
HAL Id: hal-02348828
https://hal.science/hal-02348828

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Eventually Safe Languages
Simon Iosti, Denis Kuperberg

To cite this version:
Simon Iosti, Denis Kuperberg. Eventually Safe Languages. Developments in Language Theory, Aug
2019, Varsovie, Poland. pp.192-205, �10.1007/978-3-030-24886-4_14�. �hal-02348828�

https://hal.science/hal-02348828
https://hal.archives-ouvertes.fr

Eventually Safe Languages

Simon Iosti1 and Denis Kuperberg2

1 Verimag, Université Grenoble-Alpes, France
2 CNRS, LIP, ENS Lyon, France

Abstract. Good-for-Games (GFG) automata constitute a sound alter-
native to determinism as a way to model specifications in the Church
synthesis problem. Typically, inputs for the synthesis problem are in the
form of LTL formulas. However, the only known examples where GFG
automata present an exponential gap in succinctness compared to deter-
ministic ones are not LTL-definable. We show that GFG automata still
enjoy exponential succinctness for LTL-definable languages. We introduce
a class of properties called “eventually safe” together with a specification
language EνTL for this class. We finally give an algorithm to produce a
Good-for-Games automaton from any EνTL formula, thereby allowing
synthesis for eventually safe properties.

1 Introduction

Synthesis is one of the most classical applications of automata theory. It asks,
given a specification, whether there exists a reactive system complying with
it. We also want to automatically build such a system when it exists. The
specification is typically given in a logic such as Linear Temporal Logic (LTL).
The problem was solved positively by Büchi and Landweber [5] for the case of
ω-regular specifications. The usual approach to this problem consists in building
a deterministic automaton from the specification, and then solving a game based
on this automaton. Henzinger and Piterman [11] have proposed a model of
Good-For-Games (GFG) automata as a weakening of determinism that is still
sound for solving the synthesis problem. An automaton is GFG if there exists a
strategy that resolves the non-deterministic choices, by taking into account only
the prefix of the input ω-word read so far. The strategy must guarantee to build
an accepting run whenever the input word is in the language of the automaton.
In [15], the question of succinctness of GFG automata compared to deterministic
ones is answered. A family (Ln) of languages is exhibited, such that for each n
there is a GFG coBüchi automaton of size n for Ln, but any deterministic Streett
automaton for Ln must have size exponential in n. Therefore, GFG automata
offer a promising alternative to deterministic ones for synthesis, and this work is
part of an effort to systematically study their applicability in this context.

However, one of the potential issues with the use of GFG automata for
synthesis lies in the fact that the most usual specification formalism for synthesis
is LTL. It is therefore natural to ask whether GFG automata can be useful in
this context. We show that the languages Ln witnessing succinctness of GFG

2 S. Iosti, D. Kuperberg

automata are not LTL-definable. Moreover, a close look at the structure of GFG
coBüchi automata, as studied in [15], suggests that the ability to permute states
is an essential feature of non-trivial GFG automata. It is therefore plausible
that GFG automata are no longer succinct (compared to deterministic ones) for
LTL-definable languages, where such permutations are forbidden [7].

We answer this question here, by building a family (Kn) of LTL-definable
languages presenting the same succinctness gap as the family (Ln) between GFG
and deterministic automata. Although this shows that GFG automata are still
succinct for LTL-definable languages, the issue of practicability is still unclear,
due to the fact that the LTL formulas representing Kn have exponential size.
Moreover, we show that there are simple µ-calculus formulas of linear size for the
same languages. Interestingly, a by-product of this work is the exhibition of the
family Kn as a candidate witness for an exponential gap succinctness of linear
µ-calculus compared to LTL, a problem that is open to our knowledge. This
suggests that µ-calculus is more suited than LTL for describing specifications
that are recognized by small GFG automata. We therefore aim at proposing a
framework based on µ-calculus for building succinct GFG automata.

This leads us to a second issue standing in the way of bringing GFG automata
to practical applications. Due to their semantic definition, building GFG automata
is a hard problem and requires an understanding of their syntactical shape. A
first way to achieve this has been given in [14], building GFG automata in an
incremental way from non-deterministic ones. The algorithm tries bigger and
bigger automata until a GFG one is reached, the worst case being when a full
determinization construction is needed. The only knowledge about GFG automata
that is used in this construction is in the subroutine used to test whether an
automaton is GFG. We propose here an alternative approach, building automata
that are GFG by construction, using the understanding acquired in [15] about
the structure of GFG coBüchi automata.

Considering restricted classes of specifications is a classical way to try to
tackle the difficulty of the synthesis problem. The classes of safety and liveness
properties [1] have gathered particular interest [19, 21], as they simplify algorithms
while expressing typical requirements on reactive systems. We introduce a class
of properties called “eventually safe” and noted ESafe, for which we give a
specification language EνTL and an algorithm systematically producing GFG
automata from this language. The class ESafe can be seen as a natural compromise
between safety and liveness, and is defined as the class of languages of the form
Σ∗Lsafe where Lsafe is a suffix-closed safety language. Equivalently, the class
ESafe is the class of prefix-independent coBüchi languages. As an example, the
following specification can be formalized in ESafe: “after being started, the
system must eventually start interacting with external agents, and must answer
their requests within a fixed finite time”.

Both families (Ln) and (Kn) are expressible in the logic EνTL in a very
natural way and with formulas of size linear in n. This approach is orthogonal to
the one from [14] that we outlined above. Here, we restrict the class of inputs
to the class ESafe that is natural for verification purposes, and for which GFG

Eventually Safe Languages 3

automata are well-suited. We show that unfortunately, translating a formula of
EνTL to a GFG automaton is still doubly exponential in the worst case. This is
not surprising, as it was shown in [4] that this is already the case for translating
LTL (or linear µ-calculus) formulas for “bounded” languages, i.e. languages that
are both safe and co-safe, to GFG automata. However we believe that this model
is worth exploring, in order to understand the power and possible limitations of
GFG automata for synthesis. Moreover, recent works such as [8, 13] rely on a
modular treatment of specifications, and can call subroutines to build automata
for restricted fragments of LTL. This is particularly suitable to embed GFG
automata for well-behaved fragments, and the present work brings a clearer
understanding of the possibilities and theoretical limitations of this approach.

Let us give another example of application of the EνTL formalism, in the
spirit of this modular approach. Properties required of systems are often subject
to fairness assumptions. This is expressed by specifications of the form ψ ⇒ ϕ
for some fairness assumption ψ, that typically consists in liveness properties.
This can be treated by building a GFG automaton for ¬ψ, in addition to the
automaton for ϕ. In this context, EνTL would for example allow to model the
fairness assumption that a finite set of agents (that can be dynamically renamed)
will all be activated infinitely many times, as the complement of such a language
is similar to the language Ln discussed in this work.

Outline of the paper

We start by recalling definitions on logical formalisms and automata in Section 2.
In Section 3, we recall the definition of the (Ln) language family from [15], and
show that it is not LTL-definable. In Section 4, we define the (Kn) family, show
that it also witnesses succinctness of GFG automata compared to deterministic
ones, and give a family of LTL formulas of exponential size for the languages (Kn).
In Section 5, we define the safety fragment SνTL of linear µ-calculus, show that
it is equivalent to safety languages, and build the logic EνTL based on its syntax
by using an alternative semantic. We show that both families of languages (Kn)
and (Ln) have linear-size representations in EνTL, and give a generic algorithm
to translate an EνTL formula to a GFG coBüchi automaton. We also exhibit
an EνTL formula witnessing that the translation to GFG coBüchi automata is
doubly exponential in the worst case. Detailed proofs can be found in Appendix.

2 Definitions

We will use Σ to denote an arbitrary finite alphabet. The empty word is denoted
ε. If i ≤ j, the set {i, i+ 1, i+ 2, . . . , j} is denoted [i, j]. The set of finite words
on Σ is denoted Σ∗, and the set of infinite words Σω. We note Σ∞ = Σ∗ ∪Σω.
If X ⊆ Σω, we note pref (X) the set of finite prefixes of words in X, and suff (X)
the set of infinite suffixes of words in X. A set X ⊆ Σω is prefix-independent if
for all u, v ∈ Σ∗ and w ∈ Σω, we have uw ∈ X ⇔ vw ∈ X. A set X ⊆ Σω is
suffix-closed if suff (X) = X.

4 S. Iosti, D. Kuperberg

2.1 Logic

We define here the linear temporal logic (LTL) and the linear µ-calculus.

The syntax of LTL is defined with the following grammar, where a ranges
over Σ:

ϕ := a | ϕ ∨ ϕ | ¬ϕ | �ϕ | ϕUϕ

The semantic JϕK ⊆ Σω of a formula ϕ of LTL is defined recursively on the
formula:

– JaK = {aw | w ∈ Σω},
– Jϕ ∨ ψK = JϕK ∪ JψK,
– J¬ϕK = Σω \ JϕK,
– J�ϕK = {aw ∈ Σω | a ∈ Σ,w ∈ JϕK},
– JϕUψK = {a0a1 · · · ∈ Σω | ∃i ∈ N,∀j < i, ajaj+1 · · · ∈ JϕK, and aiai+1 · · · ∈

JψK}.

Let a be an arbitrary letter in Σ and ϕ,ψ be LTL formulas. We will use the
syntactic sugar ϕ∧ψ,>,⊥, Fϕ, Gϕ and ϕWUψ as shorthands for ¬((¬ϕ)∨(¬ψ)),
a ∨ ¬a, ¬>, >Uϕ,¬F¬ϕ and Gϕ ∨ ϕUψ respectively.

The linear µ-calculus has the following syntax, where a ranges over Σ, and
X over a countable set V of variables:

ϕ := a | X | ϕ ∨ ϕ | ¬ϕ | �ϕ | µX.ϕ | νX.ϕ

Its semantic JϕKµ,val relative to a valuation val : V → 2Σ
ω

of the variables is
defined similarly to the semantic of LTL for their common symbols (using the
µ-calculus semantic instead of the LTL semantic), with the following additional
rules for the new symbols, where gfp and lfp denote the greatest fixed point and
the least fixed point operators respectively, and val [X → S] is the valuation val
except for val(X) = S:

– JXKµ,val = val(X);

– JµX.ϕKµ,val = lfp(S → JϕKµ,val[X→S]);
– JνX.ϕKµ,val = gfp(S → JϕKµ,val[X→S]).

The semantic JϕKµ of a closed formula ϕ is JϕKµ,∅ where ∅ is the empty
valuation.

The DAG-size of a formula is a measure of the size of the formula using the
directed acyclic graph (DAG) representing the formula instead of the syntactic
tree. We define formally the DAG-size |ϕ|dag of a formula ϕ as the size of the set
sub(ϕ) of subformulas of ϕ. This representation of a formula as a DAG is usually
the one used in algorithms taking as input LTL or µ-calculus formulas (e.g. the
translation from a LTL formula to a Büchi automaton), and is therefore a more
sensible measure of the size of a formula than the size of its syntactic tree.

Eventually Safe Languages 5

2.2 Automata

A non-deterministic automaton A is a tuple (Q,Σ, q0, ∆, F) where Q is the set
of states, Σ is a finite alphabet, q0 ∈ Q is the initial state, ∆ : Q × Σ → 2Q

is the transition function, and F ⊆ Q is the set of accepting states. If for all
(p, a) ∈ Q×Σ there is at most one q ∈ Q such that q ∈ ∆(p, a), we say that A
is deterministic.

If u = a1 . . . an is a finite word of Σ∗, a run of A on u is a sequence q0q1 . . . qn
such that for all i ∈ [1, n], we have qi ∈ ∆(qi−1, ai). The run is said to be accepting
if qn ∈ F . If u = a1a2 . . . is an infinite word of Σω, a run of A on u is a sequence
q0q1q2 . . . such that for all i > 0, we have qi ∈ ∆(qi−1, ai). A run is said to
be Büchi accepting if it contains infinitely many accepting states, and coBüchi
accepting if it contains finitely many non-accepting states. Automata on infinite
words will be called Büchi and coBüchi automata, to specify their acceptance
condition.

We will note NFA (resp. DFA) for a non-deterministic (resp. deterministic)
automaton on finite words, and NCW (resp. DCW) for a non-deterministic (resp.
deterministic) coBüchi automaton. An automaton A is a safety automaton if
F = Q, and every run is accepting.

Non-deterministic automata can be generalized to alternating automata,
where the transition function associates to each pair (p, a) ∈ Q×Σ a positive
boolean combination of states instead of a disjunction. We refer the reader to [9]
for formal definitions and basic constructions on alternating automata.

We also mention the Rabin condition on infinite words: it consists of a list
of pairs (Ei, Fi) ∈ 2Q × 2Q and an infinite run is accepting if there is i such
that some states from Ei are seen infinitely often and all states from Fi are
seen finitely often. Its dual, the negation of a Rabin condition, is called a Streett
condition. They both generalize the parity condition.

The language of an automaton A, noted L(A), is the set of words on which the
automaton A has an accepting run. Two automata are equivalent if they recognise
the same language. For a property P of automata (e.g. safety, or coBüchi), a
language is said to be P if it is the language of a P automaton.

An automaton A is determinisable by pruning (DBP) if an equivalent deter-
ministic automaton can be obtained from A by removing some transitions.

An automatonA is Good-For-Games (GFG) if there exists a function σ : Σ∗ →
Q (called GFG strategy) that resolves the non-determinism of A depending only
on the prefix of the input word read so far: over every word u = a1a2a3 . . .
(finite or infinite depending on the type of automaton considered), the sequence
of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a run of A on u, and it is accepting
whenever u ∈ L(A). For instance every DBP automaton is GFG. See [2] for more
introductory material and examples on GFG automata.

Lemma 1. GFG automata are closed under the standard union and intersection
constructions using cartesian products.

6 S. Iosti, D. Kuperberg

3 The original family Ln

We start by recalling the family of languages Ln from [15], witnessing an expo-
nential blow-up in the state space for determinisation of GFG automata.

The language Ln is defined on alphabet Σ = {ι, σ, π,]}. Each letter represents
a permutation of the set [0, 2n−1]: ι is the identity, σ is the cycle (0 1 2 . . . 2n−1),
π is the transposition (0 1), and] is the identity on [1, 2n− 1] and is undefined
on 0.

An infinite word w ∈ Σω describes an infinite graph noted Graph(w) with
vertices [0, 2n− 1]× N, where letter w(i) representing a permutation α induces
edges from vertice (k, i) to (α(k), i+ 1) for each k ∈ [0, 2n− 1] where α is defined.
An example is given below for n = 2.

w:

Graph(w):

time:

0
1
2
3

0

σ

1

π

2

ι

3

σ

4

]

5

σ

6

π

7

] . . .

8 . . .

. . .

. . .

. . .

. . .

The language Ln is then defined as

Ln = {w ∈ Σω | Graph(w) contains an infinite path}

The infinite path required in the definition of Ln needs not start at time 0. Notice
that Ln is suffix-closed and prefix-independent.

Theorem 2. [15] There is a GFG-NCW with 2n + 1 states for Ln, but any

deterministic Streett3 automaton for Ln has at least
2n

2n+ 1
states.

However, this example does not settle the blowup problem for languages
represented by LTL formulas. Indeed, for any n ≥ 1, the language Ln is not
LTL-definable:

Lemma 3. For all n ≥ 1, there is no LTL formula for the language Ln.

Proof. We use the characterization of LTL-definable languages as aperiodic
languages [7]. Let M be the syntactic monoid of Ln, and h : Σ∗ → M be
the corresponding syntactic morphism. Assume there is u, v ∈ Σ∗ such that
for infinitely many k ∈ N, (ukv)ω ∈ Ln and (uk+1v)ω /∈ Ln. Then we have
h(u)k 6= h(u)k+1 for infinitely many k, so the syntactic monoid of Ln cannot be
aperiodic, and therefore Ln is not LTL-definable. Hence it suffices to find such
u, v to prove that Ln is not LTL-definable. We can take here u = σ and v =].
Indeed, if k is a multiple of 2n, we have (σk])ω ∈ Ln and (σk+1])ω /∈ Ln.

3 Note that the Streett acceptance condition is not specified in [15], but it is in the
relevant result of [2]. The Streett condition for D is needed so that the condition of
the form “A accepts or D rejects” is Rabin, and the game admits positional strategies.

Eventually Safe Languages 7

Moreover, it is shown in [15] that in some sense, the languages Ln essentially
constitute the canonical example for coBüchi GFG automata. Indeed, in order to
show that deciding whether a NCW is GFG can be done in polynomial time, it is
shown that GFG-NCW are very close to the following structure: the automaton
deterministically follows a safe path, and when a coBüchi state is encountered,
the automaton jumps to another such safe path ; in particular, the safe paths
can in some sense be “permuted”, and a bad choice of path for the automaton
can eventually be corrected by jumping to the right path later, provided the
GFG strategy has enough memory to remember how paths were permuted. It is
thus plausible that the reason exponential memory is needed in GFG-NCW is
the presence of arbitrary permutations, and that this could not happen for LTL-
definable languages, where permutations of states are forbidden in the run-DAG
of the corresponding automaton [7].

We show in the next section that this is not the case: this exponential blowup
result still holds for LTL-definable languages. This gives hope for the use of GFG
automata in the context of LTL synthesis.

4 A family of LTL-definable languages Kn with succinct
GFG representations

We will define for every n ≥ 1 a LTL-language Kn. We show that for all n ≥ 1
there is a GFG-NCW of size 2n+ 1 recognizing Kn, but there is no deterministic
Streett automaton recognizing Kn of size less than 2n

2n+1 .

4.1 Definition of the language Kn

The language Kn is defined on alphabet Σ = {ι, a0, a1, . . . a2n−2, b0, b1 . . . b2n−2}.
As in Ln, each letter x ∈ L is mapped to a bipartite graph G(x) describing a

partial function [0, 2n−1]→ [0, 2n−1]. A word w = x1x2 . . . is in Kn if and only if
the DAG Graph(w) with vertices [0, 2n−1]×N obtained by concatenating all the
slices G(x1)G(x2) . . . contains an infinite path, not necessarily starting in [0, 2n−
1]× {0}, so we define Kn = {w ∈ Σω | Graph(w) contains an infinite path}.

The graph G(ι) will represent the identity function. For all i ∈ [0, 2n− 2], the
graph G(ai) maps i to i+ 1, is undefined on i+ 1, and leaves [0, 2n− 1]\{i, i+ 1}
unchanged. For all i ∈ [0, 2n− 2], the graph G(bi) maps i+ 1 to i, is undefined
on i, and leaves [0, 2n− 1] \ {i, i+ 1} unchanged. An example of Graph(w) for
n = 2 is given below.

w:

Graph(w):

time:

0
1
2
3

0

b0

1

a0

2

a1

3

ι

4

b1

5

a1

6

b2

7

a0 . . .

8 . . .

. . .

. . .

. . .

. . .

8 S. Iosti, D. Kuperberg

4.2 Aperiodicity of Kn and succinctness of GFG automaton

Theorem 4. There is a GFG coBüchi automaton of size 2n+ 1 for Kn, but any

deterministic Streett automaton for Kn has at least
2n

2n+ 1
states.

Proof. (Scheme) The same proof scheme as the one from [15] showing the expo-
nential blowup for the family Ln can be used here. We need to adapt it to account
for the specificities of Kn, namely modify the construction to avoid crossings of
paths.

Lemma 5. Kn is LTL-definable, via a formula of DAG-size at least exponential
in n.

Proof. (Scheme) LTL definability is shown via the aperiodicity of Kn [7]. We
also provide an explicit formula, defined by induction on n, where each induction
steps doubles the depth of the formula. Details can be found in Appendix B

Conjecture 6. There is no LTL formula for Kn with DAG-size polynomial in n.

In the next section, we define a specification logic more suited to this setting.

5 A modal logic for eventually safe properties

5.1 The safety logic SνTL

We recall here the formalism SνTL, a fragment of linear µ-calculus designed to
express safety properties. This fragment has been studied in several works, usually
in the branching time setting ; see for example [20], from which we extract (in
Theorem 7 below) part of the characterization of SνTL as the safety fragment of
the µ-calculus. A similar characterization for LTL is sketched in the conclusions
of [19].

Formulas of SνTL are given by the following syntax, where a stands for letters
of Σ.

ϕ := a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | X | νX.ϕ
If ϕ is a formula of SνTL, we will note JϕK its semantic as a linear µ-calculus

formula.

Theorem 7. A language is definable in SνTL if and only if it is a safety
language.

Proof. (Scheme) For the left to right implication, we follow a more general
construction that has been proposed in [20], for branching µ-calculus. In our case,
the states of the constructed alternating safety automaton are subformulas of the
input SνTL formula ψ, and the transition function describes the subformulas that
should be true after reading a letter, using alternation to encode the disjunctions
and conjunctions. Since alternating safety automata are equivalent to safety
languages through standard powerset constructions we are done. For the right
to left implication, we build a SνTL formula from a non-deterministic safety
automaton by encoding into the formula the transition function; loops in the
automaton are encoded using the operator νX.

Eventually Safe Languages 9

5.2 The logic EνTL for eventually safe properties

We introduce here a second semantic J·KE for SνTL formulas, called the eventual
semantic, in the following way:

JϕKE := {uw ∈ Σω | w ∈ suff (JϕK)}.

That is to say, JϕKE denotes infinite words that have a suffix that is also a
suffix of JϕK. This logic can be seen as a way to specify what we mean by a safe
behaviour, letting the semantic automatically generate the language of eventually
safe behaviours. Notice that since GFG automata are closed under union and
intersection by Lemma 1, the technique introduced in this paper can be combined
with others in order to treat more advanced specifications.

We call EνTL the logic SνTL equipped with the eventual semantic.

Lemma 8. A language is definable in EνTL if and only if it is of the form
Σ∗Lsafe , where Lsafe is a suffix-closed safety language.

Proof. If L is defined in EνTL via the formula ϕ, then L = Σ∗suff (JϕK), which
is of the wanted form. Conversely, if L = Σ∗Lsafe with Lsafe a suffix-closed safety
language, then by Theorem 7 there is a formula ϕ of SνTL such that JϕK = Lsafe ,
and we obtain L = JϕKE .

Let us call ESafe the class of such languages. Notice that EνTL uses a syntax
for safety properties, but with our semantics, the languages defined by EνTL are
actually liveness properties [1]: if L ∈ ESafe, any finite word can be extended to
a word in L.

5.3 Properties of the class ESafe

The following theorem states that the class ESafe captures exactly prefix-
independent coBüchi languages, and that it is equivalent to represent a language
from ESafe directly with a NCW, or via its suffix-closed safety language Lsafe .

Theorem 9. ESafe is equal to the class of prefix-independent coBüchi lan-
guages. Moreover, if L = Σ∗Lsafe is accepted by a NCW C, we can build a
non-deterministic safety automaton Asafe from C recognizing Lsafe with the same
number of states. Conversely, if we have a non-deterministic safety automaton
for Lsafe , we can build a NCW C for L with one more state.

Lemma 10. Given a regular language L, it is decidable whether it is in ESafe.
If L is given by a DCW, the problem is in NL, whereas it is PSPACE-complete
if L is given by a NCW.

The complexity of deciding whether an arbitrary regular language (given
by various models of automata and LTL formulas) is coBüchi-recognizable,
and obtaining an equivalent DCW or NCW automaton, is studied in [3]. This
completes the picture for the problem of deciding whether an arbitrary language
can be represented using EνTL.

10 S. Iosti, D. Kuperberg

5.4 A succinct EνTL formula for the language Kn

The formula we aim to build will describe the safety languages of words for which
the path starting in (0, 0) is infinite. It recognizes Kn via the eventually safe
semantic. We use the weak until operator WU as syntactic sugar, defined as
ϕWUψ := νX.ψ ∨ (ϕ ∧ �X).

The pure LTL formula for Kn given in Section B.2 has a DAG-size at least
exponential in n. The formulas we will define here will instead be linear in n. Let
N = 2n− 1. We reuse the subalphabets (αi)0≤i≤N defined in Section B.2. We
define inductively the formulas ψi for i from N to 0, each one containing Xi−1
as a free variable, except for ψ0 which is closed:

ψN = νXN .((αN ∧ �XN) ∨ (bN−1 ∧ �XN−1))
For 0 < i < N : ψi = νXi.((αi ∧ �Xi) ∨ (ai ∧ �ψi+1) ∨ (bi−1 ∧ �Xi−1))

ψ0 = νX0.((α0 ∧ �X0) ∨ (a0 ∧ �ψ1))

We finally define Φ := ψ0.

Lemma 11. The formula Φ has size linear in n, and JΦKE = Kn.

We note that a similar formula can be explicited for the original family
of languages (Ln) witnessing exponential succinctness of GFG automata. This
formula allows to encode the examples of specifications on interacting agents
given in the introduction. Details can be found in Appendix D.2

5.5 From EνTL to GFG coBüchi automata

In this section, we describe a general algorithm for translating any EνTL formula
to an equivalent GFG-NCW. Recall that since GFG automata are sound for
synthesis [11], this translation can be used as a blackbox for solving synthesis of
ESafe properties, specified via the logic EνTL. As explained before, this transla-
tion can also be used in a modular way, and combined with other deterministic
or GFG automata as shown in Lemma 1. We now describe the algorithm, taking
as input an EνTL formula ψ. We can view ψ as a SνTL formula and build an
alternating safety automaton Aalt recognizing JψK as described in the proof of
Theorem 7.

We use a powerset construction to obtain an equivalent non-deterministic
safety automaton And. Determinizing And to a deterministic safety automaton
Adet through another powerset construction is standard. Since Adet can be equiv-
alently seen as a safety DFA, it can be minimized into a safety deterministic
automaton Amin = (Q,Σ, q0, ∆) using standard techniques. Minimization tech-
niques can also be applied on the intermediate automaton And, for instance using
bisimulation equivalence [18]. Here we omitted the accepting states of Amin, since
all runs are accepting. We assume that all states of Amin are reachable from q0.

We will now build a GFG coBüchi automaton C = (Q′, Σ, q0, ∆, F) for JψKE ,
based on Amin. We take Q′ = Q ∪ {⊥}, F = Q, and

∆′ = ∆ ∪ {(p, a,⊥) | ∀q ∈ Q, (p, a, q) /∈ ∆} ∪
(
{⊥} ×Σ ×Q

)
The following theorem states that the algorithm is correct.

Eventually Safe Languages 11

Theorem 12. C is a GFG-NCW for JψKE.

Proof. (Scheme) C will deterministically follow paths made of safe transitions,
and will go to ⊥ when the path it is currently following is cut. The only non-
determinism to resolve is: where to jump from ⊥ ? It suffices to jump to the path
that has been uncut for the longest time. Details can be found in Appendix D.3.

Remark 13. An alternative construction where strongly connected components
of And are determinized separately is also possible and allows more optimizations,
we discuss this in Appendix D.4. This can yield smaller GFG automata in cases
where the size of the biggest strongly connected component of And is small in
front of its total size, or if some components cover the safe languages of others.

The complexity of this algorithm is doubly exponential in terms of number of
states. The following theorem shows that this cannot be avoided.

Theorem 14. The translation of EνTL formulas to GFG-NCW is doubly expo-
nential.

Proof. This result for general LTL formulas has been proven in [4] using a
language family (Ln) defined in [16], itself adapted from a language of finite
words given in [6]. However, the particular structure of the class ESafe prevents
us from using the results of [4, 16, 6] as blackboxes. The language Ln as defined
by the LTL formula from [16] is Fn]

ω where Fn is the language defined by
Fn = {{0, 1,#}∗ ·# · w ·# · {0, 1,#}∗ · $ · w | w ∈ {0, 1}n}.We will use similar
ideas here, while taking care of the special semantic of EνTL.

Let Σ = {0, 1,#, $, [}. We change the formula from [16] so that we iterate
the closure of Fn, with [as separator. Intuitively, the SνTL formula ϕn states
that any word on {0, 1}∗ immediately following a $ has length n, is followed by a
[, and is identical to a word that occurred between the last [and the $ following
it. Let Θ = 0 ∨ 1 and Θ] = Θ ∨], we define the following formulas:

ϕword(X) = Θ ∧ �(Θ∧ n· · · �(Θ ∧ �([∧ �X)) · · ·)
ϕi,x = (�ix ∧ (Θ]WU($ ∧ �ix))) for 1 ≤ i ≤ n and x ∈ {0, 1}
ϕmatch =

∧
1≤i≤n(ϕi,0 ∨ ϕi,1)

ϕn = νX.Θ]WU[# ∧ ϕmatch ∧ (Θ]WU($ ∧ �ϕword(X)))]

The formula ϕword(X) checks for {0, 1}n[X, where X is a free variable. The
formula ϕi,x checks that ith letter is x and that it is again the case after the
next $. The formula ϕmatch enforces that the current word u ∈ {0, 1}n must be
matched by a $u at the next $. Finally, ϕn ensures that before the next $, we
encounter some]u where u is further matched by $u[, after which we reiterate the
constraint. Notice that |ϕn| is quadratic in n, and JϕnKE ∩ (Σ∗[)ω = Σ∗(Fn[)

ω.
Let us assume that we have a GFG-NCW automaton C for JϕnKE . We show that
C must have at least 22

n−1 states. Let Q be the set of states of C and σ : Σ∗ → Q
be the GFG strategy of C. Let us assume that |Q| < 22

n−1. We call the type of a
finite run of C the pair (c, q), where c is a bit specifying whether a rejecting state

12 S. Iosti, D. Kuperberg

has been seen, and q is the last state of the run. The number of possible types
is 2|Q| < 22

n

. To any set of words X = {u1, u2, . . . , uk} ⊆ {0, 1}n, we associate
a word wX = #u1#u2# . . .#uk, where the ui’s are lexicographically sorted.
Since there are 22

n

such sets, there must be X1 6= Y1 ⊆ {0, 1}n such that σ(wX1
)

and σ(wY1
) have same type. Without loss of generality let w1 ∈ X1 \ Y1, we

have wX1$w1 ∈ Fn but wY1$w1 /∈ Fn. Again, there are X2, Y2, q2, w2 such that
σ(wX1$w1[wX2) and σ(wY1$w1[wY2) have same type on the suffix starting with
$w1[, and w2 ∈ X2\Y2. By iterating this construction, we build two infinite words
v = wX1

$w1[wX2
$w2[. . . and v′ = wY1

$w1[wY2
$w2[. . . such that σ accepts v if

and only if σ accepts v′, but we have v ∈ JϕnKE while v′ /∈ JϕnKE . We obtain a
contradiction with the fact that C recognizes JϕnKE with GFG strategy σ.

However, our algorithm can perform well in practice, as witnessed by the
languages Kn and Ln. Indeed, if the input is the formula Φ from section 5.4 (resp.
ϕ0 from appendix D.2) describing the language Kn (resp. Ln), the algorithm
computes an automaton of size linear in n, while any deterministic automaton
would be exponential, by Theorem 4 (resp. Theorem 2).

Conclusion

We showed that GFG automata still enjoy an exponential succinctness gap
compared to deterministic automata for the class of LTL-definable languages, by
giving a family of languages (Kn) witnessing this gap. However, the LTL formula
we give for Kn is exponential in n, while there is an equivalent µ-calculus formula
that is linear in n. We conjecture that the family (Kn) can be used as a witness
to prove an exponential gap in succinctness between the linear µ-calculus and
LTL. We defined and studied a class ESafe of eventually safe languages, a natural
compromise between safety and liveness specifications. We defined a fragment
of linear µ-calculus, the logic EνTL, that describes the class ESafe, and can be
translated to GFG coBüchi automata.

The idea of using automata that are allowed to non-deterministically jump to
a new path to improve performances in LTL synthesis was implemented in [10],
but the so-called “shift automaton” was based on a powerset construction, and the
notion of Good-for-Games was not identified, replaced by the weaker condition
of being Determinisable by Pruning. Prior to the discovery of succinctness of
GFG automata, a GFG-based algorithm for model-checking of Markov decision
process has been implemented in [12], where it turned out that this particular
approach was not more efficient than standard ones.

As future work, we plan to implement our approach that makes use of newly
discovered features of GFG automata, in order to compare benchmarks with those
present in [10, 12]. A related open challenge is to find fragments of LTL or other
logics that can be translated to GFG automata with only a single exponential
blowup.

Eventually Safe Languages 13

References

1. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181 – 185, 1985.

2. Udi Boker, Denis Kuperberg, Orna Kupferman, and Micha l Skrzypczak. Nondeter-
minism in the presence of a diverse or unknown future. In Automata, Languages,
and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July
8-12, 2013, Proceedings, Part II, pages 89–100, 2013.

3. Udi Boker and Orna Kupferman. Co-Büching Them All. In Foundations of
Software Science and Computational Structures - 14th International Conference,
FOSSACS 2011, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011.
Proceedings, pages 184–198, 2011.

4. Udi Boker, Orna Kupferman, and Micha l Skrzypczak. How deterministic are Good-
For-Games automata? In FSTTCS 2017 - 37th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, Leibniz
International Proceedings in Informatics (LIPIcs), 2017.

5. Julius Richard Büchi and Lawrence H. Landweber. Solving sequential conditions
by finite-state strategies. Transactions of the American Mathematical Society,
138:295–311, 1969.

6. Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

7. Volker Diekert and Paul Gastin. First-order definable languages. In Logic and
Automata: History and Perspectives, Texts in Logic and Games, pages 261–306.
Amsterdam University Press, 2008.

8. Javier Esparza, Jan Kret́ınský, and Salomon Sickert. One theorem to rule them all:
A unified translation of LTL into ω-automata. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 384–393, 2018.

9. Abdelaziz Fellah, Helmut Jürgensen, and Sheng Yu. Constructions for alternating
finite automata. International journal of computer mathematics, 35(1-4):117–132,
1990.

10. Aidan Harding, Mark Ryan, and Pierre-Yves Schobbens. A new algorithm for strat-
egy synthesis in LTL games. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 477–492. Springer, 2005.

11. Thomas A. Henzinger and Nir Piterman. Solving games without determinization.
In Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual
Conference of the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings,
pages 395–410, 2006.

12. Joachim Klein, David Müller, Christel Baier, and Sascha Klüppelholz. Are good-for-
games automata good for probabilistic model checking? In Language and Automata
Theory and Applications - 8th International Conference, LATA 2014, Madrid, Spain,
March 10-14, 2014. Proceedings, pages 453–465, 2014.

13. Jan Kret́ınský, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler.
Rabinizer 4: From LTL to your favourite deterministic automaton. In Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I, pages 567–577, 2018.

14. Denis Kuperberg and Anirban Majumdar. Width of non-deterministic automata. In
35th International Symposium on Theoretical Aspects of Computer Science, STACS
2018, February 29th - March 3rd, 2018, Caen, France, 2018.

14 S. Iosti, D. Kuperberg

15. Denis Kuperberg and Micha l Skrzypczak. On determinisation of good-for-games
automata. In Automata, Languages, and Programming - 42nd International Collo-
quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages
299–310, 2015.

16. Orna Kupferman and Moshe Y. Vardi. From linear time to branching time. ACM
Trans. Comput. Log., 6(2):273–294, 2005.

17. Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words.
Theoret. Comput. Sci., 32(3):321–330, 1984.

18. Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms.
SIAM J. Comput., 16(6):973–989, 1987.

19. A Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6(5):495–511, 1994.

20. Thomas Wilke. Alternating tree automata, parity games, and modal µ-calculus.
Bulletin of the Belgian Mathematical Society Simon Stevin, 8(2):359, 2001.

21. Shufang Zhu, Lucas M Tabajara, Jianwen Li, Geguang Pu, and Moshe Y Vardi.
A Symbolic Approach to Safety LTL Synthesis. In Haifa Verification Conference,
pages 147–162. Springer, 2017.

Eventually Safe Languages 15

A GFG automata

A.1 Proof of Lemma 1

Let A1 = (Q1, Σ, q1, ∆1, α1) and A2 = (Q2, Σ, q2, ∆2, α2) be two GFG automata.
Here α1 and α2 are arbitrary acceptance conditions specifying the set of accepting
runs: αi ⊆ Qωi for i ∈ {1, 2}. Let σi : Σ∗ → Qi be a GFG strategy for Ai.

We build a GFG automaton A = (Q,Σ,∆, q0, α) for L(A1) ∪ L(A2) using
the usual product construction on automata:

– Q = Q1 ×Q2 and q0 = (q1, q2)

– ∆ = {(p1, p2)
a−→ (p′1, p

′
2) | p1

a−→ p′1 ∈ ∆1 and p2
a−→ p′2 ∈ ∆2}

– α = {(ρ1, ρ2) | ρ1 ∈ α1 or ρ2 ∈ α2}

It remains to show that A is GFG. We define σ : Σ∗ → Q for A by σ(u) =
(σ1(u), σ2(u)). It is straightforward to verify that σ is a GFG strategy for A:
whenever w ∈ L(A), we have that w can be accepted by A1 or A2, so either
σ1(w) or σ2(w) produces an accepting run, hence σ(w) is accepting as well.

Notice that the accepting condition α of A is a union of α1 and α2. This
means that depending on the nature of α1 and α2, the condition α may be of the
same complexity or get more complicated. For instance if α1 and α2 are Büchi
conditions, then α is Büchi as well. If α1 and α2 are parity conditions, α becomes
a Rabin condition, and may be transformed into a parity condition with more
ranks than α1 and α2.

Notice that if α1 and α2 are coBüchi, an alternative construction yields a GFG
coBüchi automaton, using the standard construction for the union of coBüchi
automata (a coBüchi state of the product is witnessed when both components
have seen a coBüchi state). The resulting number of states is still in O(|Q1| · |Q2|)
in this case.

A similar construction shows that GFG automata are closed under intersection.
In the same way, Büchi (resp. coBüchi) GFG automata can be intersected while
keeping the acceptance condition, and parity GFG automata can be intersected
at the price of increasing the number of parity ranks.

A.2 Proof of Theorem 4

We show that there is a GFG-NCW for Kn with 2n + 1 states, and that any

deterministic Streett automaton for Kn has size at least
2n

2n+ 1
.

This proof closely follows the proof used in [15] for the languages Ln, adapted
here for the languages Kn. The main changes are gathered at the end of the
proof, such as Lemma 20.

We start by showing that there is a linear-size GFG-NCW Cn for the language
Kn.

The set of states of the automaton Cn is Q = {⊥, 0, 1, 2, . . . , 2n − 1}. The
states [0, 2n−1] are deterministic: reading a ∈ Σ in such a state q the automaton

16 S. Iosti, D. Kuperberg

moves to the successive state according to the function represented by a (or to
⊥ if this function is undefined on q). The state ⊥ is non-deterministic — the
automaton can move from ⊥ over any letter a ∈ Σ to any state q′ ∈ [0, 2n− 1].
Let the initial state of Cn be ⊥ and the rejecting transitions be those of the form
⊥ a−→ q′.

Note that every accepting run of Cn over an ω-word α indicates an infinite
path in Graph(α). Therefore, we obtain the following fact.

Fact 15 L(Cn) ⊆ Kn.

Lemma 16. Cn is a GFG automaton recognizing the language Kn.

Proof. It is enough to construct a function σ : Σ∗ → Q that for every ω-word
α ∈ Kn produces an accepting run of Cn over α — it will prove that Kn ⊆ L(Cn)
and that Cn is GFG. The strategy σ will use a finite memory (of size 22n) under
the form of a nonempty subset of Q\{⊥} that will be updated at every transition.
This means we want to define a function M : Σ∗ → 2Q\{⊥}. We will define σ and
M inductively with σ(ε) = ⊥ and M(ε) = Q \ {⊥}.

Let us define the memory function M first. We define

M(wa) = {δ(q, a)|q ∈M(w) and δ(q, a) 6= ⊥}

if this set is not empty, and M(wa) = Q\{⊥} otherwise. Intuitively, M(w) tracks
all the paths in Graph(w) that have not been cut so far, and when all such paths
have been cut, it reinitializes. This information will be used by the strategy σ.

Let σ follow deterministically the transitions of Cn for all the states q 6= ⊥:
if σ(w) = q, then σ(wa) = δ(q, a) for any letter a. It remains to define σ(wa)
if σ(w) = ⊥ and a successive letter a is given. In this case, we consider the set
M(wa), and σ(wa) is defined to be the smallest element of M(wa). Note that
this definition ensures that σ(w) ∈M(w) for every w such that σ(w) 6= ⊥.

Assume that α ∈ Kn. We need to prove that σ produces an accepting run of
Cn over α. Let p1, p2, . . . , pm be the set of infinite paths in Graph(α) (we know
that 1 ≤ m ≤ n). By definition of M , the sets M(α<k) for k ∈ N will eventually
contain only states belonging to some of the infinite paths pi. Let k0 such that
for all k ≥ k0, for all p ∈ M(α<k), the node (p, k) is part of an infinite path
in Graph(α). Assume that σ(α<k0) 6= ⊥ (if this is not the case, we replace k0
by k0 + 1). Since σ(α<k0) belongs to M(α<k0), then it will follow in Cn the
corresponding infinite path and α will be accepted.

We assume for the sake of contradiction that there exists a deterministic
Streett automaton D recognising Kn that has strictly less than 2n

2n+1 states. By
Theorem 4 from [2], it means that we can use D as a memory structure for the
automaton Cn to recognise Kn. Therefore, we focus on the product Cn ×D with
the acceptance condition taken from Cn. What is important is that Cn ×D has
to follow the transitions of Cn. We know that Cn ×D is a deterministic coBüchi
automaton with strictly less than 2n states and L(Cn ×D) = Kn.

Eventually Safe Languages 17

We will use the symbol ρ to denote finite and infinite runs of Cn ×D. For a
given run ρ there are possibly many ω-words α that induce this run, since only
the sequence of states is considered in ρ.

The rest of the argument aims at providing an ω-word α that belongs to Kn

but is rejected by the product automaton Cn ×D. Intuitively, the construction
of α requires to balance between two aims: we need to infinitely often force the
product automaton Cn ×D to take a rejecting transition of Cn but at the same
time to ensure that there is at least one infinite path in Graph(α). The ω-word
α, an infinite path in Graph(α), and the rejecting run of Cn ×D over α will be
constructed as a limit of inductively constructed finite approximations. We will
not control exactly the way Cn×D works in every position of our approximation,
we will be interested only in some checkpoints controlled by partial runs.

Definition 17. A partial run is a finite partial mapping τ : ω ⇀ QCn ×QD such
that τ(0) is defined and equal to (⊥, qDI).

A partial run τ is rejecting if all its states are of the form (⊥,m).

We denote by τ ⊆ ρ the fact that a run ρ agrees with τ wherever τ is defined.

The length of τ is the maximal moment of time k such that τ(k) is defined.

Note that the domain of a partial run τ does not have to be an initial segment
of ω. The following definition is crucial.

Definition 18. Let τ be a partial run of length k. We say that a value i ∈
[0, 2n − 1] is alive in τ if there exists an ω-word α such that for the run ρ of
Cn × D over α we have τ ⊆ ρ and there exists a path p : [0, k] → [0, 2n − 1] in
Graph(α) that starts in the moment of time 0 and ends in the moment of time k
with the value i (i.e. p(k) = i).

Note that in the above definition we actually care only about the first k letters
of α. However, it is cleaner to consider ω-words α here.

Figure 1 depicts a partial run and a witness that the value i = 2 is alive.

Our aim is to construct a sequence of partial rejecting runs of increasing
lengths τ0 ⊂ τ1 ⊂ . . . such that for all ` ∈ N there are at least n alive values in
τ`. This will give a contradiction with our assumptions by the following Lemma.

Lemma 19. Assume that there exists a sequence of partial rejecting runs τ0 ⊂
τ1 ⊂ . . . of increasing lengths such that for all ` ∈ N there exists an alive value
in τ`. Then there exists an ω-word α ∈ Kn such that the run ρ of Cn ×D over α
is rejecting.

Proof. Let k` be the length of τ`. Take any ` and assume that i` is a value that
is alive in τ`. Observe that it is witnessed by:

– an ω-word α`,

– a run ρ` of Cn ×D over α`, such that τ` ⊂ ρ`,
– a path p` : [0, k`]→ [0, 2n− 1] in Graph(α`) with p`(k`) = i`.

18 S. Iosti, D. Kuperberg

τ :

α:

Graph(α):

ρ:

time:

? ? ? ? ? ?(q0,m0) (q6,m6) (q8,m8)

0

1

2

3

0

a0

1

a1

2

a2

3

a0

4

a1

5

b2

6

b1

7

a1 . . .

8

. . .

. . .

. . .

. . .

. . .

(q0,m0) (q1,m1) (q2,m2) (q3,m3) (q4,m4) (q5,m5) (q6,m6) (q7,m7) (q8,m8)

Fig. 1. An example of a partial run τ and an ω-word α that witnesses the fact that
2 is alive in τ . The run ρ is the run of Cn ×D over α and the states of ρ and τ agree
wherever defined. The dashed path is the path witnessing that 2 is alive in τ .

Now we take a subsequence of (α`, ρ`, p`)`∈N that is point-wise convergent to
a triple

(α, ρ, p) ∈
(
Σ ×

(
QCn ×QD

)
× [0, 2n− 1]

)ω
, such that :

– ρ is the run of Cn ×D over α,
– for infinitely many ` we have τ` ⊆ ρ,
– p encodes an infinite path in Graph(α).

To formally construct (α, ρ, p) we can proceed similarly as in the proof of König’s
lemma. We fix (α(i), ρ(i), p(i)) inductively for i = 0, 1, At each moment we
require that infinitely many (α`, ρ`, p`) agree with (α, ρ, p) on the first i positions.
Since for each i there are only finitely many choices of (α(i), ρ(i), p(i)) so we can
fix these values in such a way that still infinitely many (α`, ρ`, p`) agree with
them.

By the properties of (α, ρ, p) we know that ρ is rejecting as it contains infinitely
many times a state of the form (⊥,m). On the other hand, α ∈ Kn because p is
a witness that Graph(α) contains an infinite path.

What remains is to construct the sequence τ` inductively. Our inductive
assumption is that τ` is a partial rejecting run and the values 1, 3, 5, . . . , 2n−1 are
alive in τ` (note that there are n such values). We put τ0 =

[
0 7→ (⊥, qDI)

]
. Clearly

τ0 satisfies the inductive assumption (in fact all the values i = 0, . . . , 2n− 1 are
alive in τ0).

Let k` be the length of τ`. We construct τ`+1 from τ` by applying some words
to the last state (⊥,m`) = τ`(k`) of τ` and observing the behaviour of Cn ×D.

The rest of the proof differs from the proof from [15], as we have to account
for the specificity of Kn, namely that paths cannot cross.

Eventually Safe Languages 19

Observe that there are N = 2n words u1, . . . , uN ∈ Σ∗ that encode total
functions f : {1, 3, 5 . . . , 2n−1} → [0, 2n−1] such that for all i ∈ {1, 3, 5 . . . , 2n−
1}, we have f(i) ∈ {i, i − 1}. Such a word for a function f can be built as
bi1bi2 . . . bik where {i1, . . . ik} = {i ∈ {0, 2, . . . , 2n− 2} | f(i+ 1) = i}.

We can assume that all the words u1, . . . , uN are of equal length by padding
them with ι. Since there are strictly less than N = 2n states of Cn ×D, there are
two distinct such words u, u′ leading from (⊥,m`) to the same state (q′`,m

′
`) of

Cn ×D. By the construction of Cn ×D we know that q′` ∈ {0, . . . , 2n− 1}.
Assume that the functions corresponding to u and u′ differ on 2i+ 1, i.e. one

of them maps 2i+ 1 to 2i and the other to 2i+ 1. Let X be the set of the values
{u(1), u(3), . . . , u(2n− 3), u(2n− 1), u′(2i+ 1)} (we write here u(i′) for the value
assigned to i′ by the permutation corresponding to u, the same for u′). By the
above observations X contains exactly n+ 1 elements.

Lemma 20. There exists w ∈ Σ∗ that:

– cuts the path from q′` at the last letter,
– maps X \ {q′`} to 1, 3, 5, . . . , 2n−1 if q′` ∈ X,
– maps X to 1, 3, . . . , 2n−1, and some even integer 2j if q′` /∈ X.

Proof. Let A = {ai | i ∈ [0, 2n− 2]} and B = {bi | i ∈ [0, 2n− 2]}.
Notice that if Y = {y1, . . . , yk} and Z = {z1, . . . , zk} are subsets of [0, 2n− 1]

with yi < yi+1 and zi < zi+1 for all i ∈ [0, 2n − 2], there exists a word v ∈ Σ∗
mapping yi to zi for all i ∈ [1, k]. It suffices to take v = w1w2 . . . wkw

′
kw
′
k−1 . . . w

′
1

where wi ∈ B∗ maps yi to i − 1 and uses no unnecessary letters, and w′i ∈ A∗
maps i− 1 to zi in the same way. Proceeding in this order avoids the cutting of
any path starting in Y .

Let us assume first that q′` ∈ X. If q′` 6= minX, we can find a word v mapping
X to 1, 3, . . . , 2n−1, and an even integer 2j, such that q′` is mapped to 2j + 1.
Taking w = va2j completes the proof in this case. If q′` = minX, we can choose
v to map X to 1, 3, . . . , 2n−1 and 2, with q′` mapped to 1, and take w = vb1.

Assume now that q′` /∈ X. If q′` > minX. We can find a word v mapping X
to 1, 3, . . . , 2n−1, and two even integers 2j and 2j′, such that q′` is mapped to
2j′ + 1. We then take w = va2j′ . Finally, if q′` < minX, we choose v to map X
to 1, 3, . . . , 2n−1 and 2, 4, with q′` mapped to 1, and take w = vb1.

Since w cuts the path from q′` at the last letter, it means that after reading
w from the state (q′`,m

′
`) the automaton Cn × D reaches a state of the form

(⊥,m`+1). For an illustration of these functions, see Figure 2.

Fact 21 Consider τ`+1 defined as τ` ∪
[
k` + |u| + |w| 7→ (⊥,m`+1)

]
. By the

definition τ` ⊂ τ`+1, τ`+1 is rejecting, and all the values 1, 3, . . . , 2n− 1 are alive
in τ`+1 (it is witnessed by the fact that these values were alive in τ` and by the
words uw and u′w).

Therefore, we have constructed τ`+1 that satisfies the inductive invariant.
This concludes the inductive construction of the sequence (τ`)`∈N. By Lemma 19
it finishes the proof of Theorem 4.

20 S. Iosti, D. Kuperberg

τ`+1:

α/α′:

Graph(α):

ρ/ρ′:

time:

(⊥,m`) ? ? (⊥,m`+1)

(⊥,m`) (3,m′
`) (0,m′′

`) (⊥,m`+1)

k` k` + |u| k`+1

u/u′
w

a1a0a2

0

1

2

3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 2. The behaviour of Cn ×D over uw and u′w. The alive values are in circles, only
edges between the alive values are drawn. The dashed edge corresponds to the action
of the word u′ on the value 1 (u and u′ differ on this value). X is the set of values in
circles at the moment of time k` + |u|. q′` = 3 is cut by the last letter of w = a1a0a2,
the other elements of X are mapped to 1 and 3.

B Describing Kn in LTL

B.1 LTL-definability of Kn

We first show that the language Kn is LTL-definable using a common characteri-
zation of LTL-definable languages [7]. We will give an explicit formula for Kn in
the next section.

Lemma 22. For every word w ∈ Σ∗, there exists Xw ⊆ [0, 2n− 1] such that for
all N ≥ 2n, x ∈ Xw and y /∈ Xw, Graph(wN) has a path from (x, 0) to (x,N |w|),
and the path starting in (y, 0) is cut.

Proof. Let Xw = {x ∈ [0, 2n− 1] | Graph(w) has a path from (x, 0) to (x, |w|)}.
Let y /∈ Xw, and let us prove that the path starting in (y, 0) is cut in Graph(w2n),
which will conclude the proof. If the path in Graph(w) starting in (y, 0) is cut,
then we are done. If it is not, then it ends in y1 6= y. Assume that y1 > y (the
other case being symmetric). We have y1 /∈ Xw, for if this was the case, the path
ending in y1 would start in y1, and this would imply y1 = y. Moreover, the path
in Graph(w) starting in y1 is either cut, in which case we are done since the path
in Graph(w2) starting in (y, 0) would be cut, or ends in (y2, |w|) with y2 > y1:
indeed, if we had y2 < y1, then the paths in Graph(w) starting in (y, 0) and
in (y1, 0) would cross, which is not possible since no letter of Σ allows such a
crossing. Repeating this process yields a strictly increasing sequence y, y1, . . . , yk
in [0, 2n− 1], of length at most 2n, such that the path in Graph(w2n) starting in
(y, 0) contains the points (y, 0), (y1, |w|), . . . (yk, k|w|), and is cut before reaching
(k + 1)|w| on the second component.

Eventually Safe Languages 21

We can now use this lemma to prove that Kn is LTL-definable. We use the
characterization of LTL-definable languages as aperiodic languages [7]:
A language L is LTL-definable if and only if there exists N0 ∈ N such that for all
N ≥ N0 and u1, u2, u3, v ∈ Σ∗, we have both of the following :

(u1v
Nu2)uω3 ∈ L⇔ (u1v

N+1u2)uω3 ∈ L
u1(u2v

Nu3)ω ∈ L⇔ u1(u2v
N+1u3)ω ∈ L

The fact that Kn satisfies this characterization is a consequence of Lemma 22 :
when N ≥ 2n, the uncut paths in the graphs Graph(vN) and Graph(vN+1) are
exactly the paths starting in (x, 0) for x ∈ Xv, and these paths end in x. Hence
the existence of an infinite path in the graph of a word with vN as a subword
does not depend on the exponent on N as long as N ≥ 2n.

B.2 An explicit LTL formula for Kn

We now give an explicit formula for the language Kn, using intermediate formulas
with the following intuition:

– for i < j and a formula θ, ϕji (θ) is a formula whose models are words that
have an associated graph with a path starting in i, staying between i and j,
touching j, and such that θ is true at the first point where the path comes
back to i after touching j (if ever). Figure 3 gives a graphical representation
of such a path.

Fig. 3. Formula ϕj
i (θ)

– for i ≤ j and a formula θ, ψji (θ) follows the same intuition as ϕji , except that
the path of interest is allowed to travel several (possibly infinitely many)
times betwen i and j before ending up in i and verifying θ; this is illustrated
in Figure 4.

The idea behind the general formula is that if there is an infinite path in
Graph(w) oscillating infinitely often between i and j, then it oscillates between i

22 S. Iosti, D. Kuperberg

Fig. 4. Formula ψj
i (θ)

and at most j − 1 until it goes from i to j (without coming back to i), at which
point it oscillates between i+ 1 and j until it goes from j to i, and so on. This
behavior will be expressible using our formulas ϕ and ψ.

We will define our formulas by recursion on j − i. Let N = 2n− 1. For any
i ≤ j, we will use the following notation: ψ≤ji (θ) :=

∨
i≤k≤j ψ

k
i (θ).

We start by defining for each i the subalphabet αi that maps i to i, and the
formula ψii(θ).

αi = Σ \ {ai−1, ai, bi, bi+1}
ψii(θ) = αiWUθ

Assume now that the formulas ψj
′

i′ have been defined for all i′ ≤ j′ such that

j′ − i′ < j − i. We define the formulas ϕji and ψji by:

ϕji (θ) = ψ≤j−1i (ai ∧ �(ψji+1(bi ∧ �θ)))
ψji (θ) = ϕji (>) ∧ [(ϕji (>)→ ϕji (ϕ

j
i (>)))WUϕji (θ)]

The language Kn is then described by the formula φ = F(
∨

0≤i≤j≤N ψ
j
i (⊥)).

Lemma 23. JφK = Kn

Proof. We use the notation w>r for a word w to denote the suffix of w obtained
by removing the first r letters of w, and w≤r for the removed prefix. By a path
“staying between i and j”, we mean a path that contains only vertices of the form
(k, r) for i ≤ k ≤ j.

We will prove inductively on j − i the following induction hypothesis, for any
formula θ :

1. for i < j, w |= ϕji (θ) if and only if there is a path in Graph(w) starting in
(i, 0), staying between i and j, which is either infinite, in which case it never
comes back to i once it has touched j (if at all), or contains the vertex (j, r)
for some r > 0, ending in a vertex (i, s) with s > r and s minimal for this
property, such that w>s |= θ.

Eventually Safe Languages 23

2. for i ≤ j, w |= ψji (θ) if and only if there is a path in Graph(w) starting in
(i, 0), staying between i and j, which is either infinite, or contains the vertex
(j, r) for some r ≥ 0, and ends in a vertex (i, s) for some s > r such that
w>s |= θ.

The initial case is i = j. Let θ be a fixed formula. There is nothing to prove
in point 1. In point 2, by the semantic of the WU operator, w |= ψii(θ) if and
only if w = uv with u ∈ α∗i , and either v ∈ αωi , or v |= θ. In the first case,
the path starting in (i, 0) in Graph(w) is infinite ; in the second case, the rest
of the induction hypothesis is satisfied, by choosing r = 0 and s such that v = w>s.

Let us prove point 1 above for some i < j, assuming that the induction
hypothesis has been proved for all i′, j′ such that j′− i′ < j− i and all formulas θ.
We will prove point 2 afterwards, using point 1. Again, let θ be a fixed formula.

For the left to right implication, let w |= ϕji (θ). Then, there is k < j such

that w |= ψki (ai ∧ �(ψji+1(bi ∧ �θ))). By the induction hypothesis, there is in
Graph(w) a path starting in (i, 0), staying between i and k, which is either infinite
or contains the vertex (k, r) for some r > 0, a vertex (i, s) with s > r and s
minimal for this property, such that w>s |= ai ∧ �(ψji+1(bi ∧ �θ)). In the case
where the path is infinite, the induction hypothesis is proven. In the other case,
we know that w>s = aiv with v |= ψji+1(bi ∧ �θ), and using again the induction
hypothesis and assuming that the path in Graph(v) starting in (i+ 1, 0) is not
infinite, we know that v = ubiu

′ with Graph(u) having a path from (i+ 1, 0) to
(i + 1, |u|) staying between i + 1 and j and containing some vertex (j, r), and
u′ |= θ. Putting all of this together, w = w≤raiubiu

′, and we see that Graph(w)
has a path starting in (i, 0), passing through some (j, r) for r > 0, and which
stops at the first vertex (i, s) with s > r, and we have that w>s = u′ |= θ, which
concludes the first implication.

Conversely, let w be a word satisfying the right part of the “if and only if”.
First case : If the path starting in (i, 0) stays between i and j and is infinite

and never comes back to i once it touched j (if at all), then : either it never
reaches j, in which case by the induction hypothesis w |= ψj−1i (θ′) for any formula

θ′, and in particular w |= ϕji (θ), and we are done ; or it passes through (j, r) for
some r minimal. In this case, we can write w = uaiv with Graph(u) having a
path starting in (i, 0), staying between i and k for some k < j, reaching k at
some point, and ending in (i, |u|), and with the path in Graph(v) starting in
(i + 1, 0) staying between i + 1 and j (since it cannot come back to i). Hence,
v |= ψji+1(θ′) for any θ′ by the induction hypothesis, and again by the induction

hypothesis on ψki (ai ∧ �ψji+1(θ′)) for any θ′, we obtain that w |= ϕji (θ).
Second case : If the path starting in (i, 0) stays between i and j and contains

the vertex (j, r) for some r > 0, ends in a vertex (i, s) with s > r and s minimal
for this property, such that w>s |= θ, then by a similar approach, we have that
w = uaivbiw>s with : the path in Graph(u) starting in (i, 0) staying between i
and k for some k < j, touching k at some point, and ending in (i, |u|) ; and the
path in Graph(v) starting in (i+ 1, 0) staying between i+ 1 and j, touching j at
some point, and ending in (i+ 1, |v|). Hence, by the induction hypothesis, we see

24 S. Iosti, D. Kuperberg

that vbiw>s |= ψji+1(bi ∧ �θ), and that w |= ϕji (θ).

We now prove point 2 above. Again, fix some formula θ.
For the left to right implication, let w |= ψji (θ). We first note that w |= ϕji (>).

By the induction hypothesis, there are two cases :
First case : The path in Graph(w) starting in (i, 0) stays between i and j

and is infinite. In this case, the induction hypothesis is satisfied.
Second case : The path in Graph(w) starting in (i, 0) stays between i and

j, and comes back to i after touching j. In this case, we will need to inspect
the second part of the formula. Since w |= (ϕji (>)→ ϕji (ϕ

j
i (>)))WUϕji (θ), the

formula ϕji (>) → ϕji (ϕ
j
i (>)) must be true of all suffixes of w, or of all suffixes

of the form w>s for s < t for some fixed t, and w>t |= ϕji (θ). In the first case,

by the induction hypothesis, for every s, if w>s |= ϕji (>), then there is a path
in Graph(w>s) starting in (i, 0), reaching (j, r) for some r > 0, coming back to
(i, s′), and w>s′ |= ϕji (>). Consequently, the path starting in (i, 0) in Graph(w) is
infinite. In the second case, the same phenomenon occurs until the time t. If the
path passes through (i, t), then since w>t |= ϕji (θ), the path must continue and
either be infinite (in which case we are done), or reach j then come back to (i, t′),
and w>t′ |= θ, and we are also done. The only case left to consider is the case
where the path passes through (k, t) for some k > i. Since w>t |= ϕji (θ), the path
in Graph(w>t) starting in (i, 0) cannot reach j since by doing so it would cut
the original path, thus contradicting the induction hypothesis ; hence, it must be
infinite, and in this case the original path cannot come back to i since it would cut
the new path, so it is forced to be infinite by induction hypothesis, and we are done.

Finally, let us consider the right to left implication. Consider w satisfying the
right side of the “if and only if”. We again distinguish two cases :

First case : We can write w = u1u2 . . . upv for some p ≥ 1 with : for all l ∈ [1, p],
Graph(ul) has a path starting in (i, 0), staying between i and j, reaching (j, r) for
some r > 0, and coming back to i for the first time after r only in (i, |ul|) ; and
v |= θ. In this case, upv |= ϕji (θ). If p = 1, then since in particular upv |= ϕji (>),

we have w = upv = ψji (θ). If p > 1, we prove by recurrence that for all l ∈ [1, p],

ulul+1 . . . upv |= (ϕji (>) → ϕji (ϕ
j
i (>)))WUϕji (θ). This is true for l = p (since

in this case, the left part of the WU is not relevant). If this is true for some
l + 1 ≤ p, then let us prove it for l. It is enough to prove that for all r ∈ [0, |ul|],
(ul)>rul+1 . . . upv |= ϕji (>) → ϕji (ϕ

j
i (>)). If the path in Graph(ul) starting in

(i, 0) reaches (i, r), then (ul)>rul+1 . . . upv |= ϕji (>) by assumption on ul. In this

case, by assumption on ul+1, we also have (ul)>rul+1 . . . upv |= ϕji (ϕ
j
i (>)), and

the property follows. If the path in Graph(ul) starting in (i, 0) reaches (k, r)
for some k > i, then we claim that (ul)>rul+1 . . . upv 6|= ϕji (>) ; for if this
was the case, then by induction hypothesis there would be a path starting in
(i, r), staying between i and j, and being either infinite or reaching j at some
point, contradicting the fact that the path in (k, r) must come back to i and
path-crossing is not possible. Hence, the property is proved. Finally, since p ≥ 1,
we see that u1 . . . upv |= ϕji (>), and hence w |= ψji (θ).

Eventually Safe Languages 25

Second case : If the path in Graph(w) starting in (i, 0) stays between i and
j and is infinite, then there are two possible subcases. The first subcase is the
one where the path oscillates infinitely often between i and j, we can write
w = u1u2 . . . up . . . with the words up having the same property as in the first
case above. But in this case, by a reasoning similar to the one in the first case,
we see that w |= ϕji (>) and w |= G(ϕji (>)→ ϕji (ϕ

j
i (>))), and hence w |= ψji (θ).

The second subcase is the one where the path oscillates between i and j for some
time before leaving i and never reaching j, or leaving j and never reaching i. In
this case, we can write w = u1 . . . upv as above, with p ≥ 0 (there might be no ul
at all) and the ul satisfying the same conditions as above, and v being such that
the path in Graph(v) starting in (i, 0) stays between i and j, and either never
reaches j, or reaches j but never reaches i again afterwards. By the induction
hypothesis, v |= ϕji (θ), and a reasoning similar to the first case above (starting
with v instead of upv) leads to the same conclusion.

To conclude the proof, we now only have to show that the models of φ are
exactly the words from Kn. If w ∈ Kn, then there is s such that w>s has an
infinite path starting in (i, 0) and staying between i and j for some values of i
and j. Hence, by our point 2 above, w>s |= ψji (⊥), and so w |= φ. Conversely, if

w |= φ, then there is s such that w>s |= ψji (⊥). But by our result above, there is
a path in Graph(w>s) starting in (i, 0) that stays between i and j and which is
infinite, since ⊥ can never be satisfied. Consequently, w ∈ Kn, and this concludes
the proof.

B.3 Size of the formula

Lemma 24. We have 2N−1 < |φ|dag < 3N+1(N+4)!(5N+4), where N = 2n−1.

Proof. Upper bound

For 0 ≤ k ≤ N , let A(k) = 3k(k + 1)!(5k + 4)N and B(k) = 3A(k) + 4. We
will prove inductively on k = j − i that

|ψji (θ)|dag ≤ B(k) + |θ|dag for k ≥ 0

|ϕji (θ)|dag ≤ A(k) + |θ|dag for k ≥ 1

For the case k = 0, note that |ψii(θ)|dag = |αiWUθ|dag < 2N + |θ|dag <
B(0) + |θ|dag.

For the induction case, assume that the formulas are true for i− j < k, and
take i and j such that j − i = k. Note that in the computation below, we make
use of the fact that a subformula that appears at different places in a formula
needs to be counted only once in the DAG-size; the places where this fact has
been used are marked with a (∗).

26 S. Iosti, D. Kuperberg

|ϕji (θ)|dag = |ψ≤j−1i (ai ∧ �(ψji+1(bi ∧ �θ)))|dag
≤ (k − 2) + (k − 1)B(k − 1) + |ai ∧ �(ψji+1(bi ∧ �θ))|dag (∗)
≤ (k − 2) + (k − 1)B(k − 1) + 3 +B(k − 1) + 3 + |θ|dag
≤ k + 4 + kB(k − 1) + |θ|dag
≤ k + 4 + 3kA(k − 1) + 4k + |θ|dag
≤ 3kA(k − 1) + 5k + 4 + |θ|dag
≤ 3k(3k−1k!(5(k − 1) + 4)N + 5k + 4 + |θ|dag
≤ 3k.k.k!(5k − 1)N + 5k + 4 + |θ|dag

Now, it is easy to check that if N ≥ 1
2 , then this last expression is less than

A(k) + |θ|dag, which concludes the induction step for |ϕji (θ)|dag.

|ψji (θ)|dag = |ϕji (>) ∧ [(ϕji (>)→ ϕji (ϕ
j
i (>)))WUϕji (θ)]|dag

≤ 3 +A(k) + 1 +A(k) +A(k) + |θ|dag (∗)
≤ 3A(k) + 4 + |θ|dag

This concludes the induction proof. We now prove the upper bound on φ
(using that (5N + 4)(N + 1) ≥ (5N + 4)N + 6 when N ≥ 1):

|φ|dag = |F(
∨

0≤i≤j≤N ψ
j
i (⊥))|dag

≤ 1 + (N + 1)2 − 1 + (N + 1)2(B(N) + 1) (∗)
≤ (N + 1)2(3A(N) + 6)
≤ (N + 1)2(3N+1(N + 1)!(5N + 4)N + 6)
≤ (N + 1)2(3N+1(N + 1)!(5N + 4)(N + 1)
≤ 3N+1(N + 4)!(5N + 4)

Lower bound
We will make use of the following easy fact:

Fact 25 For all formulas ϕ, |ϕ|dag is greater than or equal to the depth of the
syntactic tree of ϕ.

We will actually prove that for any formula θ, ψN0 (θ) has a syntactic tree of
depth at least 2N−1, which is enough for our purpose by Fact 25 since ψN0 (⊥) is
a subformula of φ.

In order to prove this result for any θ, we consider θ as a free variable, and
we compute the maximal depth at which appears this variable in the formula
ψji (θ) for i ≤ j. We first note that for a fixed value of k = j − i, all the formulas

ψji (θ) have the same structure, the only difference being a renaming of the leaves
of the syntactic tree ; for this reason, we will call dk the maximal depth of the
variable θ in these formulas. Now, assume that i < j ; we will follow a branch
of the syntactic tree of ψji (θ). Consider the subformula ϕji (θ) of ψji (θ). In this

subformula, we consider the branch that goes through ψj−1i (ai∧�(ψji+1(bi∧�θ)))
at the outermost

∨
i≤k≤j−1 operator. In this subformula, we again follow the

path passing through the subformula ψji+1(bi ∧�θ), then the path to the variable
θ.

Eventually Safe Languages 27

Summing up, we have encountered along this path the formulas ψj−1i (θ1) and

ψji+1(θ2) for some formulas θ1 and θ2, one nested in the other, before reaching
the leaf θ. Hence, dj−i > 2dj−i−1. By recursion, we get that dn−1 > 2n−1, which
yields the announced minoration of |φ|dag.

C Properties of ESafe

C.1 Proof of Lemma 10

Proof. First of all, recall that it is equivalent whether L is DCW or NCW
recognizable [17], and that it is decidable whether it is the case [3].

Now, if L is given by a DCW D, by Theorem 9, the problem amounts to
checking whether L is prefix-independent. It is the case if and only if all reachable
states of D accept the same language. This can be verified in NL, by guessing
two nonequivalent reachable states, and a lasso in D ×D that is accepting for
one but not for the other. This is actually a NL procedure for the complement,
but since NL is closed under complement, we obtain that membership in ESafe
is in NL for DCW inputs.

If L is given by a NCW C, the PSPACE-hardness can be obtained by reduction
from NFA universality, which is PSPACE-complete. To reduce it to this problem,
consider an arbitrary NFA A = (Q,Σ,∆, q0, F) on Σ. Let $ /∈ Σ be a new letter,
and qf /∈ Q be a new state. We build a NCW C = (Q′, Σ′, ∆′, q0, {qf}) by setting
Σ′ = Σ] {$}, Q′ = Q] {qf} and ∆′ = ∆ ∪ {(q, $, qf) | q ∈ F ∪ {qf}}. We have
L(A′) = L(A)$ω, and L(A′) ∈ ESafe if and only if L(A) = Σ∗. This shows that
the problem is PSPACE-hard.

The membership of the problem in PSPACE directly follows from the fact
that the problem is in NL for DCW. Indeed, we can use this algorithm with
the determinization of C obtained via breakpoint construction [17], yielding a
PSPACE procedure.

C.2 Proof of Theorem 7

Recall that Theorem 7 states that a language is definable in SνTL if and only if
it is recognized by a safety automaton.

Proof. Recall that safety languages are exactly those accepted by safety automata
(i.e. with all states accepting), regardless of whether they are deterministic, non-
deterministic or alternating. Indeed, removing alternation or determinizing can be
done while preserving the safety condition, through simple powerset constructions.

We show that any SνTL formula can be turned to an alternating safety
automaton, as a particular case of the general construction for branching µ-
calculus [20].

Let ψ be a SνTL formula, and sub(ψ) be the set of subformulas of ψ. We
build the alternating safety automaton A = (Q,Σ, q0, δ) with ε-transitions, by
choosing as set of states Q = {qϕ | ϕ ∈ sub(ψ)} ∪ {>}, and q0 = qψ.

The transition function δ is defined as follows, where a ranges over Σ.

28 S. Iosti, D. Kuperberg

– δ(qa, a) = δ(>, a) = >
– δ(qϕ1∨ϕ2 , ε) = qϕ1 ∨ qϕ2

– δ(qϕ1∧ϕ2
, ε) = qϕ1

∧ qϕ2

– δ(q�ϕ, a) = qϕ
– δ(qX , ε) = qϕX

, where νX.ϕX is the formula bounding the variable X in ψ.
– δ(qνX.ϕ, ε) = qϕ.

The values not specified here mean that the function is undefined on these values,
for instance δ(a, b) with a 6= b.

It is shown in [20] for general branching µ-calculus that L(A) = JψK.
Conversely, acceptance of a deterministic safety automaton can be expressed

by a SνTL formula.
Let A = (Q,Σ, q0, δ, Q) be such an automaton, with Q = {q0, . . . , qn}. We

define formulas ϕi and ψi recursively for i from n to 0. If ψj is defined for all
j > i :

ϕi =

∨
a∈Σ

δ(qi,a)=qj
j>i

(a ∧ �ψj)

 ∨

∨
a∈Σ

δ(qi,a)=qj
j≤i

(a ∧ �Xj)

 and ψi = νXi.ϕi

It is clear that ψ0 is a closed formula, and we claim that L(ψ0) = L(A).

This can be proved recursively with the following induction hypothesis at step
i : for the interpretation of the variables defined by val(Xk) = L(A, qk) for all k,
we have that L(A, qi) = JψiKµ,val . Assuming that this hypothesis is satisfied for
all j > i, we consider the following equation satisfied by L(A, qi) :

S =

⋃
a∈Σ

δ(qi,a)=qj
j>i

aL(A, qj)

 ∪

⋃
a∈Σ

δ(qi,a)=qj
j<i

aL(A, qj)

 ∪
 ⋃

a∈Σ
δ(qi,a)=qi

aS

Using the induction hypothesis for the j > i and the valuation val for the

j < i, the following equation is again satisfied by L(A, qi) :

S =

⋃
a∈Σ

δ(qi,a)=qj
j>i

aJψjKµ,val

 ∪

⋃
a∈Σ

δ(qi,a)=qj
j<i

aval(Xj)

 ∪
 ⋃

a∈Σ
δ(qi,a)=qi

aS

In other words, L(A, qi) is a fixed point for S 7→ JϕiKµ,val[Xi→S], hence

by the semantic of the νXi operator, L(A, qi) ⊆ JψiKµ,val . Moreover, if S is

Eventually Safe Languages 29

a fixed point, then it satisfies the two equations above (using the induction
hypothesis for the first one). If w ∈ S, then either w belongs to one of the
first two terms of the union in the first equation, in which case it is clearly in
L(A, qi), or it belongs to the last term, in which case it is of the form w = av
with a ∈ Σ, δ(qi, a) = qi, and v in S. Repeating this process on v, we see
that w ∈ L(A, qi), so S ⊆ L(A, qi), and L(A, qi) is the greatest fixed point
of S 7→ JφiKµ,val[Xi→S], that is to say L(A, qi) = JψiKµ,val , and the induction
hypothesis at step i is proven. Finally, step 0 of the induction hypothesis states
exactly that Jψ0Kµ,val = L(ψ0) = L(A, q0) = L(A).

C.3 Proof of Theorem 9

We recall the statement of Theorem 9:

Theorem 9. ESafe is equal to the class of prefix-independent coBüchi lan-
guages. Moreover, if L = Σ∗Lsafe is accepted by a NCW C, we can build a
non-deterministic safety automaton Asafe from C recognizing Lsafe with the same
number of states. Conversely, if we have a non-deterministic safety automaton
for Lsafe , we can build a NCW C for L with one more state.

We first prove the right to left inclusion. Let L be a prefix-independent coBüchi
language, recognized by a NCW C = (Q,Σ,∆, q0, F), where all states are reach-
able from q0. We define the safety automatonAsafe = (Qsafe , Σ,∆safe , Qsafe , Qsafe)
with Qsafe = F , ∆safe = ∆ ∩ (Qsafe ×Σ ×Qsafe) ; Asafe is the safety automa-
ton obtained from C by suppressing all the non-accepting states, and taking
all accepting states as initial. Notice that L(Asafe) is suffix-closed, since all
states of Asafe are also initial states. Finally, let A′ be the coBüchi automa-
ton with ε-transitions defined by (Q′, Σ,∆′, q′0, {q′0}), with Q′ = Qsafe ∪ {q′0},
∆′ = δsafe ∪{(q′0, a, q′0) | a ∈ Σ}∪{(q′0, ε, Q0)} : for a word to be accepted by this
automaton, we must read any prefix of the word, then jump to any initial state
of Asafe , from which we must stay in Asafe . It follows that L(A′) = Σ∗L(Asafe),
and L(Asafe) is a suffix-closed safety language, so L(A′) ∈ ESafe.

We claim that L(A′) = L(C), which will prove that L(C) ∈ ESafe. First,
if w ∈ L(C), then by definition of the coBüchi acceptance condition, w = uv
with u ∈ Σ∗, and v ∈ L(Asafe), so w ∈ Σ∗L(Asafe) = L(A′). Conversely,
consider w ∈ L(A′). Then, the accepting run of A′ on w can be decomposed

into q′0
u−→ q′0

ε−→ q
v−→ . . . , where v is accepted in A′ from q. This implies that

v is accepted in C from q. Since q is an accessible state in C there is u′ ∈ Σ∗

such that q0
u′

−→ q in C, and we get u′v ∈ L(C). Since L(C) is prefix-independent,
we also have that uv = w ∈ L(C), which concludes the proof of the equality
L(C) = L(A′).

Let us now prove the left to right inclusion. Let L ∈ ESafe, i.e. L = Σ∗Lsafe

with Lsafe a suffix-closed safety language. Let A = (Q,Σ, δ, q0, Q) be a non-
deterministic safety automaton for Lsafe , with all states accessible from q0. As
before, we build a NCW C for L by adding to A a non-accepting initial state q′0,

with transitions q′0
a−→ q′0 for all a ∈ Σ, and q′0

ε−→ q for all q ∈ Q. This shows

30 S. Iosti, D. Kuperberg

that L is a coBüchi language. Moreover, Lsafe is suffix closed, so for all u, v ∈ Σ∗
and w ∈ Σω, we have uw ∈ Σ∗Lsafe ⇔ suff (w) ∩ Lsafe 6= ∅ ⇔ vw ∈ Σ∗Lsafe ,
showing that L is prefix-independent.

D Constructions using EνTL

D.1 Proof of Lemma 11

We define inductively the formulas ψi for i from N to 0, each one containing
Xi−1 as a free variable, except for ψ0 which is closed (recall that we use the
alphabets (αi)0≤i≤N defined in Section B.2) :

ψN = νXN .((αN ∧ �XN) ∨ (bN−1 ∧ �XN−1))
For 0 < i < N : ψi = νXi.((αi ∧ �Xi) ∨ (ai ∧ �ψi+1) ∨ (bi−1 ∧ �Xi−1))

ψ0 = νX0.((α0 ∧ �X0) ∨ (a0 ∧ �ψ1))

We finally define Φ := ψ0.

Lemma 11. The formula Φ has size linear in n, and JΦKE = Kn.

Proof. Due to the definition of the eventual semantic, we only have to show that
the usual µ-calculus semantic of Φ is the set of words that have an infinite path
in Graph(w) starting in (0, 0). For all i, let Si be the set of words w such that
Graph(w) has an infinite path starting in (i, 0), and let val be the valuation
defined by val(Xi) = Si.

Let us prove by induction on i for i from N to 0 that JψiKµ,val = val(Xi).
Note that the case i = 0 is exactly what we want to prove the lemma.

For the case i = N , let ϕN = (αN ∧ �XN) ∨ (bN−1 ∧ �XN−1), so that
ψN = νXN .ϕN . We have to show that SN is the greatest fixed point of the map
S 7→ JϕN Kµ,val[XN→S]. But JϕN Kµ,val[XN→S] = αNS ∪ bN−1val(XN−1). Since a
word w such that Graph(w) has an infinite path starting in (N, 0) either starts
by an element of αN followed by w′ ∈ SN , or by bN−1 followed by w′ ∈ SN−1, we
see that SN is a fixed point of S 7→ JϕN Kµ,val[XN→S]. Moreover, if S is another
such fixed point, then S starts by an element of αN followed by an element of S,
or by bN−1 followed by an element of SN−1, and by definition of the sets Si, this
implies that any element w of S belongs to SN . Hence, SN is the maximal fixed
point of the above map, and we have that SN = JψN Kµ,val .

For the induction case (be it for i > 0 or i = 0), the proof is completely
similar once we notice that by the induction hypothesis, Jψi+1Kµ,val = Si+1.

D.2 A EνTL formula for the original Ln

We show here that the logic EνTL can also express in a succinct way the original
family of languages (Ln) witnessing exponential succinctness of GFG automata.
Let N = 2n− 1.

We recall that the language Ln on Σ = {ι, τ, σ,]} is defined by interpreting
the letters as permutations on the set [0, N] (] being partial) : ι is the identity,

Eventually Safe Languages 31

τ = (0 1), σ = (0 1 . . . N),](0) = ⊥ and]|[1,N] = id. We define G(w) similarly
as above, and define Ln to be the set of words w such that G(w) has an infinite
path. We will define a formula ϕ such that JϕK defines the words w such that
Graph(w) has an infinite path starting in (0, 0), and JϕKE is Ln.

We define inductively (for i from N to 0) the formulas ϕi using the variables
X0, . . . , XN (with ϕi having as only free variable X0, except for ϕ0 which is
closed) :

ϕN = νXN .
(

((τ ∨] ∨ ι) ∧ �XN) ∨ (σ ∧ �X0)
)

For 1 < i < N : ϕi = νXi.
(

((τ ∨] ∨ ι) ∧ �Xi) ∨ (σ ∧ �ϕi+1)
)

And finally :

ϕ1 = νX1.
(
(τ ∧ �X0) ∨ ((] ∨ ι) ∧ �X1) ∨ (σ ∧ �ϕ2)

)
ϕ0 = νX0.

(
(ι ∧ �X0) ∨ ((τ ∨ σ) ∧ �ϕ1)

)
Lemma 28. Jϕ0KE = Ln.

Proof. The proof is essentially similar to the proof of Lemma 11, using the
valuation such that val(Xi) is the set of words w such that Graph(w) has an
infinite path starting in (i, 0). For this reason, we do not detail it here.

D.3 Proof of Theorem 12

Theorem 12. C is a GFG-NCW for JψKE.

The proof that C recognizes JψKE is similar to the proof of Lemma 16 in
Appendix A.2, only in a more general context.

Proof. First, let us remark that L(C) = JψKE . Indeed, Let w be a word accepted
in C. Then the accepting run has a suffix not using ⊥, that is to say accepting from
some state p in Dmin. Since we assumed p is reachable, we get that w = uv where
u′v ∈ L(A). We get that suff (w) ∩ suff (L(Amin)) 6= ∅, and since L(Amin) = JϕK,
by definition of the eventual semantic, we get w ∈ JψKE . Conversely, let w be a
word in JψKE , then it has a suffix that is accepted by some run ρ from some q
in Amin. Upon reading this suffix, if C encounters ⊥ it can jump to the current
state of ρ and accept the remaining of the suffix. This concludes the proof that
L(C) = JψKE .

To prove that C is GFG, it is enough to construct a function σ : Σ∗ → Q′

that for every ω-word w ∈ JψKE produces an accepting run of C over w. We will
do it inductively with σ(ε) = q0.

Let σ follow deterministically the transitions of C for all the states q 6= ⊥. It
remains to define σ(ua) if σ(u) = ⊥ and a successive letter a is given. Assume
that |ua| = k.

32 S. Iosti, D. Kuperberg

We now consider the run-DAG G of C on u. Vertices of G are from Q′ × N.
We consider that a path is cut in G every time it encounters ⊥. Notice that since
w ∈ JψKE = L(C), G must contain an infinite uncut path.

For every p ∈ Q let πp be an uncut path of maximal length in G containing the
node (p, k). Note that each of these paths πp has a starting position s(πp) ∈ N.

Let σ(ua) = p such that πp is the longest among the paths {πp′ | p′ ∈ Q}, i.e.
a path πp such that s(πp) is minimal. If there are two paths equally old, we move
to that with smaller p for an arbitrary ordering on Q.

We need to prove that σ produces an accepting run ρσ of C over w.
Let t be the minimal starting point of an infinite path π in G. Assume the

run ρσ is rejecting. This means that infinitely often, ρσ encounters ⊥, and jumps
on a state p with s(πp) ≤ t. This is absurd since this can only be done |Q| − 1
times, as after this number of cuts only the path π (or a path π′ reaching the
same state) has been uncut and satisfies s(π) ≤ t. This concludes the proof that
C is a GFG-NCW for JψKE .

Notice that we defined an infinite-memory GFG strategy σ, but it is possible
to define a GFG strategy σ′ using memory 2|Q|, by remembering a set of states M
to visit next. When in ⊥, the automaton jumps to a state from M and removes it
from M . The set M is updated when reading letters according to the transition
function, and it is reinitialized to Q when empty, this also guarantees that any
word from JψKE is accepted, since every path is eventually visited until an infinite
path is found.

D.4 Alternative Construction for Theorem 12 using strongly
connected components

We describe here another possible construction of a GFG-NCW automaton
equivalent to a given EνTL formula. The construction is similar to the one
given in section 5.5, except that we only determinize the strongly connected
components of the intermediate automaton And.

Let us build And the same way as in section 5.5. Recall that if the formula
to translate is ψ, then And is a safety non-deterministic automaton recognizing
JψK. Consider w ∈ suff (JψK). Then there is u = vw ∈ JψK, and an accepting run
of And over u ; this run eventually reaches some strongly connected component
with state space C of And and never leaves it. In particular, for some suffix w′ of
w, the run restricted to w′ reaches only states from C.

Let C1, . . . , Cn be the set of states of the strongly connected components of
And. We define for 1 ≤ i ≤ n a safety non-deterministic automaton Ai which is
informally the automaton obtained from And by keeping only the states in Ci.
More formally, again omitting the accepting states since the automata are safety,
if And = (Q,Σ, q0, ∆), then Ai = (Ci, Σ,Ci, ∆|Ci×Σ) ; note that the Ai have
all their states as initial states, but it is easy to build an equivalent automaton
with only one more state, and only one initial state. Each automaton Ai accepts
exactly those suffixes w of words u ∈ JψK for which there is an accepting run
of And over u ending in Ci, and for which the run restricted to w reaches only
states from Ci. Since the semantic we are ultimately interested in is the eventual

Eventually Safe Languages 33

semantic, we can restrict ourselves to considering these automata independently
from each other.

The automata Ai can then be determinized and minimized as in Section 5.5,
giving deterministic safety automata Ai,min = (Q′i, Σ, qi, ∆i). Once again, we can
assume that the Ai,min are strongly connected, as keeping only there strongly
connected components will not change the eventual semantic we are aiming at.

We can perform one last optimization step: if there are states p ∈ Ai,min
and q ∈ Aj,min with i 6= j such that L(p) ⊆ L(q), then Ai,min can be removed
from the list of components. Indeed, if a word w is accepted from p′ ∈ Ai,min,
then the same word can be accepted from q′ ∈ Aj,min. This is because Ai,min
is strongly connected, so there is a path p

u−→ p′ for some word u ∈ Σ∗, so
uw ∈ L(p) ⊆ L(q), and therefore if q′ is the state reached from q via u in Aj,min,
we obtain w ∈ L(q′). Thus, it is enough to keep components covering the possible
residual safe languages.

Finally, we build the automaton C = (Q′, Σ,⊥, ∆′, F), whereQ′ =
(⋃

1≤i≤nQ
′
i

)
∪

{⊥}, F =
⋃

1≤i≤nQ
′
i, and

∆′ =

 ⋃
1≤i≤n

∆i

∪{(p, a,⊥) | ∀q ∈ F, (p, a, q) /∈
⋃

1≤i≤n

∆i}∪
(
{⊥}×Σ×

⋃
1≤i≤n

Q′i
)

The automaton C thus defined is then a GFG-NCW automaton for JψKE , as
can be seen through a proof completely similar to the proof of Theorem 12.

