light failed to
elicit a flowering time response in C. hirsuta in neutral
days, although we cannot exclude that plants may be
more responsive under long days. Flowering time is a
quantitative trait, and FLC was identified as a major
QTL controlling this trait in both C. hirsuta (Cartolano
et al., 2015) andArabidopsis (Koornneef et al., 1994; Lee
et al., 1994; Michaels and Amasino, 1999). Here, we
defined the plastic response of flowering time in the
early flowering Ox accession of C. hirsuta to numerous
different cues. It will be interesting to characterize the
flowering response of other C. hirsuta accessions, par-
ticularly late-flowering accessions, to these same cues,
and to further understand the genetic basis of flowering
time in C. hirsuta.

Figure 8. Petal number in C. hirsuta responds to
elevated GA during long-day photoperiods. A,
Flowering time, measured by rosette (dark gray),
and cauline (light gray) leaf number, and number
of days after germination when the first floral buds
are visible, responds to increasing GA3 concen-
trations (0, 0.1, and 10 mM) in ND. B, Average
number of petals per flower (dark gray) responds
to increasing GA3 concentrations (0, 0.1, and
10 mM) in LD but not ND. Sepal trichome number
(light gray) was decreased by10mM GA3 treatment
in LD and ND. Multiple comparisons by Kruskal-
Wallis test with post hoc analysis using the Tukey
Kramer method. Significance levels: ***P ,
0.001, **P , 0.01, *P , 0.05. ND, neutral days
(12:12); LD, long days (16:8). Petals and sepal
trichomes/flower are averages of the first 25 floral
nodes. Error bars show SE.
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We found that petal number in C. hirsuta varied in
response to many of the same environmental and en-
dogenous factors that regulated flowering. However,
petal number and flowering time did not precisely
covary in response to the same cues. For example, we
defined five conditions that significantly increased
petal number: cool temperature, short photoperiod,
simulated shade, vernalization, and elevated GA levels.
Although flowering time was accelerated in most of
these conditions, it was significantly delayed in short
days. Therefore, early flowering did not strictly asso-
ciate with more petals per flower. Moreover, at least
15 QTL have been detected where natural allelic vari-
ation affected petal number in C. hirsuta, and few of
these colocated with flowering time QTL (Cartolano
et al., 2015; Pieper et al., 2016). Interpreting our results
in the context of seasonal variation, we suggest that
certain environmental conditions associated with spring
flowering in our field experiments, such as cool daily
temperatures and extended vernalization, may act to-
gether to promote petal formation.

Regulation of Petal Number by Endogenous Pathways

Petal number declined during the ageing of C. hirsuta
plants in both field and greenhouse settings, and this
trend was apparent under all environmental conditions
tested. In conditions where petal number was in-
creased, such as spring field conditions, cool tempera-
tures, or short days, petal numberwas higher in the first
flowers produced and continued to stay high over a
longer period of flower production before declining.
This suggests that the inhibitory effect of ageing on
petal formation was delayed in these conditions. This
temporal trend in petal number was strongly correlated
with a decline in the number of trichomes on the sepals
of successive flowers. Using QTL analysis, we had
previously shown that these two traits share a common
genetic basis in C. hirsuta (Pieper et al., 2016). Similar to
Arabidopsis, we found that SPL gene expression in-
creased during ageing in C. hirsuta, and ageing was
accelerated by expressing artificial microRNA-resistant
versions of SPL9 or SPL10, indicated by accelerated
flowering time and a further decline in sepal trichome
number. Yet petal number was insensitive to acceler-
ated ageing in these genotypes, suggesting that petal
number is not regulated by the age-sensing pathway
comprised of miR156 and its targets in the SPL gene
family. However, it is clear that individual SPL genes
have specific roles in different developmental transi-
tions that lead to flower formation in Arabidopsis
(Yamaguchi et al., 2014; Hyun et al., 2016). Therefore, a
comprehensive analysis of SPL gene function inC. hirsuta
is required to fully understand the contribution of this
ageing pathway to petal number variation.
The level of GA is another endogenous signal that

influences flowering in Arabidopsis, and we found a
dose-dependent acceleration of flowering and increase of
petal number in C. hirsuta in response to GA. Specifically,

we found that a long-day photoperiod was necessary
to elicit this increase in petal number, as GA applica-
tion had no effect on petal number in neutral days. GA
biosynthesis is known to be regulated by the photo-
period pathway. In long days, SVP expression falls
and contributes to increasing the levels of GA, which
accelerates flowering by promoting SPL gene tran-
scription (Andrés et al., 2014). Our results indicate
that C. hirsuta petal number increases in response
to GA application under these long-day conditions.
Moreover, GA regulates SPL activity by promoting
the degradation of DELLA repressors and thereby
releasing SPL transcription factors to activate floral-
promoting MADS-box genes in Arabidopsis (Yu et al.,
2012). Therefore, the endogenous signals provided by
the age of a plant and its GA levels are likely to be con-
nected at a molecular level and influence the number of
petals formed in each C. hirsuta flower.

Petal Number Plasticity

To find seasonal variation in a robust trait like petal
number is unusual. Flowers usually form a predictable
number of floral organs, and this regularity forms the
basis of many taxonomic classifications. For example,
crucifers take their name from the cross shape of their
four petals. Flowers acquired a stable number of or-
gans, of defined identity, via the canalization of floral
development pathways during angiosperm evolution
(Specht and Bartlett, 2009). A strong driver of this
canalization was likely to be the recognition of pre-
dictable floral morphologies by pollinators. Therefore,
it is interesting to speculate about what factors might
maintain the derived trait of petal number variation in
C. hirsuta.

One factor is the polygenic architecture that controls
petal number in C. hirsuta. Small to medium effect al-
leles at many loci act to increase and decrease petal
number in C. hirsuta, thus maintaining a variable petal
number below four (Pieper et al., 2016). Induced alleles
of large effect can shift petal number close to four and
reduce variability, but natural alleles of this effect were
not detected in five different recombinant inbred line
populations (Pieper et al., 2016). Another factor is the
selfing habit of C. hirsuta (Hay et al., 2014). Floral traits
often evolve as part of a selfing syndrome because
the selective pressure to attract pollinators is relaxed
(Sicard and Lenhard, 2011). Therefore, petal number
may vary by drift. However, the seasonal variation that
we observed in C. hirsuta petal number suggests that
petal number may be optimized for different conditions.
Given that petals assist with opening the floral bud, high
petal number may be optimal in conditions that favor
pollination in an open flower and provide an opportu-
nity to outcross. Low petal number is likely to result in
obligate and efficient self-pollination in the unopened
floral bud andmay be optimal in conditions that are less
favorable for pollination in an open flower, such as
warmer temperatures where the risk of dehydration is
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higher. In this way, petal number plasticity could pro-
vide C. hirsuta with a flexible mating system that re-
sponds to environmental conditions. C. hirsuta has traits
such as explosive seed dispersal that allow this wide-
spread, ruderal species to successfully colonize dis-
turbed habitats (Hofhuis et al., 2016). The uncertain
pollination conditions experienced by pioneer weeds
may also contribute to maintaining petal number plas-
ticity in C. hirsuta.

CONCLUSION

In summary, we have shown that the maturation of
floral buds is affected by ambient temperature inC. hirsuta
and influences the flat space available between sepals in
eachflower.Variation in this space appears to be a limiting
factor for petal formation in C. hirsuta, rendering the po-
tential for each petal to initiate vulnerable to heterogeneity
in floral bud maturation. We propose that environmental
variation influences this heterogeneity, providing a de-
velopmental route for petal number to respond plastically
to seasonal conditions.

MATERIALS AND METHODS

Plant Material and Transgenic Plant Construction

Wild-type Cardamine hirsuta used in this study was the Oxford (Ox) acces-
sion (specimen voucher Hay 1 [OXF]; Hay and Tsiantis, 2006). Seeds were sown
onto a moistened mix of 1:1 mix John Innes No. 3 compost and vermiculite. For
all treatments, seeds were stratified for 7 d at 4°C and then moved into Snijders
growth cabinets illuminated with cool-white fluorescent tubes at 50 mmol m22 s21

unless otherwise indicated. To analyze wild-type and transgenic plant devel-
opment, plants were grown in greenhouses at 16 h light (22°C), 8 h dark (20°C),
unless otherwise indicated. Local stands of C. hirsuta in Oxford, UK, were
scored for petal number in March/April (spring flowering) and July/August
(summer flowering) 2011. SPL9pro::rSPL and SPL10pro::rSPL10 plasmids (gift
from S. Poethig; Wu et al., 2009) were transformed into C. hirsuta by Agro-
bacterium tumefaciens-mediatedfloral dip ,and at least 10 independent lineswere
generated for each construct.

Field Experiments

Field studieswere conductedat theMPIPZ,Cologne,Germany inApril/May
2016 (spring) and August 2016 (summer), using the Ox accession. The field was
prepared by clearing weeds, watering soil, and dividing it into equal plots. For
the spring experiment, seeds were stratified at 4°C for 1 week and sown on
sterile Jiffy-7 peat pellets. Seedlings were grown for about 4 weeks in a green-
house without temperature or light control, and whole peat pellets were
planted in the field. For the summer experiment, seeds were surface-sterilized,
sown on 0.53 Murashige and Skoog medium plates and stratified for 1 week.
Seeds were left to germinate for 1 week in a growth chamber under standard
conditions, then seedlings were transferred to sterile Jiffy-7 peat pellets and
grown in a greenhouse without temperature or light control for 3 weeks,
and whole peat pellets were planted in the field where plants were watered
regularly.

Photoperiod, Ambient Temperature, and Light
Quality Treatments

Photoperiod: Plantswere grown at 20°Cunderwhite light in either long days
(LD; 16 h light:8 h dark), neutral days (ND; 12 h light:12 h dark), or short days
(SD; 8 h light:16 h dark). Temperature: Plants were grown at 20°C and 15°C
under white light in neutral days. Light quality: Plants were grown at 20°C in
neutral days in far-red-enriched light. The red light (630–690 nm) to far-red light

(700–760 nm) ratio was 1.10 6 0.02 (SE) in white light. We supplemented this
with far-red light from a GreenPower LEDmodule HF far red (Trilight) to yield
a red:far-red light ratio of 0.45. Plants were also grown at 20°C in neutral days in
blue-enriched light. In white light, the ratio of blue to total wavelengths was
0.14.We supplemented this with blue light from aGreenPower LEDmoduleHF
blue (Trilight) to yield a ratio of blue to total wavelengths of 0.38. Total fluence
was kept constant in all conditions at 35 to 45 mmol m22 s21. Spectral quality
and intensity was measured with an Ocean Optics spectrophotometer and
OOIBase 32 software.

Photoinductive Shifts

Plants were grown for 3weeks inmoderately short-day conditions (10 h:14 h
light/dark) and then moved into long-day conditions (16 h:8 h light/dark).
Shoot apices were dissected and processed for scanning electron microscopy at
days 4, 5, 6, 7, 8, 11, 13, 17, and 20 following the light shift. The total number of
floral buds produced at each apex was counted at each sampling.

Vernalization Treatments

After germination, themajority of plantswere shifted to a 4°C cold roomwith
fluorescent lights. Equal numbers of plants were shifted back to the greenhouse
after 1, 2, 3, and 4 weeks of growth at 4°C.

GA Treatments

A stock solution of 100 mM GA3 (Sigma-Aldrich) was dissolved in ethanol
and diluted to 0.1 or 10mMGA3 inwater. Tenmicroliters of solutionwas applied
to the apex of each plant 4 days after germination. Ten microliters of diluted
ethanol (0 mM GA3) was applied to control plants. Plants were grown in both
neutral- and long-day conditions.

Scoring for Flowering Time and Petal Number

Rosetteandcauline leaveswere counted inmatureplants.Floweringwasalso
measured by counting the days after germination when inflorescence buds first
became visible, when the primary inflorescence reached 5 cm in height, and
when stamensdehiscedat anthesis. The time required for visible buds todevelop
through to anthesis was defined as the floral maturation interval. Flowers at
anthesis were removed and examined under a dissecting scope to count petal
number and sepal trichome number in the first 25 flowers produced on the
inflorescence. Multiple GA-treated plants arrested early and did not produce
25 nodes, so these data averages reflect all nodes carrying flowers. In the field,
10 plants were randomly chosen, their flowers at anthesis were removed every
second day, and petal number was counted using a magnifying band for all
flowers produced on each plant (up to 39 and 26 flowers for the spring and
summer experiments, respectively).

Histology and Scanning Electron Microscopy

For semithin sections, inflorescences apices were fixed in 2.5% glutaralde-
hyde in phosphate buffer, dehydrated, stepwise infiltrated, and embedded in
TAAB Low Viscosity resin (TAAB). Sections at 1.5 mm thickness were stained
with 0.05% toluidine blue, mounted in DPX mountant (Sigma-Aldrich), and
photographed. Shoot apices were prepared for scanning electron microscopy
by fixation in formaldehyde:acetic acetic:ethanol, postfixed in osmium tetra-
oxide, dehydrated, critical point dried, and dissected before coating with gold/
palladium. Samples were viewed using a JEOL JSM-5510 microscope.

RT-qPCR

Tissues were sampled at three stages: 10-d-old vegetative seedlings, early
inflorescence meristems with 5 to 10 floral buds, and inflorescence apices at
anthesis. RNA from three biological replicateswas isolated usingQiagen’s RNA
easy kit. Reverse transcription cDNA synthesis was performed using the VILO
cDNA synthesis kit (Invitrogen). qPCR was conducted using the Applied Bio-
systems 7300 Cycler. GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
C SUBUNIT1 (CARHR078250) was used as an internal reference. Efficiency for
primers used in qPCR was between 1.8 and 2.0. Primer sequences are listed in
Supplemental Table S8. The following gene sequences can be found by these
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gene identifiers in the C. hirsuta genome assembly: ChAP1 (CARHR062020),
ChSVP (CARHR113740), ChSPL3 (CARHR127930), ChSPL9 (CARHR137240),
and ChSPL15 (CARHR168220) (Gan et al., 2016).

Statistics

Data were tested for normality when n , 50 with a Shapiro Wilks test and
n . 50 with a Lilliefores test and count data were treated as non-normally
distributed. Pairwise comparisons were performed using a two-tailed
Student’s t test for normal data and Mann-Whitney U tests for non-
normally distributed data, and the P value associated with each test was
reported. Comparisons between three or more treatments were done by
the Kruskal-Wallis test for non-normally distributed data, with post hoc
analysis using the Tukey Kramer method at P , 0.05 significance level.
Temporal trends were displayed using moving average smoothing. Cor-
relations between petal and trichome number were calculated frommoving
average data using Pearson’s r correlation coefficient. Squaring the r value
(R2) gave an estimate of the strength of the correlation. Pearson’s r value
was tested for significance using a critical values table at a = 0.05 (two-
tailed). REST 2009 software (V2.0.13) was used to test the statistical sig-
nificance of pairwise differences in gene expression calculated from
RT-qPCR data.

Time-Lapse Microscopy and Quantitative Image Analysis

Plants were grown 4 to 5 weeks on soil in long days and controlled tem-
perature, either at 20°C (Arabidopsis [Arabidopsis thaliana] and C. hirsuta) or
15°C (C. hirsuta). The inflorescence was cut into segments about 5 mm long and
dissected to uncover young floral primordia, then transferred to 0.53 Mura-
shige and Skoog medium supplemented with 1.5% plant agar, 1% Suc, and
0.1% plant preservative mixture (Plant Cell Technology). To visualize cell walls,
samples were stained with 0.1% propidium iodide (Sigma-Aldrich) for 2 to
5 min before each observation. Floral primordia were imaged from the top at
24-h intervals for plants grown at 20°C and 36 h for plants grown at 15°C. Live
imaging was performed using a Leica SP8 upright confocal microscope
equipped with a long working-distance water immersion objective (L 403/0.8
W) and HyD hybrid detectors. Fluorescent signal of propidium iodide was
collected using an argon laser at 514 nm for excitation and 600 to 660 nm for
detection. Between imaging, samples were transferred to a growth cabinet and
cultured in vitro in standard long-day conditions at 20°C or 15°C. To extract
size, local curvature, and areal growth of floral buds, confocal time-lapse series
were analyzed using MorphoGraphX software (Barbier de Reuille et al., 2015).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. C. hirsuta floral organ ontogeny.

Supplemental Figure S2. Changes in mean daily temperature and day
length during spring and summer field experiments in Cologne.

Supplemental Figure S3. Different temporal measures of flowering time
are correlated.

Supplemental Figure S4. Petal number in C. hirsuta varies during ageing
and responds to light quality and vernalization.

Supplemental Figure S5. CLSM time-lapse series of early floral develop-
ment in C. hirsuta plants grown at 20°C.

Supplemental Figure S6. CLSM time-lapse series of early floral develop-
ment in C. hirsuta plants grown at 15°C.

Supplemental Figure S7. CLSM time-lapse series of early floral develop-
ment in Arabidopsis plants grown at 20°C.

Supplemental Figure S8. Size measurements of C. hirsuta and Arabidopsis
floral meristems.

Supplemental Figure S9. Stage 2 floral buds of C. hirsuta and Arabidopsis.

Supplemental Figure S10. Cell areal growth of sepals and floral meristem
in C. hirsuta plants grown at 20°C and 15°C.

Supplemental Figure S11. Composite growth series of C. hirsuta plants
grown at 15°C.

Supplemental Figure S12. Petal number in C. hirsuta varies in response to
GA during long-day photoperiods.

Supplemental Table S1. Floral architecture following photoinduction in
C. hirsuta.

Supplemental Table S2. Floral ontogeny in C. hirsuta following
photoinduction.

Supplemental Table S3. Flowering time, petals/flower, and sepal
trichomes/flower of C. hirsuta in response to environmental growth
conditions.

Supplemental Table S4. Flowering time and petals/flower of C. hirsuta in
response to vernalization.

Supplemental Table S5. Size measurements of C. hirsuta and Arabidopsis
floral meristems.

Supplemental Table S6. Flowering time, petals/flower, and sepal
trichomes/flower in transgenic C. hirsuta-expressing miR156-resistant
constructs, pSPL9::rSPL9, or pSPL10::rSPL10.

Supplemental Table S7. Flowering time, petals/flower, and sepal trichomes/
flower of C. hirsuta in response to gibberellin treatment.

Supplemental Table S8. Primer sequences used in study.
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