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This paper is focused on the study of a kinematic
wavepacket model for jet noise based on two-point
statistics. The model contains physical parameters
that define its structure in terms of wavenumber,
envelope shape and coherence decay. These parameters,
which are necessary to estimate the sound pressure
levels radiated by the source, were educed from a
large-eddy simulation database of a Mach 0.4, fully
turbulent jet. The sound pressure levels predicted
by the model were compared with acoustic data
and the results show that when the parameters
are carefully educed from the data, the sound-
pressure levels generated are in good agreement with
experimentally measured values for low Strouhal
numbers and polar angles. Furthermore, here we
show that a correct representation of both coherence
decay and wavepacket envelope shape are key aspects
to an accurate sound prediction. A Spectral Proper
Orthogonal Decomposition (SPOD) of the model
source was also performed motivated by the search
for a low-rank model capable of capturing the acoustic
efficiency of the full source. It is shown that only a few
SPOD modes are necessary to recover acoustically-
important wavepacket traits.

1. Introduction
Jet noise is a challenging and compelling problem in fluid
mechanics, because of its environmental and societal
relevance but also because of disagreements that exist
in the aeroacoustics community regarding its theoretical
basis. Despite nearly seventy years of research, there
persists a lack of consensus regarding the flow structures
responsible for sound generation. The first mathematical
treatment for the jet-noise problem was given by Lighthill
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by means of his acoustic analogy. The main idea of the acoustic analogy is to rearrange the
equations of motion as an inhomogeneous wave equation that separates the linear propagation
of acoustic waves from a nonlinear inhomogeneous term composed of turbulent fluctuations
that drive the sound field. In this framework, the turbulent field is replaced by an equivalent
distribution of quadrupole sources whose statistical properties are related to those of the flow.
Other acoustic analogies have since been proposed, for example, by Lilley [2] and Goldstein
[3], that involve different source-propagator splits to deal with the effects of flow-acoustic
interactions, but with the same central idea.

Because Lighthill’s acoustic analogy is an exact rearrangement of the Navier-Stokes equation, it
is possible to compute the sound field accurately if a sufficiently good description of the flow field
is known. This has been strictly demonstrated for low Mach number and low frequency by Crow
[4]. For higher Mach numbers, it has been demonstrated by means of direct numerical simulations
by Freund [5] and Colonius and Freund [6] that accurate sound predictions are also possible if
the source term is calculated in the close vicinity of the jet, so as to converge the convolution
between source and Green’s function. However, understanding and modelling the flow entities
responsible for sound generation is a daunting task, as a correct description of the source terms
in acoustic analogies depends on two-point, fourth-order statistics, finely described in a volume
sufficient to cover all of the source region. Given this challenge, a considerable body of work
has been undertaken to characterise flow parameters important for sound radiation and to build
statistical source models. The structure of the cross-correlation tensor, which is at the core of the
models, has frequently been analysed by hot-wire measurements, for example, by Davies et al.
[7], Bradshaw et al. [8], Davies [9], Chu [10], who focused mainly on the characterisation of length
and timescales; Harper-Bourne [11, 12] went further, determining the frequency-dependence of
coherence and integral lengthscales at selected points in the mixing layer with a pair of hot-
wires; and Morris and Zaman [13] performed a similar analysis for positions both in the mixing
layer and at the centerline of the jet. Two-point measurements have also been performed using
LDV by Jordan and Gervais [14] and Kerhervé et al. [15] for limited regions in the jet, and the
frequency-dependent character of turbulence statistics has also been explored. Other studies have
used PIV to probe the structure of the cross-correlation tensor in x− r and r − θ planes, as done
for example by Ukeiley et al. [16], who evaluated the structure of linear and quadratic source
components separately. Similar measurements, using PIV, have been performed by Seiner et al.
[17] and Bridges and Wernet [18]. Jaunet et al. [19] performed time-resolved, stereo PIV in two
synchronised crossflow planes with a view to studying two-point coherence of wavepackets and
comparing them to those of the energy-containing, turbulent eddies. Different components of
the cross-correlation tensor have also been analysed by Karabasov et al. [20] using a large-eddy
simulation (LES) database.

The measurements of Harper-Bourne [11, 12] have been important in guiding noise-source
modelling and in supporting acoustic prediction, as, for example, in the works of Self [21],
Goldstein and Kharavan [22], Goldstein and Leib [23], Karabasov et al. [20] and Leib and
Goldstein [24]. In these studies, model calculations are compared with acoustic data, and
reasonable agreement is obtained for given frequency and polar-angle ranges.

While different source models are based on different descriptions of the two-point cross-
correlation function, one thing they all have in common is that they require knowledge of the
variation of this function with position and frequency. In previous studies the cross-correlation
function was generally obtained at a small selection of positions; given this constraint, simplifying
assumptions are required. For example, length and timescales are assumed to be vary linearly
with the ratio of kinetic energy by dissipation [22]; or the turbulence autocovariance tensor is
assumed to be constant throughout the jet [24]; or the expansion coefficents. Moreover, again due
to the lack of data, accurate sound prediction usually relies on the calibration of a number of
empirical constants [21–26].

The modelling studies cited above consider sound sources based on a superposition of
statistically-independent, uncorrelated eddies, a view aligned with the interpretation of the
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acoustic analogy given by Lightill. The parameters used in these models, such as convection
velocity and length and timescales are those of the energy containing eddies, and are obtained
from the integral length and timescales of turbulence. An alternative interpretation for the flow
motions associated with sound generation came with the observation of wavepackets in turbulent
jets by the experiments performed, for instance, by Mollo-Christensen [27, 28] and Crow and
Champagne [29]. Wavepackets are organised, low-energy structures correlated over distances
that far exceed the integral length scales of turbulence. The discovery of this underlying order
and its connection with sound radiation motivated researchers to explore wavepacket-like source
models. We can make a distinction between two kinds of wavepacket models: dynamic and
kinematic [30]. Kinematic models are built based on experimental observations or statistical
properties of a flow and are usually coupled with an acoustic analogy; they are inherently
empirical and mask the details of the nonlinear fluid motions by which they are underpinned.
A dynamic model based on the equations of motion is necessary to obtain the underlying
flow motions. Hydrodynamic stability theory has been used as a theoretical framework that
would provide a dynamic law governing the evolution of wavepackets in turbulent flows. Early
examples of these modelling efforts can be found in the works of Michalke [31, 32], Crow and
Champagne [29] and Crighton and Gaster [33]. Jordan and Colonius [34] made an extensive
review of studies that have successfully used stability analysis, experiments and simulations (or a
combination of these) to provide evidence for the existence of wavepackets in both the turbulent
field [35–37] and the near-irrotational field [38–41]. It has also been demonstrated that the low-
frequency, far-field sound is consistent with an axially-extended wavepacket [31, 42–44] and that
it can be decomposed, almost entirely, into only three azimuthal Fourier modes [43–46].

Modelling wavepackets using linear stability theory makes it possible to capture the evolution
of their power-spectral density (PSD) up to the streamwise position at which they become
neutrally stable [35]. However, further downstream there is considerable discrepancy between
experiment and linear theory. For low Strouhal numbers (St < 0.3) the agreement is also poor.
Furthermore, linear dynamic models describe harmonic solutions, so they cannot describe the
two-point statistics of a turbulent flow and this may explain the lack of success of these models in
predicting correct pressure levels in the far-field. Acoustic extrapolation of wavepacket solutions
of the Linearised Euler Equations (LEE) leads to a 30dB discrepancy in the far field [47]. In this
spirit, a series of other papers have evoked the importance of coherence decay [41, 47–50] for
acoustic efficiency. It is the statistical signature of the spatial desynchronisation of wavepackets
due to turbulent forcing, a phenomenon that has been referred to as ‘jitter’ by Cavalieri et al. [51]
and also modelled by Ffwocs-Williams and Kempton [52]. Cavalieri and Agarwal [48] showed
that agreement in average phases and convection velocities obtained using linear models is not
a sufficient condition to match the far pressure field of a sound source. A sufficient condition
involves matching, in addition to amplitude and phase velocity, the two-point coherence of the
source.

Kinematic models, as opposed to dynamic models based on stability theory, are useful in
so far as they provide a framework that allows the salient sound-producing flow traits to be
understood. Based on experiments, kinematic wavepacket source models have been proposed
and their radiated sound field assessed, for example, by Crow [42], Crighton [53], Michalke
[31] and Crighton and Huerre [54]. These studies proposed wavepacket models with similar
shapes based on single-point measurements, and therefore did not consider coherence decay.
More recently, using Crow’s model [42], Cavalieri et al. [44] inferred the single-point wavepacket
structure from the single-point statistics of the sound field and found a superdirective wavepacket
consistent with the polar structure of the sound field for azimuthal Fourier modes m= 0, 1 and
2 and 0.2 6 St6 0.8. The length of the wavepacket envelope was estimated between 6 and 8
jet diameters and a non-dimensional envelope length of khL= 6 was found, where kh is the
hydrodynamic wavenumber. The phase speed was taken from a local stability analysis. This
model has since been widely used to study both free and installed jet noise [55–58]. Given that
the importance of modelling two-point statistics was recognized early by Harper-Bourne [11, 12]



4

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

and by Michalke [59], it is somewhat surprising that no wavepacket models featuring coherence
decay were proposed earlier. It is only since the works of Reba et al. [60, 61, 62, 63] and Cavalieri
and Agarwal [48] that wavepacket models featuring coherence decay have been proposed.

Now that is has become clear that the two-point coherence formulation comprises essential
wavepacket source characteristics, the following question arises: to what extent are the source-
model characteristics identified by Cavalieri et al. [44] representative of actual wavepackets in the
turbulent jet? As with all inverse-like source-identification approaches, which are ill-posed, one
can always find a set of parameters that produces the correct sound field, but which may not be
compatible with the real source structure.

In light of this, the objective and novelty of the work reported here is to use the two-point
model of Cavalieri and Agarwal [48] combined with data from an LES simulation performed
using the compressible flow solver ‘Charles’ [64], to identify and understand the key wavepacket
parameters and to evaluate the acoustic radiation of the model, in terms of both directivity
and acoustic efficiency. Whereas Cavalieri et al. [44] worked from the outside in, i.e inferring
the source structure from the sound field, we here work from the inside out, building the
source with information from the computed velocity field, the goal being to effect a quantitative
calculation of the sound field using the two-point kinematic model whose parameters are this
time extracted directly from the turbulent field. This approach follows the earlier ones by Harper-
Bourne [11, 12], Goldstein and Kharavan [22], Goldstein and Leib [23], Karabasov et al. [20] and
Leib and Goldstein [24], except that here we work with a wavepacket model source characterised
by a small number of parameters, and we inform this using full-field flow data. The single and
two-point acoustic predictions are compared with experiments conducted at the Bruit et Vent
anechoic facility located in Poitiers, France. We focus the analysis on acoustic results at low
polar angles to the jet axis for a single azimuthal mode, m= 0, and we show that this approach
considerably simplifies the modelling task; furthermore, the acoustic predictions of the model
were found to agree with the data to within approximately 2dB up to St= 0.5. Our methodology
also builds on previous work by Kopiev and Chernyshev [65] and Kopiev and Chernyshev
[66], who performed an azimuthal decomposition of the sound field and explored sound-source
generation mechanisms of different azimuthal modes using the two-stage correlation model
developed by Kopiev and Chernyshev [67]. Wavepacket models featuring coherence decay have
also been used by Reba et al. [60, 63] to make acoustic predictions, although with a different
methodology than ours; the authors used data from a near-field microphone array and performed
an acoustic extrapolation of the near-field data to the acoustic field by solving the homogeneous
wave equation. While their model worked well for supersonic jet conditions, for subsonic Mach
numbers therir underpredicted the data by roughly 10dB at low polar angles.

The kinematic modelling we propose is related to the dynamic models as follows. The
shortcomings of linear dynamic models can be overcome by including an inhomogeneous, forcing
term, associated with nonlinear interactions understood as the effect of turbulence forcing on
wavepackets. A series of studies have explored forced, inhomogeneous models for the Navier-
Stokes equations [68–72], addressing the problem in terms of an “input-output” analysis, where
the input corresponds to the forcing and the output to the response modes of the flow, these being
connected by the resolvent of the linearised Navier-Stokes equations. More recently, Semeraro
et al. [73], Towne et al. [74] and Towne et al. [75] explored the link between resolvent modes
and Spectral Proper Orthogonal Decomposition (SPOD) (a frequency domain form of Proper
Orthogonal Decomposition) modes in turbulent jets. They show, consistent with the work of Farell
and Ioannou [68], that when the linear system is forced with a spatiotemporally white stochastic
field, the response modes of the resolvent operator are identical to the SPOD modes of the flow.
This is not the case if the forcing is coloured and the difference between SPOD and resolvent
modes may help shed light on the nature of the forcing.

This issue prompted us to perform SPOD of the kinematic source model with a view to
searching for the acoustically-important degrees of freedom of wavepackets that might be used
to construct a low-rank representation of the flow. We are interested in finding a reduced-rank
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description that suffices to provide an accurate description of the two-point structure that is
relevant for sound radiation and that the dynamic models need to model correctly if they are
to make accurate predictions of sound pressure levels.

Similarly to what was found by Breakey et al. [41] and Suzuki [76] in the near pressure field,
we show here that a 1-mode representation of the Cross-Spectral Density (CSD) of the source
is not sufficient to capture all of the acoustically-important features and that higher modes are
important for sound radiation. But only only a small number of modes was necessary to recover
the correct wavepacket parameters and sound pressure levels.

The remainder of the paper is organised as follows: In §2 we present the two-point kinematic
source model. This is followed, in §3, with the provision of information regarding the LES and
acoustic databases. In §4 we describe the procedure used to educe the wavepacket parameters
from the LES data. In §5 we compare the acoustic results of the model to experimental data and
discuss the discrepancies and the role of the wavepacket parameters. In §6 we present the SPOD
analysis and we discuss the possibilities of low-rank models for description of the acoustically-
important wavepacket characteristics. Finally, conclusions ans hypotheses are discussed in §7.

2. Kinematic Model

(a) Basic equations
A generalised expression for an acoustic analogy can be written as

L(p) = q(x, t), (2.1)

where L is a linear operator that depends on the acoustic analogy, p is the pressure and q(x, t) is
the source distribution.

The solution for the pressure, p, is given as

p(x, t) =−
∫
V

∫∞
−∞

q(y, τ)G(x, y, t− τ)dydτ (2.2)

where G(x, y, t− τ) is the Green’s function for the linear operator L. x is the observer’s
coordinates and y the source’s coordinates.

Application of equation 2.2 involves integration of flow fluctuations, which are stationary
random functions and hence are not square-integrable functions. A solution to overcome this
issue is to work with the auto and cross-correlations, which are supposed to decay to zero for
large separation distances and time delays [77]. The pressure autocorrelation is defined by

p2(x, τ) = lim
T→∞

1

2T

∫T
−T

p(x, t)p(x, t+ τ)dt, (2.3)

and that can be expressed, using equation 2.2, as

p2(x, τ) =
1

2T

∫T
−T

∫∞
−∞

∫∞
−∞

∫
V

∫
V
G(x, y1, t− τ1)G(x, y2, t+ τ − τ2)

q(y1, τ1)q(y2, τ2)dy1dy2dτ1dτ2dt.

(2.4)

In the following, we follow the development of Goldstein and Leib [23]. We make three
changes of variables η = y2 − y1, τ3 = τ2 − τ1 and t1 = t− τ1 and define R(y1,η, τ3), a two-point
time-delayed cross-correlation of the source based on flow quantities,

R(y1,η, τ3) =
1

2T

∫T
−T

q(y1, τ1)q(y1 + η, τ1 + τ3)dτ1. (2.5)

The expression for the pressure autocorrelation then becomes:
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p2(x, τ) =

∫∞
−∞

∫∞
−∞

∫
V

∫
V
G(x, y1, t− τ1)G(x, y1 + η, t+ τ − τ2)R(y1,η, τ3)dy1dηdτ3dt.

(2.6)
We also define a modified Green’s function, G′(x, y1,η, τ − τ3), given by:

G′(x, y1,η, τ − τ3) =

∫∞
−∞

G(x, y1, t1)G(x, y1 + η, t1 + τ − τ3)dt1. (2.7)

Inserting equation 2.7 into equation 2.6, we have

p2(x, τ) =

∫∞
−∞

∫
V

∫
V
G′(x, y1,η, τ − τ3)R(y1,η, τ3)dy1dηdτ3. (2.8)

This equation can be equivalently expressed as:

p2(x, t) =

∫∞
−∞

∫
V

∫
V
G′(x, y,η, t− τ)R(y,η, τ)dydηdτ. (2.9)

Equation 2.9 gives an expression for the pressure autocorrelation as a function of a Green’s
function and of the cross-correlation of the source, R. The latter is a function of coordinate vector,
y, separation distance, η, and time delay, τ . Modelling this quantity is not a straightforward
task, and this has obliged authors in the past to add free parameters to calibrate their models.
The reason is that the modelling requires knowledge of the cross-correlation structure in all of
the volume V where the source is defined; the information about how it varies with all of the
components of y, η, and τ is usually not entirely available from experiments, or is limited to
certain regions of the jet. This difficulty is true to all acoustic analogies. Here we wish to show
that the modelling task is simplified by working in the frequency domain and concentrating
on a single azimuthal mode and low polar angles to the jet axis. This is made possible by the
homogeneity of the flow in the time and azimuthal directions.

The sound source model we consider is based on the Lighthill’s acoustic analogy,

1

c0

∂2p

∂t2
−∇2p= qij , (2.10)

where x denotes spatial coordinates, t is time, p is the pressure,c0 is the ambient speed of sound
and q is Lighthill’s tensor, given by [31],

qij =
∂2

∂xi∂xj
[ρuiuj − νij ] +

1

c20

∂2

∂t2
[p− c20ρ], (2.11)

where ρ is the density of the fluid, u is the velocity, and νij is the viscous term. Here we focus
only on the q11 term, which has been shown in previous studies to constitute an appropriate
simplification for calculation of sound radiation to low polar angles [44, 53, 55]. Moreover, we also
use the conclusions of the studies of Freund [5], Bodony and Lele [78] and Colonius and Freund
[6] to further simplify the source description. Freund [5] and Bodony and Lele [78] showed, by
means of DNS and LES simulations, respectively, that at low Strouhal numbers (St < 0.5) and
polar angles, noise generation is dominated by the linear part of Lighthill’s tensor in a Mach 0.9
jet; furthermore, they showed that over the same Strouhal-number and polar-angle range, the
momentum term, ρuiuj , is dominant over the entropic term, [p− c20ρ]. As for the viscous term,
Colonius and Freund [6] found it to be negligible to the sound field of a jet with a Reynolds
number as low as 2000. In light of these results, we choose to drop the viscous and entropic terms
and to only model the linearised part of the stress tensor. This compromises the performance
of the model at higher Strouhal numbers and polar angles. However, our main objective here
is to explore a simplified model with a view to providing insight into sound generation by
wavepackets, hence the main message of this study is not affected by these simplifications. The
Lightill stress tensor then reduces to
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q11 =
∂2

∂x2
[2ρū1u

′
1], (2.12)

where ū1 and u′1 are the streamwise mean and fluctuation velocities, respectively.
The solution to Lightill’s acoustic analogy for the m− th azimuthal pressure component in

frequency domain for an observer in the far field was given by Michalke [31],

pm(R, θ, ω) =
ime−ikaRk2a cos2 θ

2R

∫∫
Qm(x, r, ω)eikax

′ cos θJm(kar sin θ)rdrdx, (2.13)

where the observer is in polar coordinates and the source in cylindrical coordinates. ka is the
acoustic wavenumber, Jm is the Bessel function of first kind and order m. Q is the Fourier
transform of the argument of the differential operator of q11 and the double derivative was passed
to the Green’s function using the divergence theorem, as demonstrated by Goldstein [79].

The power spectral density of the pressure, which is the Fourier transform of the pressure
autocorrelation defined in equation 2.9, is then given by

〈pm(R, θ, ω)p∗m(R, θ, ω)〉= (−1)mi2m
k4a cos4 θ

4R2∫∫∫∫
〈Qm(x1, r1, ω)Q∗m(x2, r2, ω)〉eika cos θ(x1−x2)Jm(kar1 sin θ)Jm(kar2 sin θ)r1r2dr1dr2dx1dx2,

(2.14)

where the symbols 〈.〉 denote expected value. The quantity 〈Qm(x1, r1, ω)Q∗m(x2, r2, ω)〉 is
the cross-spectral density of the source and is equivalent to the Fourier transform of the
cross-correlation, R.

In this work we are interested in the m= 0 axisymmetric mode. For small values of the
argument of the Bessel function, kar sin θ= 2πStMr/D sin θ� 1, J0 is approximately 1, and the
Bessel function term can be neglected. Table 1 shows values of the argument of the Bessel function
for the range of Strouhal numbers, radial positions and polar angles we consider in this work. We
can see that the accuracy of the results at high angles, which is already limited by the linearisation
of the source, is clearly affected by neglecting the Bessel function. For St= 0.5 and higher, this
simplification begins to affect also low polar angles. More considerations about the limits to this
simplification and how it affects the present modelling strategy are made in section §5.

Table 1: Values of J0(2πStMr/D sin θ)

St= 0.3 St= 0.5 St= 0.7

θ= 20◦ θ= 90◦ θ= 20◦ θ= 90◦ θ= 20◦ θ= 90◦

r/D= 0.2 0.99 0.99 0.99 0.98 0.99 0.97
r/D= 1 0.98 0.86 0.95 0.64 0.91 0.36
r/D= 2 0.94 0.51 0.82 -0.06 0.67 -0.38

The expression for the axisymmetric component of the PSD then becomes:

〈p0(R, θ, ω)p∗0(R, θ, ω)〉= k4a cos4 θ

4R2∫∫∫∫
〈Q0(x1, r1, ω)Q∗0(x2, r2, ω)〉eika cos θ(x1−x2)r1r2dr1dr2dx1dx2.

(2.15)

Our approach then consists in using a line-source function, S(x1, x2, ω), to model the radially-
integrated source,
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∫∫
〈Q(x1, r1, ω)Q∗(x2, r2, ω)〉r1r2dr1dr2 ≈ S(x1, x2, ω). (2.16)

The subscripts referring to azimuthal mode have been dropped for convenience, but hereafter,
all of the flow and acoustic information discussed refers to the axisymmetric mode.

We can see the modelling advantage of only taking into account the m= 0 azimuthal mode
and concentrating at low polar angles and Strouhal numbers: instead of having to model the
full cross-spectral density (or the cross-correlation, its counterpart in time domain) and how it
varies with source position and separation distance (equation 2.9), here we are left with the much
simpler task of modelling the two-point statistics for a pair of points (x1, x2) in the streamwise
direction. It is worth emphasising that this approach is only possible due to the significant amount
of information provided by the LES, which contains the radial structure of the source and thus
allows the radial integration of equation 2.16.

The present modelling methodology is different from past studies that used a wavepacket line-
source approach [44, 51, 58, 80] to the extent that we do not chose a specific radial position from
which to extract flow information and build the model; instead, we model the radially-integrated
Lightill stress tensor, so that equation 2.16 uses all the information available from the numerical
database and yields a line-source model that contains information about the radial structure of
the source.

(b) Wavepacket source model
Here we use modified versions of the model of Cavalieri and Agarwal [48] for the source,
which comprises a line-source wavepacket of CSD, S(x1, x2, ω), with modulated amplitude and
coherence. The coherence and amplitude envelopes were modified so as to better represent the
flow information extracted from the simulation. For the coherence envelope (last term on the
right-hand side of equation 2.17) we used a model proposed by Jordan et al. [81] and O’Hara et al.
[82], which consists in the convolution of Gaussian and exponential functions, as opposed of the
Gaussian used by Cavalieri and Agarwal [48]. The reason for this, as discussed in §4, is that the
convolution allows an accurate description of coherence at small separation distances. Moreover,
two envelope functions have been used: a standard Gaussian used in pas studies [44, 48, 53, 54]
and and a modified Gaussian that has an asymmetric decay rate. Asymmetric wavepacket models
have also been explored by Papamouschou [83] and Koenig et al. [84]. The expression for the CSD
with a Gaussian envelope is given as

S(x1, x2, ω) =A(ω)exp[ikh(ω)(x1 − x2)]

exp
[
− (x1 − x0(ω))2

L(ω)2
− (x2 − x0(ω))2

L(ω)2

]
γ2(x1, x2, ω)

(2.17)

where kh(ω) is the hydrodynamic wavenumber,L(ω) is the characteristic wavepacket length, and
γ2(x1, x2, ω) is the coherence function. A(ω) is a term that sets the amplitude of the source. It is
taken as the maximum amplitude of the integrated source tensor, which occurs at the streamwise
position corresponding to the center of the wavepacket, x0(ω), which is itself a function of
frequency.

The coherence function, γ2(x1, x2, ω), is given as

γ2(x1, x2, ω) =
1

2Lc1

∫∞
−∞

e
− |x1−x2−η|Lc1 e

− (x1−x2)2

Lc2
2

dη, (2.18)

where Lc1 and Lc2 are the lengthscales associated with the exponential and Gaussian functions,
respectively and are function of ω.

A Gaussian function provides a good approximation for the amplification part of the
amplitude shapes (this is shown in section §4, figure 4). However, the decaying part is asymmetric
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and a Gaussian is not able to accurately represent the wavepacket envelope. Thus, an asymmetric
Gaussian envelope has also been used to fit the envelopes, given by the function

f(x) =
1

Las
ex

2/L2
aserfc

[
αx√
2Las

]
, (2.19)

where Las is a characteristic length of the asymmetric envelope, α is a parameter controlling
the decay part of the function and erfc is the complementary error function. The CSD with the
asymmetric envelope becomes

S(x1, x2, ω) =A(ω)
1

Las(ω)2
exp[ikh(ω)(x1 − x2)]exp

[
− (x1 − x0(ω))2

Las(ω)2
− (x2 − x0(ω))2

Las(ω)2

]
erfc

[
α(ω)(x1 − x0(ω))√

2Las(ω)

]
erfc

[
α(ω)(x2 − x0(ω))√

2Las(ω)

]
γ2(x1, x2, ω).

(2.20)

Both models are based on two-point statistics of the flow, since these take into account
coherence decay. By making Lc1,2 →∞, one eliminates the two-point dependence and obtains
a model based on single-point statistics. The parameters highlighted in equations 2.17 and 2.20 in
red may then be educed from the simulation database after performing the integrals in the radial
direction.

Therefore, using equations 2.17 or 2.20 once the parameters have been educed, one can
evaluate the far-field radiation of the model source through the following equation:

p(R, θ, ω)p∗(R, θ, ω) =
k4a cos4 θ

4R2

∫∫
S(x1, x2, ω)eika cos θ(x1−x2)dx1dx2. (2.21)

It is worth emphasising that this model is contained in the more general source description
given by equation 2.9, and explored, for example, by Kharavan et al. [26], Tam and Auriault
[25], Self [21], Goldstein and Kharavan [22], Goldstein and Leib [23] and Leib and Goldstein [24],
Kopiev and Chernyshev [65]. Wavepackets, like the source models proposed in those studies, are
also of quadrupolar nature, but are characterised by longer space scales. By focusing on these
specific flow entities, given their now demonstrated importance for sound radiation, we obtain a
simplified line-source description that requires a relatively small number of parameters.

3. Databases
A large-eddy simulation of an isothermal Ma= 0.4 turbulent jet has been performed using the
compressible solver ’Charles’ [85]. The nozzle geometry and flow parameters reproduce the
experimental setup of the Bruit et Vent noise facility of the PPRIME institute, located in Poitiers,
France, and studied in previous studies [19, 35, 44]. The Reynolds number based on the jet
diameter is 4.6× 105, and synthetic-turbulence is used in the simulation to mimic the effect of the
boundary layer trip present in the experiment at an streamwise distance of x/D= 2.5 upstream
of the jet exit. The simulation has been run for a total time of 2000 acoustic time units, where the
acoustic time is defined as tc0/D. The unstructured grid was interpolated to a cylindrical grid that
covers a volume extending from 0 6 x/D6 30, 0 6 r/D6 6, 0 6Φ6 2π. Schmidt et al. [85] used
this same database to perform spectral proper orthogonal decomposition and resolvent analysis
with a view to study the low-rank behaviour of turbulent jets. More details about the numerical
method and meshing strategy can be found in A. et al. [46].

The acoustic measurements were performed with an azimuthal ring array of diameter 14.3D
that contained 18 microphones. It is the same array previously used by Piantanida et al. [56]. The
ring was displaced in the axial position in the range 0D≤ x≤ 39D so as to vary the polar angle,
covering a cylindrical surface. This configuration allowed the decomposition of the pressure
signal into Fourier modes up to m= 9. A schematic of the acoustic experiment is shown in figure
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Figure 1: Schematic of microphone array.

1. Both flow and acoustic data have been Fourier transformed in the azimuthal direction in order
to extract the m= 0, axisymmetric mode.

Figure 2 compares the LES with experimental data for the same jet: flow statistics are compared
with PIV data from Jaunet et al. [19] and sound pressure levels of the full sound field as a function
of polar angle are compared with measurements made using the experimental setup described
above. The sound field is computed from the LES by means of a permeable formulation of the
Ffowcs Williams & Hawking formulation in frequency domain [46, 64]. Mean flow and rms
profiles are in good agreement with the PIV data. The experimental data seems to underpredict
the rms levels of the LES near the nozzle, which can be explained by the low level of the
magnification factor of the PIV at this position, as discussed by Jaunet et al. [19]. Directivities
computed from the simulation are also in good agreement with experimental data.

4. Parameter Eduction
In what follows we describe the procedure adopted in order to educe the parameters necessary to
build the CSD models given by equations 2.17 and 2.20 from the LES data. The optimal parameters
were selected using the MATLAB R© fminsearch routine, a nonlinear least-squares algorithm in
which the error between data and model was minimised using the Nelder-Mead simplex method.
The data consists of the full source CSD, 〈Q(x1, r1, ω)Q∗(x2, r2, ω)〉, dependent on two axial
coordinates, two radial coordinates and frequency. Prior to the eduction, the data is radially
integrated twice and the model is created based on the line-source that results from this operation,
given by equation 2.16. Thus, all of the parameters have been educed for the integrated source,
and the information regarding the radial structure of the source is, so to speak, contained in these
and in the amplitude term. Since all the radial structure of the source available is taken into
account, it is not necessary to pick a specific radial position at which to educe the parameters,
unlike other studies that use a line-source approach [44, 51, 58, 80].

Figure 3 shows the real part of the radially-integrated CSD, S(x1, x2, ω), issued from the LES
for 0.3 6 St6 0.7 with the reference point at peak the wavepacket, x0. The wave-like character of
the source term of Lighthill’s acoustic analogy is evident, which motivates the modelling efforts
of the present study.

(a) Wavepacket characteristic length, L
The wavepacket characteristic length, L, was extracted by fitting the PSD of the velocity
fluctuation signal with an envelope function. Two envelopes were used: one with a Gaussian
form, which corresponds to the model of Cavalieri and Agarwal [48] and a second one with an
asymmetric Gaussian form, which accounts for different growth and decay rates. The Gaussian
envelope may be obtained by making x2 = x1 in equation 2.17.
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Figure 2: Top row: mean flow (left) and rms (right) radial profiles obtained from PIV (points)
and LES (lines). Profiles at three streamwise stations are shown: x/D= 2.5 (solid line and
squares); x/D= 4.5 (dashed-line and circles); x/D= 8 (dash-dotted-line and triangles). Bottom
row: directivity plots for three Strouhal numbers with observer in the cylindrical surface delimited
by the microphone array (figure 1). Circles: experimental data; solid line: LES far field prediction
computed using the Ffowcs Williams & Hawkings equation.
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Figure 3: Radially-integrated CSD issued from the LES for different Strouhal numbers. Reference
point is at x0(ω). Levels have been normalised by the maximum value at each Strouhal number.

Ssym(x1, ω) =A(ω)exp
[
−2(x1 − x0(ω))2

L(ω)2

]
, (4.1)
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Figure 4: PSD of the source and fitted Gaussian and asymmetric envelopes.

where the amplitude term is the direct result of the double radial integration performed with
equation 2.16. This function provides a reasonable fit of radially-integrated power spectral
densities for the growth part of the wavepacket; however, downstream of the peak the agreement
becomes poorer, and the Gaussian fit does not represent the data correctly. Hence, here we
propose a modified Gaussian function that takes into account the asymmetry of the wavepacket.
This function can be obtained by setting x2 = x1 in equation 2.20,

Sasym(x1, ω) =A(ω)
1

Las(ω)2
exp

[
−2(x1 − x0(ω))2

Las(ω)2

]
erfc2

[
α(x1 − x0(ω))√

2Las(ω)

]
. (4.2)

One can observe, in Figure 4, that the asymmetric envelope provides a better match for the data
in the decaying part on the envelope, where the Gaussian envelope significantly underpredicts
the data. The acoustic radiation of the wavepacket model using both envelopes will be discussed
in §5.

(b) Hydrodynamic Wavenumber, kh
The hydrodynamic wavenumber and the phase speed are related through

Uc(x1, ω) =
ω

kh
= ω

(
∂φ

∂x2

)−1
, (4.3)

where φ(x1, x2) is the phase shift, obtained as the argument of the CSD. This expression gives
the phase speed for reference point x1 as a function of the rate of change of φ with the separation
distance from two-points. We found this rate of change to be approximately constant in the LES
data, so that the phase speed was educed from the simulation database by fitting the phase with
a linear regression. Figure 5 shows the space-frequency variation of the phase speed. One can
observe that the phase speed increases with increasing streamwise position and converges to
a value of approximately Uc/Uj = 0.77. Harper-Bourne [12] and Morris and Zaman [13] have
used a power-law of the form Uc/Uj = a lnSt+ b to model the variation of the phase speed with
Strouhal number. Here we use the same function to take into account the variation of phase speed
with reference position, x1. The fit can also be seen in figure 5.
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Figure 5: Phase velocity as a function of streamwise reference point, x1, for different Strouhal
numbers and power-law fit.

(c) Coherence Lengths, Lc1 ,Lc2

The magnitude-squared coherence of the radially-integrated source term S(x1, x2, ω), is given as,

γ2(x1, x2, ω) =
|〈S(x1, x2, ω)〉|2〈

|S(x1, ω)|2
〉〈
|S(x2, ω)|2

〉 , (4.4)

where S(x1, ω) and S(x2, ω) are the PSDs at points x1 and x2, respectively.
Jaunet et al. [19] used an exponential function to fit coherence decay for a Ma= 0.4; however,

this function does no provide a correct description of coherence for values of separation distance
∆x→ 0. Jordan et al. [81] and O’Hara et al. [82] have proposed, for the two-point correlation,
a function given by the convolution of an exponential and a Gaussian. This function has the
interesting property of keeping the decay rate of an exponential whilst providing a zero slope
at ∆x= 0. In this work we use the function of Jordan et al. [81], given by equation 2.18, to fit
the coherence of the LES data and obtain the two parameters that control the decay rate of the
curve, Lc1 and Lc2 . Figure 6 shows the magnitude-squared coherence as a function of streamwise
separation distance for various Strouhal numbers and the fitted function. The reference position
was set is the wavepacket peak, x0. The zero slope at ∆x= 0 can clearly be observed in the data,
whence the use of the convolution function. Tam and Auriault [25] and Kopiev and Chernyshev
[86] have shown that a sharp behaviour of the correlation function near ∆x= 0 is important for a
correct modelling of the broad-band spectra typical of high polar angles. Since this feature is not
present in the T11 term of Lighthill’s tensor, here we argue that it is somewhat less important for
sound radiation at low polar angles to the jet axis.

The decay rate of coherence has been found to vary considerably with reference position,
x1. Figure 7 shows the variation of Lc1 , the parameter that controls the global decay rate of
coherence, as a function of x1. This spatial dependence has been taken into account by fitting
the coherence length with high order polynomials. Lc2 , which corrects the slope of coherence
at small separation distances, has been found to be less sensitive to streamwise coordinate. The
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Figure 6: Magnitude-squared coherence of the LES data and fitted curves.

search for a general scaling for coherence lengths and an expression for their space-frequency
dependence is something that will be considered in future work.
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Figure 7: Lc1 as a function of reference point for and polynomial fitting for various Strouhal
numbers.

(d) Comparison of educed parameters with previous wavepacket models
Cavalieri et al. [44] used a Gaussian wavepacket source model based on single-point statistics of
the sound field; coherence decay was thus not accounted for. As mentioned in the introduction,
because of the ill-posed nature of this inverse problem, one may find more than one set of
parameters that produce a source consistent with sound radiation from experimental results.
These source parameters may not correspond to those of the jet however; the fact that the single-
point model lacks coherence decay means that its effect is, so to speak, ‘hidden’ in the set of
parameters found such that the correct sound field is obtained. Indeed, the value found by
Cavalieri et al. [44] for the source characteristic length L/D is underestimated with respect to
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the values educed from the LES data, as shown in table 2; since that work did not consider
coherence decay in the source, it is possible that the lower value of L/D in Cavalieri et al. [44]
compensates for the effect of the coherence lengthscale in an effective length (such as the modified
length Lm in Cavalieri and Agarwal [48]). Also, the phase speeds identified in the LES data are
significantly lower than that found from the stability analysis in that work, which was based on a
mean velocity profile in the near-nozzle region, where, as can be seen in figure 5, the phase speeds
are considerably higher than those observed in most other regions of the jet. In what follows, we
compare the single-point ‘inverse’ model of Cavalieri et al. [44] with the ‘direct’ two-point model
considered in this work at St= 0.2.

Table 2: Wavepacket parameters at St= 0.2, educed at the wavepacket peak, x0.

Present Study Cavalieri et al. [44]
khL L/D Uc/Uj Lc1/D khL L/D Uc/Uj Lc1/D

8.97 4.52 0.68 2.49 6.50 3.10 0.6, 0.97 -

5. Acoustic radiation of single- and two-point source models
Here we compare the acoustic fields generated by single and two-point wavepacket models
through equation 2.21, where the single-point model is computed by setting Lc1,2 =∞ in
equation 2.17, considering the model with a Gaussian envelope. Figure 8 shows the SPL in dB/St
generated by both models, using Gaussian amplitude envelopes, compared with experimental
data for the m= 0 azimuthal mode at Strouhal numbers St= 0.3− 0.7. Despite the implications
of only modelling the linear part of the Ligthill tensor at high polar angles, as evoked in section
§2, we show the results up to 90◦. It is clear that, if coherence decay is neglected, as is the
case for the single-point model, the SPL generated significantly underpredicts the experimental
data. Other studies based on dynamic wavepacket modelling have come to a similar conclusion
[41, 47, 49, 50]. This further illustrates that the effect of coherence decay was somewhat hidden in,
or compensated for by, the single-point parameters estimated from the acoustic field by Cavalieri
et al. [44]. It must be emphasised that the acoustic data is measured with the observer on the
cylindrical surface delimited by the microphone array. This does not correspond to a true polar
reference frame, since the distance between source and observer decreases with increasing polar
angle; for this reason the SPL decay rate with polar angle is smaller than that observed by [44].

In order to understand the effect of coherence on the source structure and sound radiation
efficiency, it is interesting to look at the CSD in wavenumber space. Figure 9 shows a comparison
of the spatial Fourier transform of the CSD of a source with unit coherence and another with
coherence decay at St= 0.3. kx1 and kx2 are wavenumbers corresponding to the x1 and x2
directions, respectively. From equation 2.21, which can be recognised as a double spatial Fourier
transform, we realise that only the wavenumbers that are in the range |kx1 | ≤ ka and |kx2 | ≤ ka
contribute to sound radiation. From the relation of wavenumber and phase speed given by
equation 4.3, we have,

Uc1 > c, (5.1)

Uc2 > c (5.2)

where c is the sound speed and Uc1 and Uc2 are the phase speeds associated with wavenumbers
kx1 and kx2 , respectively. This shows that only wavenumbers with supersonic associated phase
speeds contribute to far-field radiation.

These conditions can also be written as
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Figure 8: Comparison between sound radiated by single- and two-point wavepacket models and
experimental data. The models have a Gaussian amplitude envelope.

|kx1 |
kh

<Mc, (5.3)

|kx2 |
kh

<Mc, (5.4)

as shown by Cavalieri and Agarwal [48]. The wavenumbers respecting this inequality have been
referred to as “acoustically matched” [34, 53]. The radiating region of the spectrum is illustrated
in figure 9 by the square delimited by the acoustic wavenumber. One can observe that, for the
source with no coherence decay, all of the significant energy of the source is contained outside
of the radiating region (figure 9a). We thus understand the significant difference in the acoustic
efficiency. The effect of coherence decay is to stretch the source in wavenumber space, such that a
more significant part of its energy is contained in the radiating part of the spectrum (figure 9b).

Although the two-point model with Gaussian amplitude envelope produces acoustic results
that are much closer to the data, there are some discrepancies in SPL and directivity with respect
to the experimental data, specially at low St. In what follows we explore the differences between
sound radiation of the Gaussian and asymmetric wavepackets. Figure 10 compares the SPL
generated by both models with the acoustic data.

We also show the sound radiation obtained by directly applying equation 2.15 on the linearised
q11 term directly computed from the LES data. These results (the black solid lines in figure 10)
can be thought of as the best ones that may be attained by the model using the current approach,
because they correspond to the fully-computed CSD matrix, without any modelling. We can see
the agreement between the sound radiation computed with this method and the acoustic data is
quite good up to St= 0.5. Beyond that St, overpredictions of approximately 5dB are observed.
This breakdown at higher St can be explained by the simplification made in equation 2.15, in
neglecting the radial structure of J0(kar sin θ). This term, named ‘jet thickness’ by Michalke [31]
accounts for radial interferences of the sources within the jet, and its neglect yields an increase in
sound radiation. As shown in table 1, neglecting the structure of the Bessel function starts to be
problematic at low polar angles for St > 0.5; for instance, taking r/D= 2 as the integration limit
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(a) Lc1,2 =∞ (b) Lc1,2 =Lc1,2,num

Figure 9: Fourier transform of CSD in wavenumber space at St= 0.3. (a): source with unit
coherence; (b): source with coherence modulation. Levels are in dB scale.

of equation 2.14 leads to an overestimation of approximately 20% in J0(kar sin θ) for low θ . The
results of the LES sound radiation depicted in figure 10 suggest that St= 0.5 is indeed the upper
limit of the methodology we consider here.

 50

 60

 70

 80

 90

 20  30  40  50  60  70  80

(a) St=0.3

S
P

L
 (

d
B

/S
t)

θ(°)

 50

 60

 70

 80

 90

 20  30  40  50  60  70  80

(b) St=0.4

θ(°)

 50

 60

 70

 80

 90

 20  30  40  50  60  70  80

(c) St=0.5

θ(°)

 50

 60

 70

 80

 90

 20  30  40  50  60  70  80

(d) St=0.6

S
P

L
 (

d
B

/S
t)

θ(°)

 50

 60

 70

 80

 90

 20  30  40  50  60  70  80

(e) St=0.7

θ(°)

Gaussian wavepacket

Asymmetric wavepacket

Monte Carlo

Experimental data

LES

Figure 10: Sound radiation by sources with Gaussian an asymmetric amplitude envelopes. The
error bars are centered at the mode of the sample values computed in the Monte Carlo simulation.

It may also be observed that the asymmetric wavepacket model provides better matches with
the data, specially at lower St, both in terms of amplitude and directivity. The sound radiation
of the model is within 2dB of the data to θ= 50◦. This reveals that a correct representation of
the envelope is also a key aspect to be considered in order to make accurate acoustic predictions.
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As St is increased the difference between the two types of envelopes become less marked, as
seen in figure 4, and the results of the two models become closer. At high polar angles, the
agreement breaks down due to the simplifications made in the derivation of the model but also
due to the lack of the other terms of the Lighthill stress tensor. As a matter of fact, one should
expect the importance of the q11 term to be reduced with increasing polar angle due to the cos4 θ

directivity factor in equation 2.21. Modelling of these terms, which is beyond the scope of the
work presented, is something to be considered for future work.

In order to assess the robustness of the model regarding its parameters, a Monte Carlo
simulation was carried out for the model with the asymmetric envelope. We assumed that the
parameters could vary at the same time by ± 10% about the values educed from the LES and
that they followed a normal probability distribution; then the sound field was computed for 1000
random combinations of the parameters. The results of the Monte Carlo simulation can also be
seen in figure 10, which shows the error bars centered around the most frequent value found
in the simulation. It can be seen that the results of the asymmetric model are well within the
range delimited by the error bars and are close to the most frequent value of the sample values
computed. The maximum error found was approximately 3dB up to θ= 50◦, and it increases in
the polar range at which the model is no longer suitable for making acoustic predictions. These
results reveal a certain robustness and the capacity of making accurate acoustic predictions even
if numerical errors were to introduce errors in the eduction of the parameters.

The results of the kinematic models identify the parameters that dynamic models should be
crafted to correctly predict. The phase speed is theoretically available from linear stability models.
But the decay rate of the amplitude envelope, the coherence decay and the global amplitude
are not readily available from such calculations. These parameters can only be determined by
including an inhomogeneous term in the linearised equations, in which non-linear forcing will fix
amplitude and determine the decay rate and coherence decay. In this framework, the resolvent
of the linear operator is a key element, that determines how non-linear interactions force the
linear waves. Studies [73, 74] have shown that there exists a close link between the optimal
forcing and response modes of the resolvent operator and SPOD modes of wavepacket CSD.
We keep this in mind in the following section where we perform SPOD of the source CSD with
the asymmetric envelope (the one that gives more accurate acoustic predictions) with a view to
exploring the possibility of low-rank modelling of the key source parameters highlighted by the
results presented up to this point. Hereafter we shall concentrate our analysis up to St= 0.5, in
the range where our methodology has been shown to provide accurate sound predictions.

6. Spectral Proper Orthogonal Decomposition

(a) Equations
The Proper Orthogonal Decomposition seeks a set of linear independent functions constituting a
basis that best represents a given dataset in terms of fluctuation energy [87, 88]. For a turbulent
flow, the POD functions are found through the maximisation of the mean-square projection on
the velocity field, which is performed via the integral Fredholm equation, as shown by Lumley
[87] ∫

Sûû(x1, x2)uω(x2)dx2 = σuω(x1). (6.1)

In the case of SPOD, the kernel Sûû is the cross-spectral density matrix of the field of interest,
which is Hermitian by construction. The Fredholm equation can then be recast as an equivalent
eigenvalue decomposition:

Sûû =UΣU−1. (6.2)

Since Sûû is Hermitian, U is a unitary matrix, so that UHU = I and UH =U−1. The
eingenmode decomposition may then be rewritten as,



19

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

Sûû =UΣUH , (6.3)

which corresponds to the singular value decomposition of Sûû.
Since the eigenvectors are orthogonal to each other, it is possible to construct a rank-N

representation of the CSD as

S̃ûû =

N∑
k=1

ukσku
H
k , (6.4)

where σk are the eigenvalues and uk the eigenvectors of Sûû.
The elements of the rank-N representation of the CSD are given as,

[
S̃ûû

]
x1,x2

=

N∑
k=1

uk(x1)σku
H
k (x2). (6.5)

The rank-N representation of the coherence function is given as the rank-N CSD normalized
by the rank-N PSD’s at each of the points

γ̃2(x1, x2) =

∣∣∣∑N
k=1 uk(x1)σku

H
k (x2)

∣∣∣2[∑N
k=1 uk(x1)σku

H
k (x1)

] [∑N
k=1 uk(x2)σku

H
k (x2)

] . (6.6)

We can obtain the rank-1 coherence as,

γ̃2(x1, x2) =

∣∣∣u1(x1)σ1u
H
1 (x2)

∣∣∣2[
u1(x1)σ1u

H
1 (x1)

] [
u1(x2)σ1u

H
1 (x2)

] =
|u1(x1)|2 σ21 |u1(x2)|2

|u1(x1)|2 σ21 |u1(x2)|2
= 1, (6.7)

showing that any single-mode representation of the CSD leads to unit coherence. In order to
obtain two-point coherences lower than one, a superposition of N > 1 modes is necessary.

The far-field radiation of a rank-N CSD may be assessed via equation 2.21 by substituting the
source term with the low-order representation,

p̃(R, θ, ω)p̃∗(R, θ, ω) =
k4a cos4 θ

4R2

∫∫ [
S̃ûû

]
x1,x2

eika cos θ(x1−x2)dx1dx2. (6.8)

(b) Envelopes and phases
SPOD was performed on the CSD issuing from both the LES data and the model. For the sake of
compactness, throughout the remainder of the paper we shall concentrate on results of the SPOD
carried out at St= 0.3 and St= 0.5. However, results for St= 0.4 have similar behaviour for all
the plots in this and in the subsequent sections. Figure 11 shows the amplitude envelopes of the
first four modes. The amplitudes have been normalised in order to allow qualitative comparisons
between the modes of the two CSD’s. The first mode is a typical wavepacket with a nearly
gaussian envelope and subsequent modes have envelopes with successively larger number of
lobes; for instance, kth mode has k lobes and k − 1 minima points; this reflects the orthogonality
of the basis that is formed by the modes. The spatial structure of the modes of the model CSD
are in good agreement with those of the CSD issuing from the LES, especially for the first three
modes. As the order of the model is increased, the tendency is that the agreement deteriorates,
because a higher spatial resolution is required for the modes to be statistically converged [89].

The phases of the modes are shown in Figure 12. The phase of the first mode displays a
typical convective behaviour characterised by a straight line. The higher-order modes have π
phase jumps at axial positions corresponding to the minima positions of the envelopes; these
characteristics stem from the orthogonality of the basis formed by the eigenfunctions. While they
cannot be directly related to any specific flow structures, one can interpret the higher-order SPOD
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Figure 11: Structure of first 4 SPOD modes. Solid line represent the modes of the model CSD and
dashed lines the modes of the CSD issued from the LES. The amplitudes are arbitrary and are in
linear scale.

modes and their features as directions necessary to describe flow structures with more complex,
jittery behaviour; therefore, they play a role in coherence decay by introducing a phase ‘blur’
between different axial stations. The phases of the modes of LES data also contain similar phase
jumps.
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Figure 12: Phase of first 4 SPOD modes. Solid line represents the phases of the model CSD and
dashed lines the phases of the CSD issued from LES data.

Furthermore, we can see from figure 11 that there is a certain characteristic lengthscale that can
be associated with each mode by taking the distance between successive lobes; this lengthscale
decreases with increasing mode number, suggesting that higher-order modes are associated with
smaller scale activity.

As discussed in the introduction, the link between SPOD modes and resolvent modes has
been explored by other studies [73–75], and the results indicate high correlations between
leading SPOD and resolvent modes, suggesting that coherence decay is underpinned by a rather
disorganised, uncorrelated background turbulence forcing the linearised equations of motion,
and that the SPOD modes are structures that arise in response to this forcing and whose
organisation is imposed by the linear operator. The envelopes and phases of the modes shown
in Figures 11 and 12 suggest that background forcing leads to the multi-lobed structure and
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phase jumps manifest in the SPOD modes, which describe acoustically-important degrees of
wavepacket freedom and that cannot be captured using a standard linear stability analysis that
neglects the forcing due to nonlinearities. We now address the question of the rank necessary to
describe these acoustically important dynamics, by computing sound fields using truncated CSD
source models, and by evaluating the effect of truncation both on the radiated sound and the
source parameters that underpin this.

(c) Energy convergence
The convergence of the SPOD regarding the energy of the modes may be evaluated through

∑k
i=1 σi∑N
i=1 σi

, (6.9)

where the sum of the energy captured by the first k eigenvalues is normalised by the sum of
the total energy. Figure 13 shows the energy convergence for the model CSD for 0.3≤ St≤ 0.5.
Between 10 and 20 modes are required to recover the energy of the full CSD, and it can be
observed that the number of modes required to capture all of the energy contained in the CSD
decreases as the Strouhal number is increased. This might lead to the conclusion that a low-rank
behaviour only becomes pronounced with increasing Strouhal number. However, as can be seen
in Figure 9, most of the energy of the source lies outside the radiating region in wavenumber
space, so that the number of modes required to recover the energy is not necessarily the same
to capture the important acoustic features of the CSD. Thus, in the next section we analyse the
low-rank behaviour of the model regarding its acoustic radiation.
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Figure 13: Cumulative energy of the first k eigenvalues normalised by the sum of theN computed
eigenvalues.

(d) Low-rank models
We assess the convergence of low-rank approximations of the CSD of the kinematic source
model with respect to acoustic radiation, and to two sound-source parameters considered earlier:
amplitude envelope and coherence decay, which are not correctly captured by linear stability
models.

Figure 14 shows the convergence of the envelopes of low-rank models with increasing
numbers of modes with respect to the full CSD. We see that a one-mode representation
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underestimates the peak amplitude by approximately 20% ; nevertheless, we note that the low-
rank models quickly converge to the amplitude envelope of the full CSD. Only 7 to 10 modes the
reduced-order model suffice to capture the envelope length and amplitude.
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Figure 14: Wavepacket envelope convergence of different low-rank approximations. The levels
have been normalised by the maximum value of the full source.

As shown in equation 6.7 equation, a low-rank representation of the CSD with only one mode
results in unit coherence and so a higher-rank model is essential for this aspect of the wavepacket
source behaviour. This is illustrated in Figure 15, which shows the coherence envelopes of low-
rank approximations with up to 10 modes, with reference point at the center of the wavepacket,
x0. By successively adding more modes the coherence decays more sharply and approaches the
envelope of the full CSD.
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Figure 15: Coherence convergence of different low-rank approximations. Reference point is at x0.

The SPL of a low-rank approximation can be computed using equation 6.8. We note that
the number of modes needed to recover the acoustic radiation of the full CSD increases with
increasing Strouhal number. Nevertheless, for the Strouhal numbers considered, a low-rank
representation of the source with 10 modes was sufficient to recover the acoustic efficiency of
the full source model at low polar angles, as seen in Figure 16. Due to its unit coherence, a low-
rank model with only one mode has a very low acoustic efficiency, similar to the single-point
wavepacket, as one can see by comparing Figures 8 and 16.
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Figure 16: Effect of cumulative SPOD modes on far-field radiation by the wavepacket source.

10 modes is less than the number of modes necessary to recover all of the energy contained in
the CSD (Figure 13) at lower Strouhal numbers (St6 0.3). This suggests that, at these Strouhal
numbers, part of the energy is redundant from an acoustic point of view, and the correct
representation of the wavepacket parameters is more relevant to sound radiation. These results
reveal that this model source, which has been shown to produce the correct sound field at
low polar angles, is relatively low-rank; wavepacket traits relevant to sound radiation, namely,
coherence decay and envelope characteristic lengths, can be recovered with only a few SPOD
modes.

7. Conclusions
The kinematic-sound source model proposed by Cavalieri and Agarwal [48] based on two-point
statistics has been studied in order to get further insight into wavepacket parameters important
to sound radiation. Data from a large-eddy simulation performed using the flow solver ‘Charles’
[85] was used to educe the physical parameters necessary to compute the sound radiation by the
model source, namely: the wavepacket characteristic lengthscales, L and La, the position where
the envelope reaches its maximum, x0, the envelope decay rate parameter, α, the hydrodynamic
wavenumber, kh, and the coherence length scales, Lc1,2 .

Unlike past studies based on a line-source approach [44, 51, 58, 80], we choose to take account
of the radial structure of the source. And unlike Cavalieri et al. [44], we educe the source
parameters directly from the two-point velocity measurements instead of estimating single-point
parameters from the sound field, following the approach of previous studies [11, 12, 21–24]. The
single-point model does not account for coherence decay, and thus the single-point parameters
inferred from the acoustic field do not correspond to those educed from flow data, as shown
in Table 2. Due to the lack of coherence modulation in the single-point formulation, the correct
source parameters can be considered to have been hidden in, or compensated for by, those
inferred from the sound field; this highlights the caution that is necessary when using inverse
approaches, as different source fields can lead to quite similar acoustic radiation. Using the
parameters educed from LES data to animate the model, it was possible to compute the acoustic
field through equation 2.21. The methodology presented here requires full-field data necessary to
characterise the three-dimensional structure of the CSD matrix, which is at the core of Lighthill’s
acoustic analogy. This data can be obtained for instance, through a high-fidelity simulation with
converged two-point statistics, as the one we use; or alternatively, it can be obtained from an
experiment involving simultaneous measurements in two-different flow planes, as the one carried
out by Jaunet et al. [19]. In the absence of full-field data, simplifying assumptions about the
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structure of the CSD matrix have to be done, which can lead to the use of empirical constants
to calibrate the source.

The results reveal the key importance of both coherence decay and envelope shape for
wavepacket sound radiation. They show that, if coherence decay is neglected, most of the energy
of the model source lies outside of region of the spectrum corresponding to acoustically-matched
wavenumbers, and thus the single-point wavepacket has a very low acoustic efficiency. These
results highlight the importance of coherence decay, the frequency-domain manifestation of jitter,
for jet-noise modelling, which has been evoked in previous studies [41, 47, 51, 52].

Furthermore, it has been shown that the asymmetry of the wavepacket envelope is also
of key importance for an accurate sound prediction. An asymmetric envelope, which better
represents flow data, produces sound levels closer to experimental results at low polar angles,
especially at low Strouhal numbers. For St > 0.5 the model overpredicts the data due to
the acoustic compactness assumption, which amounts to neglecting the radial structure of
the Bessel function,J0(kar sin θ), in the far field radiation equation. These observations give
insight regarding perspectives for dynamic wavepacket models to predict jet noise: although
the standard, unforced linear models successfully capture the phase speed and the amplitude
envelope up to the point where the Kelvin-Helmholtz mode becomes stable [35, 40, 41], they
underpredict the amplitude further downstream and do not contain information regarding
coherence decay, making an accurate noise prediction impossible; on the other hand, other studies
have shown that these issues may be overcome by use a forcing term in the linearised equations
[90]. This and the fact that forced linear stability models can determine the amplitude of the
fluctuations make them more suitable to describe sound generation mechanisms.

A Spectral Proper Orthogonal Decomposition of the model CSD was performed with a view
to exploring the possibility of constructing a reduced-rank source model capable of capturing the
acoustically-important parameters. This is further motivated by the recently demonstrated link
between SPOD modes and optimal resolvent response modes that arise when the linear stability
models are considered in the presence of stochastic forcing [75].

An analysis of eigenvalue convergence reveals that approximately 10 to 20 modes are
necessary to capture the total energy of the CSD, the number of modes decreasing with increasing
Strouhal number. On the other hand, only 10 modes are necessary to recover the most important
traits for sound radiation, namely the envelope shape and coherence envelopes. This reveals that
the acoustically-important features can be reproduced with a low-rank model.
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