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Abstract 

Anionic phospholipids represent only minor fraction of cell membranes lipids but they are 

critically important for many membrane-related processes, including membrane identity, charge, 

shape, the generation of second messengers and the recruitment of peripheral proteins. The main 

anionic phospholipids of the plasma membrane are phosphoinositides phosphatidylinositol 

4-phosphate (PI4P), phosphatidylinositol 4,5-bisphosphate (PI4,5P2), phosphatidylserine (PS), and 

phosphatidic acid (PA). Recent insights in the understanding of the nature of 

protein–phospholipid interactions enabled the design of genetically-encoded fluorescent 

molecular probes that can interact with various phospholipids in a specific manner allowing their 

imaging in live cells. Here, we describe the use of transiently transformed plant cells to study 

phospholipid-dependent membrane recruitment. 
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1. Introduction 

All living cells are surrounded by membranes, which help to define their spatial identity and 

create the semipermeable boundary between intra- and extra-cellular space [1]. Typical cellular 

membrane is composed of a bilayer of lipids and proteins, whose organization and interactions are 

crucial for its function as organizing platforms for cellular processes. Historically, cellular 

membrane studies were once dominated by a protein-centric view, where proteins executed 

majority of membrane-related functions and the membrane lipids were often regarded only as 

passive players whose role was to provide structural support for bilayer formation [2]. It is now 

generally accepted that both lipids and proteins play indispensable active roles in the various 

functions of cellular membranes [3].  

Among plant plasma membrane lipids, negatively-charged (anionic) phospholipids, 

phosphoinositides like phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 

4,5-bisphosphate (PI4,5P2), together with phosphatidylserine (PS) and phosphatidic acid (PA), 

constitute low-abundant but essential component [4-6]. They possess many important roles, which 

include defining membrane identity, generation of downstream signalling molecules, generating 

membrane negative charge, modulating membrane curvature and creating binding sites for the 

targeting of effector proteins [7-12]. 

The realization of the important roles of anionic phospholipids has created a need for 

methods that would enable their non-invasive spatio-temporal monitoring in living cells. The 

identification and characterization of protein modules that specifically bind to various anionic 

phospholipids led to the idea that these protein modules might be used to detect phospholipids in 

living cells. This resulted in the development of genetically-encoded phospholipid sensors that 

consist of the specific phospholipid-binding domains (either single or in tandem) fused with 

various fluorescent proteins, enabling the live cell imaging of phospholipid dynamics [13-15]. 

Especially in the past decade, this approach has been successfully used in plants to generate 

sensors for a wide variety of phospholipids including PI4P [16-18], PI4,5P2 [17, 19, 20], PA [21, 

22] and PS [17, 22]. Concomitantly, many enzymes involved in the production and degradation of 

anionic lipids were identified and the phenotypes of their knockout or overexpressing mutant lines 

described (for plants see e.g. Refs 23, 24). This also led to the development of tools allowing the 

manipulation of phospholipid levels in the cell upon generic or targeted overexpression of 

phospholipid-modifying enzymes [25]. 



The recruitment of phospholipid-binding peripheral proteins to cell membranes is essential 

for many cellular processes. The targeting of proteins to specific phospholipids or to the 

membranes of particular lipid compositions, mediated by lipid-binding domains, allows their 

recruitment to be precisely controlled in spatio-temporal fashion. Despite the manifold biological 

consequences associated with the targeted recruitment of peripheral protein to their target 

membranes, only a basic understanding of the interactions of proteins with membrane surfaces 

exists because these questions are inaccessible by commonly used structural techniques [26, 27]. 

Therefore, the selective colocalization of peripheral proteins (or individual protein domains, 

protein deletions, point mutations etc.) with the particular lipid marker together with its 

relocalization after coexpression with corresponding phospholipid-modifying enzymes may bring 

valuable informations about the nature of protein-membrane interface. Transient gene expression 

approaches are particularly beneficial, since they enable quick screening of many proteins or 

protein variants and allow easy manipulation of expression level. Here, we describe the protocols 

allowing transient coexpression of proteins of interest with genetically-encoded lipid markers or 

phospholipid-modifying enzymes in two different plant cell types: biolistics-mediated 

transformation of growing tobacco pollen tubes (that show spatially-separated plasma membrane 

domains enriched with distinct phospholipids, Refs 21, 22), and agroinfiltration of Nicotiana 

benthamiana leaf epidermal cells (where high transformation efficiency can be achieved). 

2. Materials 

Prepare all solutions using ultrapure water and store at room temperature (RT), unless stated 

otherwise. 

2.1 Particle bombardment solutions 

1. Gold particles: resuspend 30 mg of 1.6 μm gold microcarriers (Bio-Rad, #1652264, Note 1) 

in 1 ml absolute ethanol, vortex vigorously for 3 min and spin down at table top centrifuge (1 

min, maximum speed). Wash twice with H2O and resuspend in 1 ml of 50% glycerol (sterile). 

Store at 4 °C. 

2. 2.5 M CaCl2:  Dissolve 3.675 g CaCl2 · 2H2O (Sigma, #C7902) in 10 ml H2O. Filter sterilize 

and keep 1 ml aliquots at -20 °C. Working aliquot can be kept at 4 °C for several months. 



3. Protamine: Dissolve 10 mg of protamine sulfate (Sigma, #P4505) in 10 ml H2O.  Filter 

sterilize and keep 0.5 ml aliquots at -20 °C. Working aliquot can be kept at 4 °C for several 

weeks.  

2.2 DNA 

1. For tobacco pollen particle bombardment, dilute DNA stock with H2O to 0.25-1 μg/μl 

working solution. In order to achieve good transformation frequency and expression levels, 

target construct expression must be driven by promoters active in pollen (typically LAT52p or 

UBQ10p). 35S promoter is not recommended. Usually, clean miniprep is enough for several 

transformations. Store at -20 °C. 

2. For N. benthamiana leaves infiltration, use DNA plasmid concentrated at 0.25-1 μg/μl to 

transform Agrobacterium. Expression of the construct is usually driven by UBQ10 or 35S 

promoters. 

2.3. Biological material 

1. Pollen: Flowers of outdoor- or glasshouse-grown tobacco plants (Nicotiana tabacum cv. 

Samsun) are collected in warm and dry weather conditions before opening; anthers are taken 

out and kept in laboratory conditions on a filter paper for one day to let anthers open and 

dehydrate (anthers might be surface sterilized and dried in the laminar box to harvest sterile 

pollen). Dried pollen grains are sifted through to remove anthers. Harvested pollen can be kept 

frozen at −20 °C without apparent loss of the germination capacity for several years. 1 mg of 

pollen is usually used per transformation. 

2. N. benthamiana leaves: Use tobacco leaves from 2-3 weeks old plants. For infiltration, select 

leaves that are heart shaped. If the plant has already flowered, it is too late to perform the 

infiltration.  

3.   Agrobacterium: The electrocompetent A. tumefaciens C58pmp90 strain is used for tobacco 

leaves infiltration.  

2.4 Cultivation Media 

1. 2x pollen tube medium (2xPTM): 10% w/v sucrose, 25% w/v PEG-6000, 2 mM CaCl2, 2 

mM KCl, 1.6 mM MgSO4, 3.2 mM H3BO3, 60 μM CuSO4, 0.06% w/v casein 



acid-hydrolysate, 0.6% w/v MES, pH 5.9. Prepare 10x stock solution for salts (1470 mg/l 

CaCl2 · 2H2O, 746 mg/l KCl, 1972 mg/l MgSO4 · 7H2O, 989 mg/l H3BO3, 75 mg/l CuSO4 · 

5H2O) and 50x stock for casein hydrolysate (1.5% w/v). Store the stocks at -20 °C. Dissolve 

appropriate amounts of sucrose, MES, salt and casein hydrolysate stocks in H2O, adjust pH to 

5.9 with 4 M KOH, add PEG-6000 and make up to the final volume with H2O. Store 50 ml 

aliquots at -20 °C. 

2. Solid pollen tube medium: 1xPTM solidified with 0.25% Phytagel (Note 2). Thaw 50 ml 

aliquot of 2xPTM and warm it in water bath to at least 60 °C. Prepare 0.5% Phytagel (Sigma, 

#P8169) solution: weigh 0.25 g of Phytagel into 50 ml H2O and resuspend. Dissolve Phytagel 

by carefully heating up to the boiling point while stirring. Mix 2xPTM and Phytagel solutions 

and keep the 1xPTM/0.25% Phytagel medium in hot water bath. In laminar box, prepare 

plates with solidified medium by rapid pouring of 4 ml of hot PTM/Phytagel solution onto 5 

cm Petri dishes. Let dry and store up to one month at 4 °C. 

3.  LB medium: Agrobacterium are grown on LB liquid medium (Difco™ LB Broth, Lennox, 

#240230, 20 g/l) and LB plate (Difco™ LB Broth, Lennox, #214010, 20 g/l, 15% w/v agar, 

Difco™ Bacto Agar). 

4. Infiltration medium: 10 mM MES (Sigma-Aldrich, #D8250-250G), 10 mM MgCl2 

(Sigma-Aldrich, #M2670), 0.15 mM acetosyringone (Sigma-Aldrich, #D134406). Prepare a 

stock solution of 100 mM MES. Weight and dissolve the appropriate amount of MES in H2O 

and adjust the pH to 5.7 using KOH solution. Autoclave the MES solution for 30 min and 

store it at RT. Prepare a stock solution of acetosyringone at 100 mM in EtOH and store it at 

-20 °C. Just before performing the infiltration, dilute the MES solution in H2O, add the MgCl2 

and the acetosyringone to a final concentration of 10 mM and 0.15 mM, respectively.  

3. Methods  

Carry out all procedures at RT unless otherwise specified (Note 3).  

3.1 DNA macrocarrier preparation for pollen particle bombardment 

Add following to the 1.5 ml microcentrifuge tube to prepare one macrocarrier (the sample 

should be mixing continuously, keep sequence and timing): 25 μl of gold particles 

suspension, vortex 1 min, add 2.5-7 μl of plasmid DNA (~1-10 μg, Note 4), 25 μl of 2.5 M 



CaCl2 and 10 μl of protamine (1 mg/ml) solution. Vortex vigorously for at least 3 min. Spin 

down in tabletop centrifuge for 30 s at max speed. Remove the supernatant carefully using 

yellow pipette tip or vacuum and discard it. Resuspend the pellet completely (Note 5) in 200 

μl of absolute ethanol and vortex for 3 min. Spin down again and discard the supernatant. 

Resuspend the pellet in 18 μl of absolute ethanol, vortex for 1 min and load the suspension on 

the macrocarrier (Bio-Rad, #1652335). Keep the suspension dispersed by constant pipetting. 

For future manipulations, it is better to have macrocarrier fitted in the steel macrocarrier 

holder (Bio-Rad, #1652322) before loading. Let the macrocarrier dry in a vibration-free 

environment. One should obtain evenly distributed layer of gold particles without any visible 

clumps. Although dried macrocarriers can be stored in dry chamber at RT for several hours, 

it is better to perform the transformation immediately after preparation. 

3.2 Pollen plating 

For one transformation, resuspend 1 mg of tobacco pollen per 5 ml of 1xPTM. Pour the 

suspension on the prewetted nylon 47 mm (0.8 μm) filter disc (Whatman, #Z746282) placed 

on filtration apparatus (e.g. Millipore, #XX1004720) and remove medium using vacuum. 

Transfer the pollen to the solidified PTM by placing the filter disc upside-down briefly. 

Repeat for the next DNA sample and/or proceed to the particle bombardment immediately 

(Note 6). 

3.3 Particle bombardment 

Set up the PDS-1000/He system (Bio-Rad, #1652257) according to the instruction manual 

using standard settings. Put the rupture disc (1100 psi, Bio-Rad, #1652329) in place and 

tighten gently with the screwdriver. Assemble macrocarrier and stopping screen (Bio-Rad, 

#1652336) into microcarrier launch assembly and insert it into the uppermost position. Use 

the second free slot from above for the pollen plated on solidified medium. Evacuate the 

chamber to 28 inHg and perform the bombardment. Release the vacuum immediately, seal 

the sample plate with parafilm and store it at RT. 

3.4 Agrobacterium transformation 

Transform each construct in Agrobacterium. To do so, add 1 µl of DNA plasmid into 50 µl of 

electrocompetent Agrobacterium on ice. Transfer the Agrobacterium into cold 1 mm wide 



electroporation chamber (Eurogentec, #CE00150). Put the electroporation chamber into the 

MicropulserTM (Bio-Rad, #165-2100) and give a pulse of 2 kV, 335 Ω, 15 µF, for 5 ms. Add 

1 ml of liquid LB medium and transfer the bacteria into a new tube and incubate them at 29 

°C for at least 2 h. Plate the Agrobacterium onto LB plates containing the appropriate 

antibiotics to select the Agrobacterium strain (gentamycin 20 µg/ml and rifampicin 50 µg/ml) 

and the target construct. Incubate the plate at 29 °C for 48 h. 

3.5 Nicotiana benthamiana infiltration 

Prepare the infiltration medium as indicated in the “cultivation media” part. Scoop 

transformed Agrobacterium from the transformation plate with a tip and resuspend the 

bacteria into 2 ml infiltration medium by pipetting. Measure the OD600 using a 

spectrophotometer (Biophotometer, Eppendorf). Adjust the OD600 to 1 by adding infiltration 

medium. For co-infiltration of several constructs, mix the same quantity of each transformed 

Agrobacterium to obtain a final OD600 of 1. Using 1 ml syringe (Terumo, #125162229), press 

the infiltration solution with the Agrobacterium onto the abaxial side of the chosen tobacco 

leaf keeping your finger on the other side of the leaf. The solution must spread into the leaf 

(Note 7). Mark the place where the infiltration has been made with a permanent marker. Put 

the plant back to the growth chamber for 2-3 days.  

3.6 Data acquisition, analyses and quantification 

Images can be exported from the microscope-specific acquisition software and analyzed with 

suitable analysis software. We use Fiji for this purpose, which is a distribution of well-known 

software ImageJ [28, 29], bundling a lot of plugins which facilitate scientific image analysis, 

and which is freely available at https://fiji.sc/. A number of basic and advanced tools are 

available within this software, including subtraction of background, and measurements of 

intensities, both based on the definition of a region of interest. 

1. Particle-transformed pollen tubes:  

For the initial evaluation of protein overexpression on pollen tube growth and polarity, 

observe the cells 12-24 h after transformation with 5-10x lenses. Identify transformed cells 

based on FP fluorescence and take images using the same acquisition settings. Mean pollen 

tube length, pollen tube width, tip swelling and cell “curviness” (calculated as the ratio of the 

https://fiji.sc/


distance between the pollen grain/pollen tube tip and the pollen tube length, is close to 1 for 

straight pollen tubes) are good parameters for the initial quantitative assessment.  

Several simple measures can be used  to monitor the binding of protein of interest to the 

plasma membrane, e.g. measuring of the membrane- and cytoplasmic-associated intensities 

from the line scan (Figure 1, see also Refs 21, 30) and calculating the ratio as a proxy for 

membrane recruitment index, and/or measuring the length of membrane signal (in case of 

asymmetric localizations, see Figure 1). For the quantitative assessment of colocalization, 

Pearson or Spearman rank correlation coefficients can be calculated from the data (e.g. with 

Coloc 2 plugin available in Fiji). 

2. Confocal observation of N. benthamiana leaves 

Cut 5 mm2 regions of the leaf that surround the place where the infiltration has been made. 

Place the piece of leaf into water between slide and coverslip with the abaxial side of the leaf 

facing the coverslip. It may be convenient to tape the slide and coverslip together to maintain 

the coverslip on the slide as the leaf sample is thick. Using the appropriate wavelength, an 

epifluorescent microscope and the smallest objective (10X), screen the surface of the leaf to 

find the transformed cells. Then, switch to confocal microscope and 63X objective to look at 

the subcellular localization of the fluorescent protein. 

3. Analysis of the effect of PM-targeted phosphatases on anionic phospholipid 

localization 

In order to perturb anionic phospholipid production with subcellular accuracy, it is possible to 

target an isolated phosphatase (or kinase) domain to a specific organelle. For example, Simon 

et al., targeted the 4-phosphatase SAC domain of the yeast Sac1p protein to the PM using a 

Myristoylation and Palmitoylation anchor (MP) (see Figure 2). This MP-Sac1 construct was 

fused to a mTurquoise2 (mTu2) protein to monitor protein localization (MP-mTu2-Sac1) in 

order to verify that this synthetic enzyme was indeed efficiently targeted to the PM. 

Co-transfection with genetically encoded anionic phospholipid sensors allowed to determine 

the effect of the 4-phosphatase activity on the production of a given phospholipid. 

Quantification of the effect of the phosphatase activity may be performed using the analyses 

mentioned above for pollen tubes. Typically, three behaviours may be anticipated for the 

biosensors following co-expression with an organelle targeted phosphatase: i) no effect, ii) 



redistribution of the sensor from a membrane to a cytosolic pool, and iii) redistribution of the 

sensor to a different organelle. For example, MP-Sac1 expression induced the redistribution of 

PI4P biosensors from the PM to endosomes (Figure 2, see also Refs 18, 22, 31). This can be 

quantified qualitatively, as a percentage of cell with endosomal labelling by the PI4P sensor, 

as compared to the total number of cells analyzed. It can also be quantified by making a ratio 

of membrane vs soluble signal, but this later quantification methods is difficult given the 

reduced cytoplasm of N. benthamiana leaf cells. Once validated, such heterologous transient 

assay may be used to probe the importance of a given lipid for targeting a protein. It may also 

be used to validate in vivo catalytic activity of a phosphoinositide phosphatase of unknown 

specificity.  

4. Notes  

1. Different sizes of particles (0.6 or 1.0 μm) may be also used, this will however affect the 

amount of coatable DNA. Alternatively, cheaper tungsten particles may be used, their size 

distribution is however much more variable, resulting in yet greater variability in 

expression levels. 

2. Do not use agar or agarose as they would cause the precipitation of pollen tube medium. 

3. For the details of PDS-1000/He assembly and operation, consult the PDS-1000/He Particle 

Delivery System Instruction Manual and watch the YouTube tutorial. 

4. When transforming with more than one construct, premix the DNA before coating. Use 

only small amount (0.5-1 μg of plasmids expressing phospholipid markers to prevent the 

perturbation of phospholipid signalling due to overexpression of lipid-binding domain). 

5. This is crucial for obtaining good transformation frequency. The more DNA is added the 

longer it takes to resuspend the pellet completely. 

6. We routinely transform up to 12 plates in a row. If more transformations are needed, split 

the plating/bombardment into batches of 10. 

7. The infiltration might not work if the stomata are closed. To get around this problem, 

make small holes with a needle. 

 

http://www.bio-rad.com/webroot/web/pdf/lsr/literature/M1652249.pdf
http://www.bio-rad.com/webroot/web/pdf/lsr/literature/M1652249.pdf
https://www.youtube.com/watch?v=dfD95gsEdrg&t=90s
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Figure legends 

Figure 1. Elevation of PI4,5P2 levels by the overexpression of the CFP-tagged PI4P-5 kinase 

(PI4P5K) results in increased NtSEC3a:YFP recruitment to the plasma membrane in 

tobacco pollen tubes. Pollen tubes with comparably low expression level of NtSEC3a:YFP were 

selected. For co-expression with PI4P5K, cells expressing high levels of PI4P5K:CFP (not 

shown) and displaying characteristic PI4PK5-overexpression phenotype were selected. White 

dashed lines mark the site of intensity profiles and yellow dotted lines indicate length of the 

membrane fluorescence signal. Micrographs are shown using a color intensity code in order to 

display local enrichment of the YFP fluorescence. See Sekereš et al. (2017) for more details. 

 

Figure 2. Organelle-targeted phosphatase as a way to locally interfere with acidic 

phospholipids. a) The top panel represents a schematic representation of a possible construct for 

organelle-specific targeting of a lipid modifying enzyme. Such system include an 

organelle-specific targeting anchor/protein (which may be at the N- or C-terminal end of the 

synthetic chimeric protein), a fluorescent protein to verify localization specificity, and the isolated 

catalytic domain of a lipid modifying enzyme. An important criteria for the use of the catalytic 

domain is that it should be free of any endogenous targeting capacity. The bottom panel represent 

an example of construct for the specific depletion of PI4P at the plasma membrane (i.e. 

MP-Sac1). b) Schematic representation of MP-Sac1 action at the PM but not endosome and c) 

effect of MP-Sac1 on PI4P accumulation. In the control condition (left, for example with 

expression of a catalytically dead MP-Sac1 enzyme), there is much more PI4P at the PM than in 

endosomes and as a result, a PI4P biosensor such as P4M is localized preferentially at the PM. 

Upon expression of MP-Sac1 (right), the pool of PI4P at the PM is reduced, which triggers the 

redistribution of the P4M PI4P sensor to both PM and endosomes. 
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