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Abstract  

Estimating the evolutionary potential of quantitative traits and reliably predicting responses to 

selection in wild populations are important challenges in evolutionary biology. The genomic 

revolution has opened up opportunities for measuring relatedness among individuals with precision, 
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enabling pedigree-free estimation of trait heritabilities in wild populations. However, until now, 

most quantitative genetic studies based on a genomic relatedness matrix (GRM) have focused on 

long-term monitored populations for which traditional pedigrees were also available, and have often 

had access to knowledge of genome sequence and variability. Here, we investigated the potential of 

RAD-sequencing for estimating heritability in a free-ranging roe deer population for which no prior 

genomic resources were available. We propose a step-by-step analytical framework to optimize the 

quality and quantity of the genomic data and explore the impact of the SNP calling and filtering 

processes on the GRM structure and GRM-based heritability estimates. As expected, our results 

show that sequence coverage strongly affects the number of recovered loci, the genotyping error 

rate and the amount of missing data. Ultimately, this had little effect on heritability estimates and 

their standard errors, provided that the GRM was built from a minimum number of loci (above 

7000). GRM-based heritability estimates thus appear robust to a moderate level of genotyping 

errors in the SNP dataset. We also showed that quality filters, such as the removal of low-frequency 

variants, affect the relatedness structure of the GRM, generating lower h² estimates. Our work 

illustrates the huge potential of RAD-sequencing for estimating GRM-based heritability in virtually 

any natural population.   

 

Introduction 

Estimating the evolutionary potential of quantitative traits and reliably predicting responses to 

selection in wild populations are important challenges in evolutionary biology. However, measuring 

the additive genetic variance and heritability of a trait, and the genetic correlation between a trait 

and fitness components (i.e. predicting the response to selection), require estimates of pairwise 

relatedness between individuals. For wild populations, these estimates have traditionally been 

based on a multigenerational pedigree. However, many species of research interest are hard to 

sample with the intensity and long-term effort required for pedigree construction (Pemberton, 
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2008). This has led to a strong taxonomic bias, with the great majority of heritability estimates 

available for vertebrates, especially birds and large mammals, because of their ease of monitoring 

(Postma, 2014). 

 

Advances in high-throughput sequencing technology have opened up the possibility of getting access 

to the realized proportion of the genome that is shared among individuals (i.e. generating a Genomic 

Relatedness Matrix - GRM) in virtually any non-model species, with the potential to greatly expand 

the taxonomic coverage of quantitative genetic studies in the wild (Gienapp et al., 2017). While first 

applied to human data (Yang et al., 2011), GRM have recently been shown to provide heritability 

estimates which are similar to those from multigenerational pedigrees in free-ranging animal 

populations (Bérénos et al., 2014 on Soay sheep, Robinson et al., 2013 on great tits, Perrier et al., 

2018 on blue tits). These studies have demonstrated that GRMs computed from a few hundreds of 

individuals and a few thousand loci may be enough to obtain heritability estimates with low 

standard errors when effective population size is relatively small and linkage disequilibrium (LD) high 

(Bérénos et al., 2014; Perrier et al., 2018; Stanton-Geddes, Yoder, Briskine, Young, & Tiffin, 2013).  

 

The few studies that have attempted to estimate GRM-based heritabilities in the wild have all 

focused on long-term monitored populations for which pedigrees were already available. Moreover, 

the authors often had access to knowledge about both genome sequence and variability on the 

study species, or on a closely related species, facilitating the development of the genotyping SNP 

array. Whole genome sequencing is still prohibitive for many species in terms of cost, bioinformatic 

resources especially for organisms with large genomes, and required DNA quality (Ekblom & Wolf, 

2014). Recently, a variety of Restriction site-Associated DNA sequencing (RAD-seq - Andrews et al 

2016) methods and other similar approaches to sequencing a subset of the genome have been 

developed. These approaches are increasingly attractive because they are cost-effective, not 
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dependent on prior genomic information and SNP loci are discovered and genotyped in a single 

procedure (Narum, Buerkle, Davey, Miller, & Hohenlohe, 2013), making them applicable to a wide 

range of non-model species. RAD-seq approaches are also valued for their high level of flexibility, 

allowing optimization of the trade-off between the number of markers, the number of genotyped 

individuals and sequencing depth in an Illumina run using a wide variety of experimental designs and 

using different restriction enzymes (Peterson, Weber, Kay, Fisher, & Hoekstra, 2012). 

 

Despite the numerous benefits, the potential of RAD-seq for estimating GRM and quantitative 

genetic parameters in the wild, particularly in non-model species, has received little attention (but 

see Perrier et al., 2018). One reason is that long-term research projects willing to genotype 

thousands of individuals to estimate GRM often invest in developing a SNP chip. Another reason is 

that RAD-seq approaches are reputed to lead to high rates of missing data and allele dropout that 

might bias relatedness estimates and downstream biological inferences (Dodds et al., 2015; Gienapp 

et al., 2017). Furthermore, although easy-to-use bioinformatic pipelines are available for the de novo 

assembly of loci and SNP genotyping (J. M. Catchen et al., 2017; Eaton, 2014), little is known about 

the impact of sequencing strategy (e.g. marker read-depth coverage) and parameter choice during 

the SNP calling/filtering process on genotyping error/missing data rates, GRM structure and, 

ultimately, quantitative genetic estimates. Several recent studies have proposed methodologies to 

optimize the de novo assembly of markers and minimize error rates (Fountain, Pauli, Reid, Palsbøll, 

& Peery, 2016; Mastretta-Yanes et al., 2015; Paris, Stevens, & Catchen, 2017; Rochette & Catchen, 

2017). Others have explored how relatedness estimators can circumvent the influence of genotyping 

errors (Attard, Beheregaray, & Möller, 2018) or tested the influence of the number of 

markers/samples on heritability estimates from whole genome data (Stanton-Geddes et al., 2013). 

However, to our knowledge, no study has explicitly explored the potential limits and pitfalls of RAD-

seq for estimating quantitative genetic parameters in the wild. 
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In this study, we describe an analytical framework (see Figure 1) to estimate trait heritability from 

RAD sequencing data, using a free-ranging roe deer population (Capreolus capreolus, Linnaeus 1758) 

as a case study. We focus on the heritability of body mass, a trait closely associated with both 

survival and reproductive performance (Hamel, Gaillard, Festa-Bianchet, & Côté, 2009; Quéméré et 

al., 2018). There are three key parameters for estimating GRM-based heritability: the number of 

SNPs, the number of individuals and the sampling variance in relatedness (Visscher & Goddard, 

2015). First, we provide guidance on the sampling and sequencing strategy. Using in silico simulation 

and double-digest RAD-sequencing (Peterson et al., 2012), we established a sequencing strategy that 

optimizes the balance between the number of loci and the number of individuals genotyped, and 

library/sequencing costs. The sequencing depth (i.e. average read depth per locus) may directly 

affect data quality, with potential impact on biological inferences (Sims et al 2014). We, therefore, 

explored how variable sequencing effort (coverage depth of 20x versus 60x) affects the rates of 

genotyping error and missing data, the accuracy of relatedness coefficients and, ultimately, 

heritability estimates. We then detail the different steps in the bioinformatic and analytical pipeline 

from the raw sequence data to the implementation of the GRM and the estimation of GRM-based 

heritability. Specifically, we explore how parameter choice during the de novo assembly of loci and 

the SNP data filtering may influence data quality (genotyping error rate) and quantity (number of 

informative loci), the structure of the GRM and GRM-based heritability. Lastly, we provide practical 

recommendations to minimize bias in the estimation of relatedness while maximizing the 

explanatory power of the GRM.  

2. Methods 

2.1. Sampling design  

The study focused on a roe deer population inhabiting a heterogeneous agricultural landscape in 

southwestern France (43°13′N, 0°52′E). We selected a set of 250 individuals which were caught using 

large scale drives during winter, between 2002 and 2016 at seven sampling sites, separated by a few 
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kilometers, and with a variable proportion of woodland vs. open areas (e.g. crops, meadows, 

pasture) (Figure S1). Adult roe deer generally occupy a single home range across their entire adult 

life, whereas around 40% of juveniles disperse (Debeffe et al., 2012). Our hierarchical sampling 

scheme is thus expected to maximize variance in relatedness by including potentially closely related 

individuals within sampling sites, individuals with intermediate relatedness among sampling sites 

and unrelated individuals that immigrated from outside the study area. At each capture, animals 

were sexed, weighed and assigned to an age class: juveniles (< 1 year old), yearling (1-2 years) or 

adults (> 2 years). When individuals were captured in successive years, we used only data from the 

first capture. Direct field observations of females equipped with Very High Frequency (VHF) 

transmitters allowed us to identify mother-offspring relationships (N= 8 pairs included in further 

analysis). All applicable institutional and European guidelines for the care and use of animals were 

followed. All the procedures involving animals were approved by the Ethical Committee 115 of 

Toulouse and authorized by the French Ministry in charge of ethical evaluation (n° APAFIS#7880-

2016120209523619v5). 

 

2.2. Sequencing strategy 

DNA was extracted from skin samples using DNeasyTM Tissue Kit (Qiagen). SNP genotyping was 

performed using double-digest restriction site associated DNA sequencing (ddRAD-seq, Peterson et 

al., 2012). This method was chosen because it offers greater flexibility than traditional RAD-seq, with 

the possibility of optimising the number of loci sequenced by testing different combinations of 

restriction enzymes and fragment size selection. This optimization process was carried out by 

performing in-silico digestions of the red deer genome (Cervus elaphus) (Bana et al., 2018) 

(divergence time from roe deer 7.7-9.6 million years, Gilbert et al., 2006) using the R package Sim-

RAD (Lepais & Weir, 2014). We tested various experimental designs and finally retained the two 

enzymes EcoR1 and MsPI and size-selected libraries of 270-330 bp insert-size that produced around 
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35,000 fragments in the red deer genome. Using this design, we expected to sequence 96 individuals 

with an average of 60X coverage in a single Illumina HiSeq 2500 lane (based on average read counts 

of 200 M reads per lane). To ensure that this design provides at least 15,000 polymorphic loci (i.e. 

the minimum required to capture the additive genetic variance of traits in Soay sheep Bérénos et al., 

2014), we performed a pilot study on a set of 12 samples sequenced using an Illumina MiSeq lane 

(V2; Paired-end reads, 2x150 bp) . We then applied our protocol to the whole dataset of 250 

samples which were multiplexed in equimolar proportions in groups of 24 individuals and sequenced 

on Illumina HiSeq 2500 (V4; Paired-end reads of 2x125 bp). Library preparation and Illumina 

sequencing was performed at the NERC Biomolecular Analysis Facility‐Edinburgh (Genepool, 

Edinburgh, UK). To evaluate the reliability of the genotyping process and optimize the de novo loci 

assembly (see below), seven individuals were repeat-processed, either at the library preparation 

step (3 pairs of ‘library replicates’ individuals) or at the sequencing step (4 pairs of ‘sequencing 

replicates’).  

 

2.3. De novo reconstruction of loci and error quantification 

Raw sequences were first inspected with FASTQC (Andrews, 2010) for quality control. Reads were 

then demultiplexed (i.e. assigned to each sample) and trimmed to 117 bp using process_radtags 

(part of the Stacks 1.35 pipeline, Catchen et al. 2013) without allowing any mismatch in the barcode 

sequence. The ‘de novo map’ pipeline of Stacks was used to build loci de novo (without a reference 

genome) and call single nucleotide polymorphisms (SNPs). De novo loci assembly in Stacks is 

governed by three main parameters that influence the balance between the number of loci, 

genotyping errors and missing data. The first two parameters affect the way loci are built at the 

individual level: -m is the minimum number of reads to form a stack (allele) and -M is the maximum 

number of mismatches allowed between alleles. A high value of –m may cause allele dropout, while 

a low value may generate false alleles (Catchen et al., 2013). A high value of –M may generate false 
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heterozygotes (due to the erroneous combination of different homozygous loci), while a low value 

may erroneously generate homozygous loci. The third parameter -n is the maximum number of 

mismatches allowed between homologous loci across all samples to build the population catalog.  

 

The choice of parameter values is specific to each study since it depends on the biology of the study 

species (inherent polymorphism, ploidy level) and the experimental design (restriction enzyme used, 

number of samples multiplexed, sequencing coverage) (Paris et al., 2017). Following Mastretta-

Yanes et al., 2015, we carried out a preliminary analysis to identify the parameter values that 

maximized the number of loci recovered while minimizing genotyping error rates in our case study. 

To guide our choice, we estimated two error rates between the seven pairs of technical replicates: 

(1) the locus error rate (LER) corresponding to the number of loci present in only one of the two 

replicates, divided by the total number of loci being compared (i.e. missing data at the locus level) 

and (2) the allele error rate (AER), calculated as the number of incongruent genotypes between the 

two replicates, divided by the number of common loci. We first explored the influence of each 

parameter (-m, -M and –n) one-by-one (while holding the two others fixed) (see Text S1 in 

supplementary material). On this basis, we tested four sets of parameters corresponding to different 

ways to deal with the trade-off between data quantity and quality: (S1) parameters designed to 

maximize the number of markers (‘MaxLoci’, m=2, M=2, n=1), (S2) parameters designed to minimize 

the error rates (‘MinError’, m=11, M=2, n=1), (S3) parameters designed to lead to a low error rate 

with an intermediate number of markers (‘Intermediate’, m=7, M=2, n=1) and (S4) parameters by 

default (‘Default’ hereafter, m=3, M=2, n=0). This preliminary analysis was restricted to loci with a 

single SNP that was shared by at least 80% of individuals. We retained the Stacks model that 

provided the optimal balance between number of loci and genotyping errors (AER) and used it on the 

full dataset (250 samples).  
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2.4. Quality filtering   

Once the SNP calling process is completed, additional filtering steps are regularly performed to 

remove loci and/or individuals with too many missing data (loci and individual missingness rates 

respectively) and persistent genotyping errors (removing rare variants and loci that deviate from 

Hardy-Weinberg equilibrium). Here, we explored the impact of these quality filters on genotyping 

and locus error rates, number of loci and GRM structure (overall variance and mother-offspring 

relationship coefficients). We successively applied three filters to the SNP dataset by testing 

different threshold values using VCFtools (Danecek et al. 2011): (1) the “HWE filter” removes loci 

that deviate from Hardy-Weinberg Equilibrium (p-value<0.05) because the population is known to 

be panmictic (Coulon et al. 2006, see Text S1), (2) the “LM filter” (Loci Missingness) discards loci with 

a missingness rate above 10%, 20%, 30% or 40% and (3) the “MAF” retains loci with Minimum Allele 

Frequency greater than 1%, 5% or 10%. We retained one SNP per locus (to minimize linkage 

disequilibrium between markers) and removed individuals with more than 50% missing data. All 

analyses were performed on the dataset built with the S3 ‘Intermediate’ Stacks model described 

above which offered the best compromise between the number of loci and genotyping error rate, in 

other words which maximized the number of markers and minimized allele error rates (AER) (see 

results below).  

 

2.5. Inference of GRM-based heritability 

GRMs were computed using Genome-wide Complex Traits Analysis (GCTA) (Yang et al 2011) from 

identity by state (IBS) SNP relationships. We used the Unified Additive Relationship (UAR) estimator 

that has been shown to provide accurate quantitative genetic estimates similar to pedigree-based 

inference (Bérénos et al., 2014; Perrier et al., 2018). At each locus, relatedness was scaled by the 

expected heterozygosity 2pq (Yang et al. 2010, 2011). GRMs were then fitted in a mixed-linear 
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model with REstricted Maximum-Likelihood (REML) approach to estimate the amount of phenotypic 

variance in body mass that was explained by additive genetic variation (SNPs). We used the REML 

method because it is known to perform as well as Bayesian inference (with MCMC) for Gaussian 

traits like body mass while being far less computationally intensive (Wilson et al., 2010). Univariate 

animal models for body mass were run on 243 individuals (7 missing data) in ASREML-R v3.00 (VSN 

International, Hemel Hempstead, UK) as follows: 

                                 

 

where   is the studied phenotypic trait for an individual i, μ is the overall population mean of  , ai is 

the breeding value (i.e. effects of i’s genotype relative to μ) and ei the residual term. Because body 

mass is known to vary between sexes and age-classes (Gaillard, Delorme, & Jullien, 1993), 

individual’s sex and age-class as well as the interaction between them (agei*sexi) were included in 

the model as fixed effects. Narrow-sense heritability of body mass was estimated as h² = VA/ VP 

where VA is the additive genetic variance, VR is the residual variance and VP the total phenotypic 

variance (VA + VR). A Likelihood Ratio Test (LRT) (Meyer & Hill, 1992) was applied to test the statistical 

significance of h², i.e. by comparing the likelihood of the full model with and without an additive 

genetic effect fitted. Residuals and fitted values were visually inspected to verify assumptions of 

normality and homogeneity of variance (i.e. histogram of residuals, Q-Q plot of residuals, and scatter 

plot of residuals versus fitted values, Bolker et al., 2009). We investigated the influence of SNP 

calling (parameters in Stacks) and quality filtering (LM and MAF filter) on GRM-based heritability 

estimates. First, we explored the influence of loci missingness rate (LM ranging from 10% to 40%) by 

fixing the MAF to 1%. Then, we evaluated the impact of MAF (1%, 5% or 10%) by fixing the LM ratio 

to 20%. These analyses were carried out on SNP datasets called with the four sets of parameters in 

Stacks (‘Max Loci’, ‘Min Loci’, ‘Intermediate’ and ‘Default’). Since these four models generated a 

variable number of informative loci, and because estimates of heritability increase up to an 

asymptote with the number of SNPs used to build the GRM (Bérénos et al., 2014; Perrier et al., 
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2018), to be comparable, the h² value must be estimated using GRMs built from the same number of 

SNPs. Here, we fixed the number of SNPs to the minimum obtained in all analyses and performed 

fifty resampling iterations. 

 

2.6. Influence of sequencing coverage  

Genotyping error rates are assumed to be highly sensitive to sequencing coverage, particularly in de 

novo-assembled data sets (Catchen et al., 2013; Fountain et al., 2016). To explore the effect of 

sequencing coverage, we randomly sampled 20% of the raw reads of the initial dataset (using Seqtk: 

https://github.com/lh3/seqtk) so as to obtain an expected average read depth of 12 reads per locus 

(hereafter ‘low-coverage dataset’). We then calculated genotyping error rates (LER and AER) between 

pair of replicates as we did for the full dataset and used the same sensitivity analysis described 

above to select the parameters in Stacks that offered the best compromise between data quality 

and quantity. Then, we evaluated how the filters affected the number of polymorphic loci, 

relationship coefficients, variance in relatedness of the GRM and heritability estimates.  

 

3. Results 

3.1. Optimization of the de novo loci assembly of loci and SNP discovery 

An average of 6.9 million reads per individual was obtained after demultiplexing. The number of 

polymorphic loci recovered by Stacks in the exploratory analysis ranged from 14,536 for the 

‘MinError’ parameter set to 21,681 loci for ‘MaxLoci’, with a median depth coverage per individual 

and per locus of between 39.1 and 88.4 reads. Median locus error rate (LER) across the seven pairs of 

replicates varied between 3.1% for ‘MaxLoci’ and 5.1% for ‘default’ (Figure 2). Median allele error 

rates (AER) ranged from 1.1% for ‘MinError’ to 3.2% for ‘MaxLoci’. We retained the parameters that 
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offered the optimal balance between data quantity and quality for further analysis: ‘MinError’ and 

‘Intermediate’ models generated similar low genotyping error rates (AER), but the ‘intermediate’ 

model yielded more loci (17,013). When loci assembly was attempted using a subset of our data 

(20% of the reads), we actually obtained a median depth coverage of 20x. In this case, loci and allele 

error rates were two to three times higher than when using the original dataset (Median LER ranging 

from 4.8% to 16%; Median AER from 1.8% and 7.6%, Figure S2). The number of loci recovered also 

dropped sharply from 17,534 polymorphic loci for ‘MaxLoci’ to 2,092 for the ‘MinError’ model.  

 

3.2. Quality filtering: impact on genotyping error rates, number of loci and relatedness 

coefficients  

High-coverage dataset 

HWE filter: Once the de novo assembly of loci had been completed on the full dataset (250 samples, 

using the ‘intermediate’ Stacks model), we obtained 96,773 loci totaling 154,540 SNPs. When 

removing loci that deviated from HWE, we retained 83,893 SNPs (Figure 3a). The ‘HWE filter’ had 

very little impact on loci and allele error rates (Figure 3b, c), but led to a substantial decrease in the 

number of SNPs (-13%), of the mother-offspring relatedness coefficients (median relatedness of 0.24 

versus 0.31 before filtering), and of the off-diagonal variance in relatedness of the GRM (VGRM = 0.6 x 

10-3 versus 0.8 x 10-3 for the filtered and unfiltered datasets, respectively) (Figure 3d).  

Loci missingness filter (LM): When we applied the ‘loci missingness’ filter (LM), we observed a two to 

three-fold decrease in the number of loci: between 51,355 and 64,400 SNPs were excluded when 

removing loci typed in less than 60% (LM = 40%) and 90% (LM = 10%) of individuals respectively. 

Mother-offspring relatedness (median relatedness ranging from r = 0.26-0.29) and variance in 

relatedness did not change markedly (VGRM ranging from 0.6-0.7 x 10-3), but the remaining loci had 

significantly lower error rates, particularly with a LM = 10% (LER ~ 0. 3%, AER ~ 0.2%).  
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MAF filter: Removing rare variants only affected locus error rate slightly, but this resulted in a lower 

allele error rate, particularly when using high LM: AER fell from 1.9% to 0.6% when using LM 40% and 

MAF 10% filters. MAF filtering greatly improved mother-offspring relatedness estimates which 

approximated the expected value of 0.5 (figure 3e). We got more accurate estimates of mother-

offspring relatedness with MAF = 10% (r=0.49) than with MAF = 1% (r=0.45). However, this stringent 

MAF threshold also led to a >50% decrease in the number of markers (to a final number ranging 

between 8434 and 12,528 SNPs). MAF filtering had also a marked influence on the GRM off-diagonal 

variance in relatedness (VGRM) which substantially increased from ~0.8 x 10-3 to ~1.6 x 10-3 when using 

a MAF = 1% filter and to ~2 x 10-3 with MAF = 10%. However, the MAF threshold had little effect on 

pairwise relatedness coefficients per se, although the highest coefficients tended to increase when 

using a stringent MAF = 10% filter (Figure 4a).  

 

Low-coverage dataset 

In comparison, the ‘low-coverage dataset’ provided 70,956 loci totaling 111,803 SNPs (i.e. a 27% 

decrease compared to the full coverage dataset) using the S4 ‘Default’ stack model (optimal model 

for this dataset). The number of loci fell to between 3,493 loci (LM = 10%, MAF = 10%) and 11,441 

(LM = 40%, MAF = 1%) after the filtering procedure (Figure 3b). The LM filter substantially reduced 

locus error rate (from 19.6% to ~3.5%). However, across all filtering options, allele error rate 

remained 10 times higher than in the high coverage dataset. As in the full dataset, variance in 

relatedness markedly increased when using the MAF filter to reach values between 1.4 x 10-3 

(LM=40%, MAF=1%) and 2.3 x 10-3 (LM=10%, MAF=10%) while median mother-offspring relatedness 

rose from 0.17-0.20 to 0.41-0.49. We noted that applying a MAF=10% allowed to get relatively 

accurate relationship coefficients (median ~ 0.497-0.498) very similar to those obtained using the 

high coverage dataset after the same filtering process (figure 3e). Modifying the MAF threshold from 

1 to 10% led to more changes in relationships than with the high-coverage dataset (Pearson r = 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

0.969, P<10-16 for low coverage dataset versus r = 0.994, P<10-16 for high coverage dataset) and 

relatedness coefficients >0.1 tended to be higher with MAF = 10% than with MAF = 1% (Figure S3a). 

Lastly, the full dataset tended to generate higher relatedness coefficients than that the low-coverage 

dataset (Wilcoxon signed-rank test, P<10-7, Figure S3b), probably because of a much lower 

genotyping error.  

 

3.3. GRM structure and GRM-based heritability 

The GRM mostly included unrelated individuals (Figure 4b in yellow). However, on closer inspection, 

the histogram of relatedness indicated the presence of related individuals made up of parent-

offspring or full-sib links and a number of half-sib-like links with relatedness around ~0.25.  

Estimated heritability of body mass (h²) ranged from 0.59 (se=0.14) (‘Default’ stacks model, LM = 

10%, MAF = 10%) to 0.70 (se = 0.15) (‘Default’ model, LM = 30%, MAF = 1%) (see Table S1 for the full 

list of h²). The lowest h² values were obtained using MAF = 10%  for fixed LM (figure 5a) and LM = 

10% for fixed MAF (Figure S4a) which correponds to the filtering parameters that yielded the 

smallest number of SNPs. As expected, h² gradually increased with the number of markers up to an 

asymptote (here around 7000-8000 SNPs) (Figure S5). However, even when the number of loci used 

to build the GRM was fixed, h² tended to be lower with a stringent MAF threshold (MAF = 10%) 

(Figure 5b).  

 

When we built the GRM from the low-coverage dataset using the same filtering procedure as with 

the full dataset (HWE, LM = 20% and MAF = 1%), we obtained h² estimates that ranged from 0.39 (se 

= 0.13) (S2 ‘MinError’ Stacks models, 212 individuals, 599 loci) to 0.67 (se=0.16) (S1 ‘MaxLoci’ Stacks 

model, 240 individuals, 10,876 loci) (Table S2). In this case, the ‘MinError’ Stacks model with a very 

high –m value (11) was not suitable as it removed too many loci and individuals (individuals with 
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>50% missing loci). However, the three other models provided h² estimates that were similar to 

those produced from the full dataset, despite a lower number of loci (5,302 for S3 ‘Intermediate’, 

8,646 for S4 ‘default’) and higher genotyping error rate (see above).  

 

4. Discussion 

Our results illustrate how RAD-sequencing data can be used to obtain relatively robust estimates of 

heritability in a free-ranging population for which no genomic resources are available. Our estimates 

of body mass heritability are consistent with those obtained from a pedigree on other roe deer 

populations (h²=0.43-0.65, Quéméré et al., 2018) and other closely related deer species (e.g. 0.54-

0.68 in white-tailed deer,Williams, Krueger, & Harmel, 1994). We showed that this process is not 

straightforward and that critical decisions must be taken during the sampling design and the 

computational process to optimize the quality and quantity of the genomic data. We showed that 

the choice of sequencing depth and of the values for bioinformatic parameters (calling and filtering 

genomic markers) markedly affect the rates of missing data and genotyping error, ultimately 

impacting the accuracy of genome-wide relatedness estimates. However, in our case study, these 

decisions had little impact on h² estimates, provided that the GRMs were built from a minimum 

number of loci (above 7000-8000 loci). This suggests that GRM-based heritability estimates are 

relatively robust to genotyping error and missing data in the SNP dataset. One important exception 

is the removal of rare variants that led to lower h² estimates when a high MAF threshold was used 

(MAF = 10%). We hereafter discuss the implications of our results and provide some practical 

recommendations for each step of the analytical process.     
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4.1 Sequencing design: target a high average sequencing coverage 

The sequencing strategy, and especially read depth, may have a significant impact on the quality and 

quantity of the genomic data, especially when loci are built de novo i.e. without a reference genome 

(Catchen et al., 2013). The in-silico digestion of a related reference genome (red deer) followed by a 

pilot study on a small subset of samples enabled us to optimize the genotyping of around 70,000 loci 

with a mean coverage of 60 reads per locus (60x). Targeting such high sequencing coverage has 

multiple benefits. First, it allows maximization of the number of genotyped individuals. Indeed, it is 

frequent to observe among-sample variation in DNA quality and quantity during the RAD library 

preparation that may translate into variation in sequencing depth. When using a low average 

sequencing depth, individuals that are not sufficiently covered may be filtered out because they do 

not share enough loci with other individuals. Second, using a high average sequencing depth allows 

optimization of the number of loci and considerably reduces the rate of missing data and genotyping 

error. In our case, we obtained very low error rates with the 60x coverage dataset (LER and AER ~ 2-

3%, before filtering), well below the values obtained when genotyping was performed on a subset of 

our sequencing data (coverage ~20x, LER > 5% and AER~2-8%). These error rates were also lower 

than those obtained by Mastretta-Yanes et al., 2015 in Betula alpina with a coverage ~ 10x (where 

LER >10% and AER > 5% regardless of assembly parameters). At the end of the SNP calling and 

filtering optimization procedure (using a MAF=1% and a LM=20%), we obtained nearly twice the 

number of SNPs with the 60x-coverage than with the 20x-coverage dataset (15,930 versus 8,809) 

with far fewer missing data (4.7% versus 7%). Several genotype imputation methods have been 

developed for handling missing data (Das et al., 2016; Nielsen, Paul, Albrechtsen, & Song, 2011), but 

incorrect SNP calling and allelic dropout are hard to detect and may have a strong impact on 

downstream population genetics and biological inferences (e.g. parentage assignment in Fountain et 

al.,2016; demographic inference in Shafer et al., 2017). In the past, because of budget limitations, 

sequencing coverage was often traded-off against increasing the number of individuals and loci 

genotyped (Mastretta-Yanes et al., 2015). However, the continuous improvement of Next 
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Generation Sequencing technology has led to a rapid decrease in sequencing costs so that it is now 

possible to genotype tens of thousands of loci with >50x coverage for less than 50$ per sample 

(including library preparation cost). Hence, we strongly encourage targeting a high sequencing depth 

to maximize the quality and completeness of genomic datasets.  

 

4.2. Impact of SNP genotyping and filtering on GRM and GRM-based heritability 

Calling SNPs from RAD-seq data without using a reference genome to guide the assembly of loci is 

not a simple task since it requires the researcher to select the values for the bioinformatic 

parameters that determine how closely the sequences must match and the minimum coverage to 

identify true loci and alleles (Catchen et al., 2013; Paris et al., 2017). Our work illustrates the 

importance of performing a sensitivity analysis based on technical replicates to help select the 

optimal parameters and understand the limitations of the dataset (Flanagan, Forester, Latch, Aitken, 

& Hoban, 2018; Mastretta-Yanes et al., 2015). In our case, the high sequencing depth allowed us to 

design an assembly model with a relatively high minimum coverage threshold (7 reads) to recover 

allelic variants. This enabled us to eliminate most sequencing errors (reduced to <2%) while retaining 

a high number of loci with a minimum of missing data. However, for this dataset, genotyping error 

rates remained low (<5%) irrespective of the assembly parameters so that the SNP calling procedure 

ultimately had little impact on the mean and standard error of the body mass heritability estimate.  

 

Additional quality control filtering steps are generally performed to further clean the dataset of 

uninformative markers and statistical artefacts based on loci missingness ratio, minor allele 

frequency and/or loci deviating from Hardy-Weinberg proportions (Huang & Knowles, 2014). The 

relevance of such filters is increasingly questioned, particularly when the final purpose is to estimate 

genomic relationships (Eynard, Windig, Leroy, Van Binsbergen, & Calus, 2015) or detect loci 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

potentially under selection (Benestan et al., 2016; Roesti, Salzburger, & Berner, 2012; Waples, 2014). 

We explored the impact of each of these filters on the number of loci, error rates, GRM structure 

and GRM-based heritability. We found that the “HWE filter” had little impact on error rates, but led 

to a substantial decrease in the number SNPs and in the variance in relatedness of the GRM, two 

parameters that are critical for the estimation of GRM-based heritability (Bérénos et al., 2014). This 

filtering step is applied to remove sequencing or SNP calling error when the population is assumed 

to be panmictic. However, genotyping errors generally lead to only slight departures from HW 

proportions (Cox and Kraft 2006) in contrast to factors such as selection, age structure or non-

random sampling that are often neglected (see Waples et al 2014 for a review). One can question 

the relevance of a filter that has little effect on the quality of the dataset but removes numerous loci 

that are potentially important for downstream analyses. In contrast, the “Loci missingness” filter 

(LM) appeared to have a significant impact on locus error rate that was reduced five-fold when 

excluding loci shared by less than 80% of individuals. Filtering unshared loci thus appears important 

to remove erroneous loci that are based on artefactual sequences during de novo loci assembly.  

 

Lastly, as expected, we found that removing rare variants decreased allele error rate, particularly 

when a high MAF threshold was used (MAF < 10%). However, such a stringent MAF threshold also 

significantly reduced the number of loci (figure 3a) and may lead to bias in the allele frequency 

spectrum. One of the major advantages of RAD-seq genotyping is that it captures rare variants that 

are often not covered by SNP chips in appropriate proportions (Eynard et al., 2015). Previous work 

has shown that imposing a strict MAF filter may significantly affect the estimate of relatedness 

coefficients (Eynard et al. 2015), measures of genomic differentiation among populations (FST, 

Hendricks et al., 2018) and may lead to inaccurate demographic inference (Nielsen et al., 2011). 

Removing rare alleles from data sets may also impede our ability to detect fine scale patterns of 

connectivity and local adaptation (O’Leary, Puritz, Willis, Hollenbeck, & Portnoy, 2018). Our results 
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suggest that the MAF threshold has a direct impact on the GRM structure: applying a stringent MAF 

filter led to higher, and probably more accurate, pairwise relatedness coefficients among the most 

closely related individuals with mother-offspring relatedness very close to expectation (i.e. 0.5). 

More broadly, more stringent MAF filtering increased the variance in relatedness of the GRM, 

probably because most remaining genotyping errors were eliminated. However, the MAF threshold 

also had an impact on the h² estimate: h² tended to decrease when increasing the MAF threshold, 

even when the number of SNPs used to build the GRMs was fixed. This suggests that rare variants of 

functional importance that might play a key role in segregating weakly related individuals were 

excluded by mistake in an attempt to remove genotyping errors. This is in agreement with the recent 

work of Maroulie et al. (2017), who showed that low-frequency variants may individually have 

greater influence than common variants on adult height in humans. 

 

Together, our results suggest that it is preferable to start with a high sequencing depth and the 

corresponding SNP calling procedure to obtain a high quality genomic dataset with few missing data 

rather than applying a stringent filtering procedure to offset low starting coverage (Catchen et al., 

2013). A primary reason is that strict MAF or LM filters may lead to a sharp decline in the number of 

markers and so in our ability to capture the genetic variance of traits. The second is that it is 

particularly difficult to discriminate sequencing errors from low-frequency variants that may 

contribute to trait heritability. 

 

4.3. Limits  

While encouraging, our study also identified several limits to this approach. A first concern is that 

while the number of samples used here appears sufficient to detect high heritability (h²>0.50), it is 

probably not adequate to detect low heritability values or to estimate genetic covariance between 
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traits (Perrier et al., 2018). We performed a power analysis using the GCTA-GREML power calculator 

(Visscher et al., 2014) (Figure S6). Given our number of samples (N=243) and the observed variance 

of the GRM (VGRM = 1.5x10-3), there is only a 38% chance of detecting a heritability that is lower or 

equal to 0.25. In our case, a minimum of 500 samples would be required to generate a power of 92% 

for detecting values of heritability this low. Another consequence is that our standard errors (SE) are 

relatively large (~0.15) and this might have masked slight differences in h² estimates related to SNP 

calling and filtering setting. It should be noted, however, that our SE are similar to those obtained 

when body mass h² is estimated from a pedigree (SE=0.11-0.24 in Bighorn sheep, Réale et al., 1999; 

SE=0.16 in roe deer, Quéméré et al., 2018). 

 

Another important issue is that the variance of the GRM is inversely proportional to the sampling 

variance of the estimate of h² (Visscher & Goddard, 2015). Scientists must design their sampling 

scheme to capture the maximum variance in relatedness in their study population which is partly 

dependent on the social and spatial structure of the population (Flanagan et al., 2018). In our case 

study, the GRM mainly included distantly related individuals, reflecting the complex dynamics of the 

study population which has a high turn-over due to heavy hunting pressure and high dispersal rates. 

The GRM also captured family structure generated by highly related individuals establishing their 

home range close to each other within sampling sites. Values for VGRM (1.5 x 10-3) are within the 

same range as those reported in Soay sheep (1.3 x 10-3) (Bérénos et al., 2014) and blue tits (4 x 10-3) 

(Perrier C. pers. obs), but one hundred times higher than between unrelated humans (Vinkhuyzen, 

Wray, Yang, Goddard, & Visscher, 2013)  (2 x 10-5).  
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Another caveat is the extent of linkage disequilibrium (LD) that dictates how SNP loci tag causal loci 

and, thus, capture the genetic variance (Bérénos et al., 2014). Since the study population colonized 

the region only a few decades ago, we expected a low historical effective population size and, thus, a 

relatively high LD, as observed in Soay sheep (Bérénos et al., 2014). In accordance, we showed that a 

relatively modest number of markers (around 8000) appears to be enough to capture the genetic 

variance of the population. Hence, closely-linked SNPs that provide redundant information should be 

removed. However, without access to a reference genome sequence to physically map loci, we had 

no a priori knowledge of the genetic distance between SNPs. Estimating LD between each pair of 

SNPs could be an alternative option to prune statistically linked SNPs, however, this is 

computationally intensive. Moreover, pruning SNPs based solely on LD values, without any 

knowledge on their physical genomic distance, might be particularly risky since patterns of LD may 

also reflect the past demographic history of the population and/or effects of selection. Here, in 

order to reduce the aforementioned redundancy, we retained only one SNP per locus, but we did 

not filter for additional LD. Given the relatively modest number of RAD loci compared to the genome 

size, we also hypothesize a moderate representation of pairs of loci with high LD. Furthermore, Yang 

et al., (2015) showed that there is only a limited bias in h² due to heterogeneity in LD across the 

genome. Nevertheless, further analysis may be required to explore how h² estimates may be biased 

by LD among SNPs in our study system. In particular, simulation of both genomic (mimicking a RAD-

sequencing procedure with various coverage/genotyping error rates) and phenotypic data can help 

evaluate the impact of sequencing design, SNP calling and filtering setting on the accuracy of h² 

estimates in the ideal case where the true heritability is known.  

 

Lastly, a downside of pedigree-free estimation of quantitative genetic parameters is that partitioning 

of other variance components, such as maternal effects, is not possible without additional 

information. Here, heritabilities were estimated and interpreted for comparative purposes only, 
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hence, we deliberately did not account for potential confounding environmental sources of similarity 

among individuals (e.g. maternal effect, habitat type, cohort effect). Hence, it is very likely that our 

h² estimates are biased upwards. This issue may be partly resolved by the recent development of 

methods to infer relationships between pairs of individuals (e.g. parent-offspring, full sibs, half-sibs) 

from SNP data (K. R. Andrews et al., 2018; Huisman, 2017).   

 

4.4. Conclusion and prospects  

Our study illustrates the huge potential of genomic-based relatedness for estimating quantitative 

genetic parameters in free-ranging populations (see also Bérénos et al., 2014; Malenfant, Davis, 

Richardson, Lunn, & Coltman, 2018; Perrier et al., 2018). Here, we showed that robust heritability 

estimates can be obtained from RAD-sequencing data in populations or species for which no 

genomic resources are available. This opens up new and exciting avenues in evolutionary biology, for 

example, by providing the opportunity to explore how the evolutionary potential of morphological, 

behavioural or life-history traits varies across space or time in virtually any species (Gienapp et al., 

2017). This also paves the way towards more comparative/community quantitative genetic studies, 

for example, to explore how the heritability of traits varies among populations across environmental 

gradients (Martinez-Padilla et al 2017) or to better understand constraints on the evolution of 

phenotypic variation in several species interacting within a given ecosystem (Whitham et al., 2006). 
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Figures (with captions) 

Figure 1. Practical framework with steps for estimating a GRM-based heritability from RAD-seq 
data. Throughout the process (sampling design, SNP calling, quality filtering), there are trade-offs 
between data quality (choice of sequencing coverage, genotyping error/ missing data rates) and 
quantity (number of samples and loci). 
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Figure 2. Effect of the different sets of parameters in Stacks on allele and locus error rates for the high-
coverage dataset. For each Stacks profile and each pair or technical replicates, we computed the locus error 
rate (LER) corresponding to the number of loci present in only one of the two replicates, divided by the total 
number of loci being compared (i.e. missing data at the locus level) and the allele error rate (AER), calculated as 
the number of incongruent genotypes between the two replicates, divided by the number of common loci. For 
each Stacks model, we reported the number of loci recovered and the LER and AER distribution across the 7 
replicate pairs. 

 

 

  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Figure 3. Impact of quality filtering on number of markers, genotyping error rates and GRM. Evolution of the 
(a) number of SNPs, (b) median locus error rate, (c) median allele error rates (across replicates), (d) the 
variance in relatedness of the GRM (VGRM) and (e) mother-offspring relatedness, as a function of the filters 
successively applied for the low-coverage (in grey) and high-coverage (in black) dataset: We first removed loci 
that deviated from Hardy-Weinberg equilibrium (HWE 0.05- p<0.05) (step 1). We then discarded loci with 
missingness rate LM >10%, 20%, 30% or 40% (step 2). Lastly, we kept loci with a minimum allele frequency 
(MAF) greater than 1%, 5% or 10% (step 3). The vertical dashed line in (e) indicated the expected relatedness 
for mother-offspring (0.5). 

 

Figure 4. Genomic relatedness. (a) Scatter plot of genome-wide relatedness matrices (GRM) computed before 
and after filtering SNPS with a MAF < 1% (green dots) or MAF < 10% (blue dots) threshold (from the high-
coverage dataset): The highest relatedness coefficients increased when applying a stringent MAF (10%). (b) 
Histogram of pairwise genome wide relatedness (using MAF=1% and LM=20%). Unrelated individuals were 
represented in yellow, half-sib-like links in red, and parent-offspring or full-sib relationships in grey. 
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Figure 5. Sensitivity of estimates for h² of body mass to SNP calling (Stacks model) and MAF threshold (high-

coverage dataset): (a) raw h² estimates with standard error (error bars) obtained using GRMs computed with 

all SNPs generated by a given SNP calling (Stacks model) and filtering method (MAF = 1%, 5% or 10% and LM = 

20%). For each analysis, we reported the number of SNPs used to build the GRMs; (b) h² estimates obtained by 

fixing the number of SNPs to 8,567 SNPs for all GRMs and resampling the SNP data 50 times. Boxplot and 

whiskers indicate median h² and variation across the 50 resampled datasets.   

 

  


