
Noname manuscript No.
(will be inserted by the editor)

An algorithm to compute the Nucleolus of Shortest
Path Games

Mourad Bäıou · Francisco Barahona

Received: date / Accepted: date

Abstract We study a type of cooperative games introduced in [9] called shortest
path games. They arise on a network that has two special nodes s and t. A coalition
corresponds to a set of arcs and it receives a reward if it can connect s and t. A
coalition also incurs a cost for each arc that it uses to connect s and t, thus
the coalition must choose a path of minimum cost among all the arcs that it
controls. These games are relevant to logistics, communication, or supply-chain
networks. We give a polynomial combinatorial algorithm to compute the nucleolus.
This vector reflects the relative importance of each arc to ensure the connectivity
between s and t. Our development is done on a directed graph, but it can be
extended to undirected graphs and to similar games defined on the nodes of a
graph.

Keywords Cooperative games · Shortest path games · Nucleolus

1 Introduction

Shortest path games arise on a network, a coalition corresponds to a set of arcs
and it receives a reward if it can connect two fixed nodes s and t. A coalition also
incurs a cost for each arc that it uses to connect s and t, thus the coalition must
choose a path of minimum cost among all the arcs that it controls. Shortest path
games have been introduced in [9], this type of games is useful to determine the
most critical links to ensure connectivity between two distinguished nodes s and t
in a network. This analysis is relevant to logistics, communication, or supply-chain
networks.

Our contribution is a polynomial combinatorial algorithm to compute the nu-
cleolus of a shortest path game. This vector reflects the relative importance of the

A shorter version of this paper was presented at the SAGT 2017 conference [3].

M. Bäıou
CNRS and Université Clermont Auvergne, 1 Rue de la Chebarde, Campus des Cézeaux, 1 Rue
de la Chebarde, 63178 Aubière cedex, France.

F. Barahona
IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA.

2 Mourad Bäıou, Francisco Barahona

different arcs in the network that ensure the connectivity between s and t. Our
development is done on a directed graph, but it can be extended to undirected
graphs and to similar games defined on the nodes of a graph.

Related work on this type of games is the following. The core and the Shapley
Value of shortest path games were studied in [9], also the least core was studied in
[2]. Flow games were introduced in [15]. Polynomial combinatorial algorithms for
computing the nucleolus of simple flow games were given in [5] and [19]. Algorithms
for computing the nucleolus of several other combinatorial games have been found,
see [8] for path cooperative games, see [18] for cost allocation games in a tree, [21]
for assignment games, [16] for cardinality matching games, [6] for weighted voting
games. On the other hand computing the nucleolus is NP-Hard for minimum
spanning tree games [7], and general flow games [5].

This paper is organized as follows. In Section 2 we give some basic definitions
and mention some basic results of Network Flows and Linear Programming. In
Section 3 we study the core. Section 4 contains the basics for the computation of
the nucleolus. In Section 5 we give an algorithm to compute the nucleolus when
the core is non-empty. In Section 6 we extend the algorithm to the case when the
core is empty. In Section 7 we study the time complexity of the algorithm.

2 Preliminaries

Here we give some definitions and mention some basic results on Network Flows
and Linear Programming. Throughout this paper we assume that we are work-
ing with a directed graph G = (V,A). We use n to denote |V |, and m to de-
note |A|. Given two distinguished nodes s and t. An st-path is a sequence of
arcs (u1, v1), (u2, v2), . . . , (uk, vk), where s = u1, vk = t, and vi = ui+1 for
i = 1, . . . , k − 1. A cycle is a sequence of arcs (u1, v1), (u2, v2), . . . , (uk, vk), where
u1 = vk, and vi = ui+1 for i = 1, . . . , k − 1. Consider a partition of V into U and
V \ U , with s ∈ U and t ∈ V \ U . Then the arc-set {(u, v) |u ∈ U, v ∈ V \ U} is
called an st-cut. For a function w : A → R, and S ⊆ A, we use w(S) to denote
w(S) =

∑
a∈S w(a). For S ⊆ A, we use V (S) to denote the set of nodes covered

by S, i.e., V (S) = ∪(u,v)∈S{u, v}.
Shortest path games have been introduced in [9], and they are defined as

follows. The graph has two distinguished vertices s and t, and there is a cost
function c : A → R+, that gives the costs for using different arcs. There is also a
reward r obtained if s and t are connected by a path, then for a coalition S ⊆ A
the value function is

v(S) =

{
r −m(S) if m(S) <∞,
0 otherwise,

(1)

where m(S) = min
{
c(P) |P ⊆ S, P is an st-path and c(P) ≤ r

}
. In the defini-

tion given in [9] a player could own more than one arc, here we assume that each
player owns exactly one arc.

2.1 Shortest Paths

For a cost function c : A → R, a shortest st-path is an st-path of minimum cost.
The cost of a path is the sum of the costs of the arcs in the path. If the costs are

An algorithm to compute the Nucleolus of Shortest Path Games 3

non-negative, a shortest path can be found in O(m+n logn) time with Dijkstra’s
algorithm, see [1].

2.2 Minimum Ratio Cycles

Assume that there is a cost function c : A→ R, and a “time” function τ : A→ Z+,
then the cost to time ratio of a cycle D is c(D)/τ(D). An algorithm to find a cycle
that minimizes the cost to time ratio was given in [13]. In our case we require the
function τ to take the values 0 or 1, so the algorithm of [13] takes O(nm+n2 logn)
time. This will be used in sections 5 and 6.

2.3 Network Flows and Linear Programming

A reference for Minimum Cost Network Flows is [1], Maximum Cost Circula-
tions are also treated there. We just mention that the algorithm of [11] runs in
O(n2m3 logn) time. This background is needed in all following sections.

Consider the following network flow problem.

max
∑

(u,v)∈A

c(u, v)x(u, v)

∑
(u,v)∈A

x(u, v)−
∑

(v,u)∈A

x(v, u) = 0, for v ∈ V ,

x(u, v) ≥ 0, for all (u, v) ∈ A.

The dual problem is

min
∑
v∈V

0 · π(v); π(v)− π(u) ≥ c(u, v) for all (u, v) ∈ A.

Here we have a variable π for each node in V . Notice that there are no capacities
for the arcs, so either the optimal value is zero, or the problem is unbounded. The
problem is unbounded if and only if there is a cycle of positive cost. Thus the dual
problem has a solution if and only if there is no cycle with positive cost. The cost
of a cycle is the sum of the costs of its arcs.

In the following sections we use the following basic result on linear program-
ming. Let g(ε) be the value of the linear program min{cx |Ax = b + εd, x ≥ 0},
then g is a convex piecewise linear function of ε, cf. [4].

3 The core

Here we study some basic properties of the core. A vector (or a function) x : A→ R
is called an allocation if x(A) = v(A). Here x(a) represents the amount paid to
the player a. The core is a concept introduced in [10], it is based on the following
stability condition: No subgroup of players does better if they break away from
the joint decision of all players to form their own coalition. Thus an allocation x
is in the core if x(S) ≥ v(S) for each coalition S ⊆ A. Therefore the core is the
polytope below.

4 Mourad Bäıou, Francisco Barahona

{x ∈ RA |x(A) = v(A), x(S) ≥ v(S), for S ⊆ A}. (2)

Let λ be the cost of a shortest st-path in G. If λ ≥ r then the core consists
of only the vector x = 0. If λ < r, the following lemma gives a description of the
core that is useful for our purposes.

Lemma 1 If λ < r, the core is also defined by

x(A) = r − λ, (3)

x(P) ≥ r − c(P) for each st-path P with c(P) ≤ r, (4)

x ≥ 0. (5)

Proof Consider an arc a, if a does not go from s to t, we have x(a) ≥ 0. If a
goes from s to t then we have x(a) ≥ max{0, r − c(a)}. Thus either we have an
inequality (4) or an inequality (5).

If P is an st-path with c(P) ≤ r, then its associated inequality (4) is among
the inequalities in (2).

Now assume that S ⊆ A is not an st-path, but it contains an st-path with cost
at most r. We have m(S) = c(P̄) where P̄ ⊆ S is an st-path. Then x(S) ≥ v(S)
can be written as x(S \ P̄) + x(P̄) ≥ r − c(P̄). This last inequality is implied by
x(a) ≥ 0 for a ∈ S \ P̄ , and x(P̄) ≥ r − c(P̄) that is one of the inequalities (4).

Finally if S ⊆ A does not contain an st-path with cost at most r, then x(S) ≥ 0
is implied by x(a) ≥ 0 for a ∈ S. �

The coalitions characterized in Lemma 1 fall into the category of dually sat-
urated coalitions introduced in [22]. See also [14], that introduced the notion of
essential coalitions.

To understand the core, we look at the set of solutions of the linear program
below.

minx(A), x(P) ≥ r − c(P), for each st-path P , x ≥ 0. (6)

Notice that the minimum above is at least max{0, r−λ}. If it is exactly this value,
then the core is nonempty, and it corresponds to the set of optimal solutions of
this linear program. If we look at r as a parameter we have that the optimal value
is a convex piecewise linear function of r, see Figure 1. Then there is a value r̄
such that the core is non-empty if and only if r ≤ r̄, see Figure 1. The value r̄ is
discussed in Remark 2 below.

r

Optimal value r − λ

r̄

Fig. 1 Optimal value and the value r̄. The core is non-empty for r ≤ r̄.

An algorithm to compute the Nucleolus of Shortest Path Games 5

Consider now the dual of (6), this is

max
∑
P

(r − c(P))yP∑
{yP | a ∈ P} ≤ 1, for each arc a,

y ≥ 0.

There is a variable yP for each st-path P , and its associated cost is r − c(P).
Each arc has capacity one, and the sum of the variables y for the paths using a
particular arc is at most one. We can reduce this to a network flow problem as
follows. We add an artificial arc from t to s with cost coefficient r and infinite
capacity. To every other arc a we give cost −c(a) and capacity one. Then we look
for a circulation of maximum cost.

Recall that λ is the value of a shortest st-path. We need the optimal value to
be r − λ, for this we should have one optimal solution consisting of exactly one
shortest path. This leads to the following remark.

Remark 2 There is a value r̄ so that the core is non-empty if and only if r ≤
r̄. The value r̄ is the maximum value of r so that there is an optimal solution
consisting of exactly one path.

Notice that the graph could contain more than one st-path with cost equal to
λ. Let A′ be the set of arcs that belong to a shortest path, and assume that the
core is non-empty. Then the graph should not contain two arc-disjoint shortest
paths. Thus the subgraph G′ = (V,A′) contains an st-cut consisting of exactly
one arc. Such an arc is called a veto-player, because every shortest path contains
it. Let P1 and P2 be two shortest st-paths. If x is an element of the core, we have
x(P1) = x(P2) = r−λ, and since x(A) = r−λ, we have x(P1\P2) = x(P2\P1) = 0.
Thus if A′′ is the set of veto-players, we have x(a) = 0, for a ∈ A \ A′′. This had
already been established in [9], using different techniques.

4 The Nucleolus

For a coalition S and a vector x ∈ RA, their excess is e(x, S) = x(S)− v(S). The
nucleolus has been introduced in [20] trying to minimize dissatisfaction of players,
more precisely, the nucleolus is the allocation that lexicographically maximizes
the vector of non-decreasingly ordered excesses, cf. [20]. Thus in some sense, it is
the fairest allocation. The nucleolus can be computed with a sequence of linear
programs as follows, cf. [17]. First solve

max ε

x(S) ≥ v(S) + ε, ∀S ⊂ A
x(A) = v(A).

Let ε1 be the optimal value of this, and P1(ε1) be the polytope defined above, with
ε = ε1, i.e., P1(ε1) is the set of optimal solutions of the linear program above. For
a polytope P ⊂ RA let

F(P) = {S ⊆ A |x(S) = kS ,∀x ∈ P}. (7)

6 Mourad Bäıou, Francisco Barahona

This is the set of coalitions S such x(S) takes a constant value kS , for all x ∈ P .
We called these coalitions fixed. In general given εr−1 we have to solve

max ε (8)

x(S) ≥ v(S) + ε,∀S /∈ F(Pr−1(εr−1)) (9)

x ∈ Pr−1(εr−1). (10)

We denote by εr the optimal value of this, and Pr(εr) the polytope above with
ε = εr. We continue for r = 2, ..., |A|, or until Pr(εr) is a singleton. Notice that
each time the dimension of Pr(εr) decreases by at least one, so it takes at most
|A| steps for Pr(εr) to be a singleton.

In general the difficulty in computing the nucleolus resides in having to solve a
sequence of linear programs with an exponential number of inequalities. In our case
we shall see that most of the inequalities are redundant, and only a polynomial
number of them is needed. Moreover these linear programs can be solved in a
combinatorial way.

5 The nucleolus when the core is non-empty

In this section we study the nucleolus under the assumption that the core is non-
empty. In that case the dual of (6) should have an optimal solution consisting
of exactly one path. Thus if there are several shortest st-paths, no two of them
should be arc-disjoint. The only arcs a for which x(a) can take a non-zero value,
are the arcs that belong to the intersection of all shortest paths. To compute the
nucleolus, we have to solve the sequence of linear programs described in Section 4,
for that we need some changes of variables as follows.

5.1 An alternative description of the core

For x in the core, define z = x + c, where c is the vectors of costs. We fix one
shortest st-path P, then the following should be satisfied: z(a) = c(a), if a /∈ P;
z(a) ≥ c(a), if a ∈ P; z(P) = r; z(P) ≥ r, if P is an st-path; z(P) = c(P) ≥ r, if
P is an st-path not containing arcs in P.

Now we use a change of variables similar to the one used in [19]. For two nodes
a and b in P we denote by Pab the sub-path of P going from a to b. Given z as
defined above, for each node u in P, let pz(u) = z(Psu). Therefore we have

pz(s) = 0, pz(t) = r, (11)

pz(v)− pz(u) ≥ c(u, v), for (u, v) ∈ P. (12)

For two nodes u and v in P, a jump Juv is a path from u to v, such that all
nodes in Juv different from u and v are not in P, this notion was used in [19]. If
there is an arc a = (u, v) with a /∈ P, then we have a jump consisting of one arc.
Consider an st-path P consisting of the sub-path Psu from s to u, then a jump
Juv from u to v, and a sub-path Pvt from v to t. Then the inequality z(P) ≥ r
can be written as pz(u) + c(Juv) + r − pz(v) ≥ r, or

pz(u)− pz(v) ≥ −c(Juv). (13)

An algorithm to compute the Nucleolus of Shortest Path Games 7

Now we show that (11), (12) and (13) are sufficient to describe the core. We
need the lemma below.

Lemma 3 Inequalities associated with paths with more than one jump are implied
by inequalities associated with paths with one jump.

Proof Consider an st-path P with two jumps. Thus assume that P consists of the
following segments: a sub-path Psa from s to a, a jump Jab from a to b, a sub-path
Pbd from b to d, a jump Jde from d to e, and a sub-path of Pet from e to t. Then
the inequality z(P) ≥ r, can be written as z(P) = pz(a) + c(Jab) + pz(d)− pz(b) +
c(Jde) + r− pz(e) ≥ r, or pz(a)− pz(b) + c(Jab) + pz(d)− pz(e) + c(Jde) ≥ 0. This
is implied by pz(a) − pz(b) + c(Jab) ≥ 0 and pz(d) − pz(e) + c(Jde) ≥ 0. These
two inequalities correspond to st-paths with one jump. Paths with more than two
jumps can be treated in a similar way. �

On the other other hand, let V̄ = V (P), the set of nodes spanned by P.
Consider any function p : V̄ → R satisfying (11), (12) and (13), we can define
z̄(u, v) = p(v)− p(u) for each arc (u, v) ∈ P, z̄(u, v) = c(u, v) for each arc (u, v) ∈
A\P, and x̄ = z̄−c. It is easy to see that x̄ is an element of the core. Thus there is
a bijection between the vectors in the core and the functions p : V̄ → R satisfying
(11), (12) and (13).

Paths with one jump correspond to dually essential coalitions in the termi-
nology of [22]. This structure resembles to “trunks with one missing subbranch”
used in [23]. At this point we have a polynomial number of inequalities that define
the core. Based on that, it has been shown in [12] that the computation of the
nucleolus when the core is nonempty, reduces to a sequence of combinatorial lin-
ear programs, that can be solved in strongly polynomial time with the algorithm
of [24]. In our case, we show that the computation of the nucleolus reduces to a
sequence of minimum “cost to time ratio cycle” problems that can be solved with
the algorithm of [13]. This is the subject of the next sub-section.

5.2 The nucleolus

To compute the nucleolus we have to solve the sequence of linear programs defined
in Section 4. The development above suggests the following procedure.

We create an auxiliary graph G′ = (V̄ , A′) as follows. First we include in A′

each arc (u, v) ∈ P with cost d(u, v) = c(u, v). Then for every pair of nodes u and
v in V̄ , we find the cost of a shortest path in G from u to v using only arcs not
in P and going only through nodes in V \ V̄ . Let ρ be the value of this shortest
path, we add an arc (v, u) to A′ with cost d(v, u) = −ρ. Finally we add the arcs
(s, t) and (t, s) to A′, with costs d(s, t) = r and d(t, s) = −r. Then we impose the
inequalities

p(v)− p(u) ≥ d(u, v) for all (u, v) ∈ A′. (14)

These inequalities come from the following conditions.

– For an arc (u, v) ∈ P they correspond to x(u, v) ≥ 0.
– For an arc (u, v) /∈ P, (u, v) 6= (s, t), (t, s) they correspond to x(P) ≥ r− c(P),

where P is the path consisting of Psv, a jump Jvu, and Put.
– The inequalities for (s, t) and (t, s) imply x(P) + c(P) = p(t)− p(s) = r.

8 Mourad Bäıou, Francisco Barahona

Thus from a vector p satisfying (14) we can derive a vector in the core. More-
over, as mentioned in Subsection 2.3, the system (14) has a solution if and only if
the graph G′ has no cycle of positive weight.

Now we can describe the computation of the nucleolus. We set k = 0, ε̄ = 0,
and we call the arcs (s, t) and (t, s) fixed. We have to solve

maxµ (15)

p(v)− p(u) ≥ d(u, v) if (u, v) ∈ A′ is fixed, (16)

p(v)− p(u) ≥ d(u, v) + µ if (u, v) ∈ A′ is not fixed, (17)

µ ≥ 0. (18)

Inequalities (17) come from x(u, v) ≥ µ for (u, v) ∈ P, or x(P) ≥ r − c(P) + µ if
P is an st-path with one jump. To prove that these inequalities are sufficient we
need the following lemma, its proof is similar to the one of Lemma 1.

Lemma 4 The inequalities x(S) ≥ v(S) + ε, for S ⊆ A, are implied by

x(P) ≥ r − c(P) + ε, for each st-path P ; x(a) ≥ ε; ε ≥ 0.

As seen in sub-section 2.3, when solving (15)-(18) we are looking for the max-
imum value of µ so that when we increase the costs of the non-fixed arcs by this
amount, the graph has no positive cycle. Thus we need d(C) + µn(C) ≤ 0, for
each cycle C, where n(C) is the number of non-fixed arcs in the cycle C. Then we
have to compute

µ̄ = min
C

−d(C)

n(C)
, (19)

where the minimum is taken over all cycles in G′. Here we are looking for a cycle
that minimizes a “cost to time” ratio. As mentioned in Subsection 2.2, this can be
solved with the algorithm of [13]. Once the value µ̄ is obtained in (19), we update
the arcs costs as d(u, v) ← d(u, v) + µ̄, for each non-fixed arc (u, v) ∈ A′. Let C̄
be a cycle giving the minimum in (19), we declare fixed all arcs in C̄. We update
ε̄← ε̄+ µ̄, k ← k + 1, and set εk = ε̄. As long as there is an arc in A′ that is not
fixed we solve (15)-(18) and continue. Since at each iteration at least one new arc
in A′ becomes fixed, this procedure takes at most |A′| iterations.

6 The nucleolus when the core is empty

Here we assume that the core is empty, thus for the first linear program defined in
Section 4, we have ε1 < 0. First we have to prove that its set of optimal solutions
P1(ε1), is in the non-negative orthant.

Lemma 5 P1(ε1) ⊂ RA
+.

Proof Assume that (x̄, ε1) is a solution of

max ε

x(A) = v(A)

x(S) ≥ v(S) + ε, for S ⊂ A,

An algorithm to compute the Nucleolus of Shortest Path Games 9

and x̄(a0) < 0 for some arc a0 ∈ A.
First we prove that if x̄(S) = v(S)+ ε1, then a0 ∈ S. Suppose a0 /∈ S. We have

two cases:

– S ∪ {a0} 6= A. Then x̄(S ∪ {a0}) < x̄(S) = v(S) + ε1 ≤ v(S ∪ {a0}) + ε1. This
contradicts the feasibility of (x̄, ε1).

– S ∪ {a0} = A. Then x̄(A) = x̄(S) + x̄(a0) = v(S) + ε1 + x̄(a0) < v(S) ≤ v(A).
Again this contradicts the feasibility of (x̄, ε1).

Then we can define x′(a0) = x̄(a0) + β, and x′(a) = x̄(a) − β/(m − 1), for
a ∈ A \ {a0}, for a small number β > 0, m = |A|. Since x′ is a better solution we
have a contradiction. �

As in the previous section, we have to see that when computing the nucleolus
most inequalities are redundant. This is in the lemma below, its proof is similar
to the one of Lemma 1.

Lemma 6 Inequalities x(S) ≥ v(S) + ε, for S ⊂ A, are implied by
x(P) ≥ r − c(P) + ε, for each st-path P , and x ≥ 0.

We give an algorithm for the first linear program in the sub-section below.

6.1 Computation of ε1

Here we deal with the first linear program. We are going to use the structure of
the solutions of this to derive a change of variables similar to the one in Section 5.

To compute ε1 we do not treat the first linear program directly. Instead we use
parametric linear programming and look for the maximum value of the parameter
ε < 0, so that the value of the parametric linear program below is r − λ.

minx(A) (20)

x(P) ≥ r + ε− c(P), for each st-path P , (21)

x ≥ 0. (22)

Lemma 6 justifies the use of inequalities (21). Lemma 5 justifies inequalities (22).
The maximum value of the parameter ε is exactly the value ε1 that we need.

The dual of (20)-(22) is

max
∑
P

(r + ε− c(P))yP (23)∑
{yP | a ∈ P} ≤ 1, for each arc a, (24)

y ≥ 0. (25)

Here we have a variable yP for each st-path P . For each arc a we have a constraint
(24). It says that the sum of the variables yP for all paths P that contain the arc
a, should be at most 1.

Notice that there might be an exponential number of st-paths, so (23)-(25)
might have an exponential number of variables. However we reduce this to a net-
work flow problem as follows. We add an artificial arc from t to s with cost co-
efficient r + ε and infinite capacity. To every other arc a we give cost −c(a) and

10 Mourad Bäıou, Francisco Barahona

capacity one. Then we look for a circulation of maximum cost. If a circulation has
positive flow in the arc from t to s, then there is at least one path from s to t whose
arcs have positive flow. Since each original arc has capacity one, then there is an
optimal circulation that corresponds to a set of arc-disjoint st-paths of minimum
cost.

Recall that m = |A|. For a non-negative integer k, 0 ≤ k ≤ m, let f(k) be
the value of a minimum cost set of k arc-disjoint st-paths. This is an optimal
solution of a minimum cost flow problem sending k units of flow from s to t, and
with capacities equal to one on every arc. Denote by g(ε) the optimal value of
(23)-(25), then

g(ε) = max
k
{k(r + ε)− f(k)}. (26)

Here the maximum is taken over all possible values of k so that G has k arc-
disjoint st-paths. Thus the function g is the maximum of a set of linear functions,
see Figure 2. This is a convex piece-wise linear function. One evaluation of g(·) is
done by solving a network flow problem. In what follows we discuss how to find
the value ε1 so that g(ε1) = r − λ. This is done with the algorithm below that is
an adaptation of Newton’s method for finding a root of a real-valued function. It
relies on the convexity of g.

g

�

Fig. 2 Function g.

Step 0. We set ε− = −r and ε+ = 0, thus g(ε−) = 0 < r− λ and g(ε+) > r− λ.
We denote by k(ε) a value of k giving the maximum in (26).

Step 1. Let k− = k(ε−), k+ = k(ε+). If k− = k+, then ε1 is the solution of
g(ε−) + k− (ε− ε−) = r − λ, and we Stop. Otherwise let ε̃ be the solution of
g(ε−) + k− (ε− ε−) = g(ε+) + k+ (ε− ε+). See Figure 3.

Step 2. If g(ε̃) < r − λ set ε− = ε̃. Otherwise set ε+ = ε̃ and go to Step 1.

Notice that at each iteration, either k− increases or k+ decreases, and since 0 ≤
k ≤ m, this algorithm takes at most 2m iterations.

6.2 A change of variables

Now we assume that the value ε1 has been found. Based on the structure of the
solutions in the previous sub-section, we can derive a change of variables similar
to the one in Section 5. This is below. There is an optimal solution of (23)-(25)
that corresponds to a set of k arc-disjoint st-paths S = {P1, . . . ,Pk}. We set

An algorithm to compute the Nucleolus of Shortest Path Games 11

g

ǫ̃ ǫ+ǫ−

r − λ

Fig. 3 Finding ε̃.

P = ∪iPi. Let x̄ be a solution of (20)-(22), then the complementary slackness
conditions imply x̄(a) = 0 if a ∈ A \ P, and x̄(Pi) = r + ε1 − c(Pi), i = 1, . . . , k.

Let z̄(a) = x̄(a)+c(a), for each a ∈ A, then z̄(a) ≥ c(a), for a ∈ P; z̄(a) = c(a),
if a ∈ A \ P; z̄(Pi) = r + ε1, i = 1, . . . , k; z̄(P) ≥ r + ε1, for every st-path P . Let
V̄ = V (P). Before the next change of variables, we need the lemma below.

Lemma 7 Let v ∈ V̄ , and assume that there are two paths Pi and Pj going
through v. Then z̄(Pi

sv) = z̄(Pj
sv).

Proof We have z̄(Pi
sv) + z̄(Pi

vt) = z̄(Pj
sv) + z̄(Pj

vt) = r + ε1. If z̄(Pi
sv) < z̄(Pj

sv),
then z̄(Pi

sv)+ z̄(Pj
vt) < r+ε1. This leads to a contradiction because for the st-path

Pi
sv ∪ Pj

vt we should have z̄(Pi
sv) + z̄(Pj

vt) ≥ r + ε1. �

Based on Lemma 7, for any u ∈ V̄ we can define pz(u) = z(Pi
su), where z

is any vector in P1(ε1) and Pi is any path in S going through u. Recall that
Pi(εi) ⊂ P1(ε1) for i > 1. We have

pz(s) = 0, pz(t) = r + ε1, (27)

pz(v)− pz(u) ≥ c(u, v), for (u, v) ∈ P. (28)

Now we use the same notion of a jump used in the last section. Consider an
st-path P consisting of the sub-path Pi

su from s to u, then a jump Juv from u
to v, and a sub-path Pj

vt from v to t. Then the inequality z(P) ≥ r + ε1 can be
written as pz(u) + c(Juv) + r + ε1 − pz(v) ≥ r + ε1, or pz(u)− pz(v) ≥ −c(Juv).

Below we have the analogue of Lemma 3, its proof is similar.

Lemma 8 Inequalities associated with paths with more than one jump are implied
by inequalities associated with paths with one jump.

As in Section 5, we create an auxiliary graph G′ = (V̄ , A′) as follows. First we
include in A′ each arc (u, v) ∈ P with cost d(u, v) = c(u, v). Then for every pair
of nodes u and v in V̄ , we find the cost of a shortest path in G from u to v using
arcs not in P and going only through nodes in V \ V̄ . Let ρ be the value of this
shortest path, we add an arc (v, u) to A′ with cost d(v, u) = −ρ. Finally we add
the arcs (s, t) and (t, s) to A′, with costs d(s, t) = r + ε1 and d(t, s) = −r − ε1.
Then we impose the inequalities

p(v)− p(u) ≥ d(u, v) for all (u, v) ∈ A′. (29)

12 Mourad Bäıou, Francisco Barahona

For a vector p satisfying (29) we can define z(u, v) = p(v)−p(u) for (u, v) ∈ P, and
z(u, v) = c(u, v) for (u, v) ∈ A \ P. Then x = z − c satisfies x(A) = r − λ and the
inequalities (21)-(22). As before, there is a bijection between vectors x satisfying
x(A) = r − λ and the inequalities (21)-(22), and vectors p satisfying p(s) = 0 and
(29). Now we can proceed to the computation of the nucleolus.

6.3 computation of the nucleolus

Recall that ε1 < 0. As seen in Section 4, we have to solve a sequence of linear
programs where we maximize a parameter ε. We divide this into two phases. The
case when ε ≤ 0 is treated first, and then we continue with the case when ε > 0.

6.3.1 The case when ε ≤ 0.

We set ε̄ = ε1, k = 0, we call fixed the arcs (s, t) and (t, s), and we have to solve

maxµ (30)

p(v)− p(u) ≥ d(u, v) if (u, v) ∈ A′ is fixed or (u, v) ∈ P (31)

p(v)− p(u) ≥ d(u, v) + µ if (u, v) ∈ A′ \ P, and (u, v) is not fixed, (32)

0 ≤ µ ≤ −ε̄. (33)

After solving this, the new value for ε will be ε̄+µ. For (u, v) ∈ P inequalities (31)
correspond to x(u, v) ≥ 0. Inequalities (32) correspond to x(P) ≥ r− c(P) + ε̄+µ,
if P is an st-path with one jump. We need the inequality µ ≤ −ε̄ in (33) because
the new value of ε should be non-positive.

When solving (30)-(33) we are looking for the maximum value of µ so that the
graph has no positive cycle, if we increase the costs of the non-fixed arcs in A′ \P
by this amount. Thus we need d(C) + µn(C) ≤ 0 for each cycle C. Here n(C) is
the number of arcs in A′ \ P that are non-fixed, in the cycle C. Then we have to
compute

α = min
C

−d(C)

n(C)
. (34)

Here the minimum is taken over all cycles in G′. As before this can be found with
the algorithm of [13].

Once the value α is obtained in (34), we set µ = min{α,−ε̄}. Then we update
the arcs costs as

d(u, v)← d(u, v) + µ,

for each non-fixed arc (u, v) ∈ A′ \ P. If µ < −ε̄, let C̄ be a cycle giving the
minimum in (34). We declare fixed all arcs in C̄∩(A′\P). We also update ε̄← ε̄+µ,
k ← k + 1, εk = ε̄. Notice that at the first iteration we obtain µ = 0, because at
this point ε̄ = ε1. So this iteration just gives a set of arcs that should be fixed.

If ε̄ < 0 and there is an arc in A′ \ P that is not fixed we solve (30)-(33) and
continue. Otherwise ε̄ = 0, or all arcs in A′ \ P are fixed, in this case we should
have ε ≥ 0, this is treated below.

An algorithm to compute the Nucleolus of Shortest Path Games 13

6.3.2 The case when ε ≥ 0.

Here the arcs that have been fixed remain fixed. We have to impose x(a) ≥ ε for
a ∈ P, this corresponds to inequalities (37) for a ∈ P. Thus we have to solve

maxµ (35)

p(v)− p(u) ≥ d(u, v) if (u, v) ∈ A′ is fixed, (36)

p(v)− p(u) ≥ d(u, v) + µ if (u, v) ∈ A′ is not fixed, (37)

µ ≥ 0. (38)

Then we proceed as in Sub-section 5.2.

7 Complexity

Now we discuss the time complexity of all the procedures above.
In Section 3 we need the value of a shortest path, this takes O(m+n logn) time.

Then to decide whether the core is empty we look for a circulation of maximum
cost, this takes O(n2m3 logn) time.

If the core is non-empty, we use the procedure in Sub-section 5.2. At each
iteration we have to find a cycle that minimizes a cost to time ratio. This done
with the algorithm of [13] that takes O(nm+n2 logn) time. Each time at least one
arc becomes fixed, therefore this is done at most m times. Thus the complexity of
this procedure is O(nm2 + n2 logn).

If the core is empty, we use the procedure in Section 6. To compute ε1 we need
to solve at most 2m maximum cost circulation problems. So the complexity of this
is O(n2m4 logn). Then we have to find at most m cycles that minimize the cost
to time ratio. Therefore the complexity of this part is O(nm2 + n2 logn).

Thus the time complexity is dominated by the computation of ε1 in Sub-
section 6.1. Then we have the theorem below.

Theorem 9 The nucleolus of a shortest path game can be computed in
O(n2m4 logn) time.

Acknowledgements We are grateful to an anonymous referee for his careful reading. His
comments helped us to improve the presentation.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applica-
tions. Prentice hall (1993)

2. Aziz, H., Sørensen, T.B.: Path coalitional games. arXiv preprint arXiv:1103.3310 (2011)
3. Bäıou, M., Barahona, F.: On the nucleolus of shortest path games. In: V. Bilò, M. Flammini

(eds.) Algorithmic Game Theory, pp. 55–66. Springer International Publishing, Cham
(2017)

4. Chvatal, V.: Linear programming. Macmillan (1983)
5. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. Journal of combinatorial

optimization 18(1), 64–86 (2009)
6. Elkind, E., Pasechnik, D.: Computing the nucleolus of weighted voting games. In: Pro-

ceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
327–335. Society for Industrial and Applied Mathematics (2009)

14 Mourad Bäıou, Francisco Barahona

7. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost spanning tree
games is np-hard. International Journal of Game Theory 27(3), 443–450 (1998)

8. Fang, Q., Li, B., Shan, X., Sun, X.: The least-core and nucleolus of path cooperative
games. In: International Computing and Combinatorics Conference, pp. 70–82. Springer
(2015)

9. Fragnelli, V., Garcia-Jurado, I., Mendez-Naya, L.: On shortest path games. Mathematical
Methods of Operations Research 52(2), 251–264 (2000)

10. Gillies, D.B.: Solutions to general non-zero-sum games. Contributions to the Theory of
Games 4(40), 47–85 (1959)

11. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM (JACM) 36(4), 873–886 (1989)

12. Granot, D., Granot, F., Zhu, W.R.: Characterization sets for the nucleolus. Interna-
tional Journal of Game Theory 27(3), 359–374 (1998). DOI 10.1007/s001820050078. URL
https://doi.org/10.1007/s001820050078

13. Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small integral
transit times. Networks 23(6), 567–574 (1993)

14. Huberman, G.: The nucleolus and the essential coalitions. In: A. Bensoussan, J.L. Lions
(eds.) Analysis and Optimization of Systems, pp. 416–422. Springer Berlin Heidelberg,
Berlin, Heidelberg (1980)

15. Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced games. Op-
erations Research 30(5), 998–1008 (1982)

16. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Mathematics
of operations research 28(2), 294–308 (2003)

17. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person
games. Tech. rep., DTIC Document (1967)

18. Megiddo, N.: Computational complexity of the game theory approach to cost allocation
for a tree. Mathematics of Operations Research 3(3), 189–196 (1978)

19. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow networks.
Games and Economic Behavior 54(1), 205–225 (2006)

20. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM Journal on applied
mathematics 17(6), 1163–1170 (1969)

21. Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games.
International Journal of Game Theory 23(2), 119–143 (1994)

22. Solymosi, T., Sziklai, B.: Characterization sets for the nucleolus in balanced games. Op-
erations Research Letters 44(4), 520–524 (2016)

23. Sziklai, B., Fleiner, T., Solymosi, T.: On the core and nucleolus of directed acyclic graph
games. Mathematical Programming 163(1), 243–271 (2017). DOI 10.1007/s10107-016-
1062-y. URL https://doi.org/10.1007/s10107-016-1062-y

24. Éva Tardos: A strongly polynomial algorithm to solve combinatorial linear programs.
Operations Research 34(2), 250–256 (1986). URL http://www.jstor.org/stable/170819

