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Abstract

Characterization of contamination in soils or groundwater resulting from in-
dustrial activities is critical for site remediation. In this study, geostatistics
and physically-based simulations are combined for estimating levels of con-
tamination within the unsaturated zone. First, a large number of flow and
transport simulations are run and their outputs are used to compute em-
pirical non-stationary variograms. Then, these empirical variograms, called
numerical variograms and which are expected to reproduce the spatial vari-
ability of the contaminant plume better than a usual variogram model based
on observations only, are used for kriging.

The method is illustrated on a two-dimensional synthetic reference test
case, with a contamination due to a point source of tritium (e.g. tritiated
water). The diversity among the simulated tritium plumes is induced by

numercus sete of hydraulic parameter flelds conditioned by samples from the
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reference test case. Kriging with numerical variograms is then compared to
ordinary kriging and kriging with an external drift: the results show that
kriging with numerical variograms improves the estimates, all the more that
few observations are available, underlining the interest of the method. When
considering arelatively dense sampling scenario, the mean absolute errar with
kriging with numerical varicgrams is reduced by 52% compared to ordinary
kriging and by 45% compared to kriging with an external drift. For a scarcer
sampling, those errors are respectively reduced of 73% and 34%. However,
the performance of the method regarding the classification into contaminated
or not contaminated zones depends on the pollution threshold. Yet, the
distribution of contamination is better reproduced by kriging with numerical
variograms than by ordinary kriging or kriging with an external drift.
Heywords: Soil hydraulic parameters, Unsaturated zone, Tritium plume,

Parameters uncertainties, Empirical variogram, Random fields.

1. Introduction

Characterization of contamination resulting from industrial activities in
soils or groundwater is a major issue for site remediation (Last et al., 2004;
Zhang et al, 2010). The extent and level of the potential contamination
should be known as precisely as possible, with minimum uncertainty. This iz
an essential condition to provide appropriate decision support systems and
to reduce environmental, economic and societal risks (Schédler et al., 2011,
Chen et al., 2019).

Kriging is used to map contamination in soils and groundwater as it pro-

vides linear and unbiassed estimates of pollutant concentration at unsampled
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locations (e.g., Demougeot-Renard et al., 2004; Saby et al., 2008; Juang et
al., 2008; D’Or et al., 2009; Pelillo et al, 2014; Liang et al, 2018). How-
ever, the quality of the kriging estimator strongly depends on its ability to
model the spatial structure of the studied variable through the variogram or
the covariance function. In particular, the kriging estimator is often poorly
accurate if the number of sampled values is low or if the spatial variability of
the studied variable is governed by complex processes (Webster and Oliver,
2007, Wang et al., 2017). Besides, the standard kriging estimator does not
take into account knowledge on flow and transport processes: contamina-
tion maps obtained by kriging are not necessarily consistent with flow and
transport equations.

Physically-based simulations of flow and solute transport are another
widely used approach to assess contaminsted soils and groundwater (e.g.,
Neukum and Azzam, 2009; Bugai et al., 2012; Cadini et al., 2016; Testoni
et al., 2017). Such simulations teke into account complex processes gov-
erning contamination spread but they require a relevant definition of initial
and boundary conditions, as well as internal hydraulic properties. Within
the unsaturated zone, the inference of these hydraulic properties iz difficult,
time-consuming (Schasap et al., 2004) and the induced uncertainties result in
s lack of accuracy in the characterization of the contaminated sress (Pan-
necoucke et al., 2019).

Various strategies have been proposed to combine kriging and physically-
based simulations in order to incorporate physical behavior as expressed in
flow and transport models and spatial correlation as quantified by geostatis-

tical modeling. For example, Rivest et al. (2008) interpolate hydraulic heads
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using outpute from flow simulations as an external drift for constraining
kriging; Shlomi and Michalak (2007) reproduce a groundwater contaminant
plume by assimilating the covariance of the measured concentrations within
the inversion procedure of a flow and transport model. In those studies, the
geostatistical properties of the spatial variable are estimated from measure
ments.

Roth (1995) and Roth et al. (1998) propose to compute empirical covari-
ances of hydraulic head within a saturated zone from a set of flow simulation
outputs; Schwede and Cirpka (2010) compute the prior statistical properties
of solute concentration in groundwater from Monte Carlo flow and transport
steady-state simulations. 'L'he approach appears to be more suitable when
the physically-based simulations do not result in a clear trend or when a large
number of unknown parameters hampers the inversion of flow and transport
model.

The present study aims at combining kriging and flow and transport sim-
ulations, by computing variograms from simulation outputs (called numerical
variograms), in order to improve the characterization of & contaminant plume
under a complex configuration. ¢.e., by considering transient unsaturated flow
and highly variable hydraulic properties. First, the geostatistical framework
and the numerical variograms method sre presented (section 2). Then, a
two-dimensional (2D) synthetic test case is built to assess the performance
of the method (section 3). The global process of implementing kriging with
numerical variograms is then detailed on this test case (section 4). Finally,

results are presented (section 5) and discussed (section 6).
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2. Kriging with numerical variograms

This section recalls the principle of ordinary kriging estimator and intro-

duces the numerical variograms method.

2.1. Geostatistical framework: ordinary kriging

Ordinary kriging iz widely used to map peollutant concentrations in soil
and groundwater. The estimate of the variable of interest Z at atarget point

%o, Z*(20), is & linear combination of the observations:

(o) = Z/\GZ(%); (1)

where A, are the kriging weights to be determined and z, are the loca-
tions of the IV observations. Ordinary kriging assumes that (i) the mean
of the regionalized variable (Z) under study is constant but unknown; and
(ii) the variance of any increments, e the variogram function y(z,2') =
Var{[Z(z) — Z(2/)]*}, is known for any pairs of points in the studied do-
main. The unbiasedness condition E[Z{x0) — Z*{20)] and the minimization
of the error variance Var[Z{2o) — Z*(2o)] define the kriging system (Chiles
and Delfiner, 2012):

T 1] [A T,
+ = ’ (2)
1 0| |u 1
where I' = [y(z,, )] I8 the matrix of variogram between each pair of

observations (size Nx/V), 1 is a vector of unit values (size V), A = [},] is

the vector of kriging weights, p is a Lagrange parameter and T'g = [y(z,, o) ]
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iz the vector of variogram between the cbservations and the target point. In

addition, the kriging error variance iz given by:

0 \ A t Ty
0ilzo) = Var[Z(zo) — Z*(z0)] = \ (3)

i 1
Hence, solving the kriging system requires the variogram values between
each pair of chservations and between the target and the observations. Gen-
erally, the experimental variogram iz computed using the cbservations and

then a variogram model iz fitted.

However, the experimental variogram may be instable when only few
data are available. In addition, the experimental variogram relies on several
assumptions about the regionalized variable under study, such as stationarity

or izotropy. Therefore, expert knowledge might be taken into account to

improve the variogram fitting (Chiles and Delfiner, 2012).

2.2, Numerical variograms

Instead of computing the experimental variogram from observations, non
stationary numerical variograms are computed from several realizations of Z.
For the application presented in this study, these realizations result from a
physically-based model, e.g., flow and transport simulations of a contaminant
plume. 'I'he numerical variogram 4 between two points » and # is the average

of the increments computed on the realizations:

P
. 1 1., r
3o, ) = 5 30 2(e) — L)L, (@)
=1
where Zy(z) (resp. Zp(2')) is the value of Z at location « (resp. «') for
the p-th realization.
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The object defined in Eq. (4) is & proper variogram, since it is condi-
tionally definite-positive (Chiles and Delfiner, 2012). Indeed, it satisfles the

condition:

Fit
—ZZw Hlzs, ;) Z[Zw% ;) 2> 0 (5)

i=1 j=1 p—l =1
for all (2:)i=1,.,n, for all (e )iy, as such that Z yws = 0 and for all
M (de Fouguet, 2019). It ensures the consistency of the kriging system and
the variogram values can then be computed for each pair of points (z,2)
needed to build the matrices I' and I'g. In this method, the varicgram is
assumed to exist and the mean of Z is assumed to be constant. The latter
assumption might appear too constraining and a slightly different approach
that takes into account the spatial variability of the mean of 2 is presented
in Appendix 1.
Numerical variograms are expected to reproduce the spatial variability of
% better than a model based on cbservations only, since they use physically-
based simulations. More precisely, % results from the application of a non-
linear operator H on aset of inputs Y2 Z = H(Y). The variability among the
realizations of Z is induced by the variability of ¥ (the randomization of the
inputs ¥ is presented in Appendix 2). In the case of flow and transport mod-
eling, some input parameters, such as hydraulic properties, are more difficult
to determine than others. Consequently, the set of simulations should take
into account the uncertainties on those parameters, by considering different

input scenarios and thus covering the range of possible cases.
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3. A reference test case

In this section, a synthetic reference test case is built to assess kriging
with numerical variograms. This reference case consists in a two-dimensional
(2D) vertical plane of 100 m large by 15 m deep in an unsaturated zone
contaminated with a point source of tritiated water. The generation of this
reference case Is composed of three steps: (i) generation of textural properties
of the surficial formation; (ii) conversion of these properties into hydraulic
parameter fields; and (iil) simulation of a tritium plume with a flow and

transport numerical code.

8.1, Textural properties

'I'he surficial formation iz assumed to be composed of a gingle facies with
a spatially variable texture. The proportions of sand, silt and clay are con-
sidered to follow & normal distribution (e.g., Reza et al,, 2015; Usowicz and
Lipiec, 2017; Taye et al,, 2018) and the spatial variability in these propor-
tions is modeled by an exponential variogram with an anisotropy between the
horizontal and vertical directions (e.g., Reza et al, 2015; Usowicz and Lip-
lec, 2017). A triplet of random flelds specifying sand, silt and clay contents
with a 0.5 m x 0.5 m spatial resolution iz generated following the previous
assumptions, using the turning bands method (Lantuéjoul, 2002). The mean
(+ standard deviation) of the sand, silt and clay propeortions are set to 75%
(£ 10%), 12.5% (£ 6%) and 12.5% (£ 6%) and correlation lengths of 10 m
and 3 m are considered in the horizontal and vertical directions respectively

(Figure la).
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3.2, Hydroulic porameters

In the unsaturated zone, flow processes are strongly related to the mois-
ture retention curve and the relative hydraulic conductivity function. The
Mualem-van Genuchten (MvG) model (Mualem, 1976; van Genuchten, 1980)
describes the links between water pressure head (¢), water content (¢) and

relative hydraulic conductivity (&)

&, — 8, ‘ 1
5(1&):5T+W with mo=1— - (6)

and
co-dio-sirt ot o

where &, and &, are respectively the residual and saturated volumetric wa-
ter contents [L3.L%], o is inversely proportional to the air-entry value [L],
n is & pore-size distribution index [-] and K, is the saturated hydraulic con-
ductivity tensor [L.T-Y.

Since the messurement of MvG parameters is complex (Schaap et al,
2004), they are commonly estimated from textural properties, which mea-
surements are easier (e.g., Wosten et al, 1999; Téth et al.,, 2015; Zhang and
Schaap, 2017). The relationships linking MvG parameters and textural prop-
erties, called pedotransfer functions (PTF), are mostly based on regression
analvsis of existing soil databases. In this study, the random fields describ-
ing the textural properties of the surficial formation are converted into five
MvG parameter flelds (K., o, n, &, and ¢;) by mesans of rosetta3 (Zhang and
Schaap, 2017). For given sand, silt and clay contents, the average values of

MvG parameters are considered (Figure 1b).
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3.5, Uritium plume modeling

The generated MvG parameter fields are used as input to a numerical code
that simulates flow and solute transport. The tritium plume is simulated with
MELODIE code, which is developed by the French Institute for Radiation
Protection and Nuclear Safety (IRSIN). This code simulates underground flow
and solute transport in saturated and unsaturated porous media within the
framework of radicactive waste disposal facilities (IRSN, 2009; Ameor et al,
2014; Amor et al., 2015; Bouzid et al., 2018). MELODIE is set for solving in
2D the Richards equation describing flow in variably saturated porous media
and an advection-dispersion-reaction equation representing the migration of
radionuclides (Pannecoucke et al.,, 2019). The modeling domain is discretized
in triangles with 0.5 mbage and 0.25 m height. The five Mv( parameter flelds
define the hydraulic properties within the domain. The boundary conditions

are set as follows:

1. afixed hydraulic head corresponding to the mean water table elevation
(7.5 m above the bottom boundary with & 0.004 m.m! lateral gradient)
iz set on both sides of the domain;

2. noflow conditions are set on the bottom boundary;

3. atime variable flow corresponding to the daily percolation rate, typical
from center of France, and estimated from the water balance method

(Thornthwaite and Mather, 1955) is imposed on the top boundary.

A point source of tritiated water iz simulated by setting an activity of
1,000 Bg.d! during one month on the top surface node on the center of the
modeling domain. The evelution of the activity within the domain is then

simulated during five years with an adaptive time stepping (from 10%° to 1 d)

10



we by considering a retsrdation factor of 1 and a decay constant of 1.54.10¢ 41
w (Pigure lc).
wo 8.4, Reference dataset

101 Two types of observations are extracted from the synthetic test case, in

w2 accordance with a potential decommissioning case.

193 1. The texture is sampled in 8 boreholes crossing the unsaturated zone
104 (7 m deep) distributed over the whole modeling domain (Figure 1a).
195 Those bareholes are assumed to provide accurate cbservations of sand,
we gilt and clay contents with 0.5 m vertical resclution.

107 2. Thetritium plume is sampled to obtain cbservations of volumic activity
108 with 0.5 m vertical resolution within boreholes crossing the unsaturated
199 zone (7 mdeep). Twosampling scensrios are considered: (i) 7 boreholes
200 distributed over a zone of 20 m wide around the tritium source (scensrio
201 51, Figure 1d); and (ii) 4 boreholes distributed over the same zone
202 (scenario 52, Figure le). It is interesting to notice that for sampling
U3 scenario 32, the high values of activity are not sampled, contrary to
204 sampling scenario S1.

208 Besides, an additional test case iz built using the same model settings

ae  (initial and boundary conditions) but another realization of the texture fields.
207 [t results in a plume with a different shape from the reference (Figure 2).
o 4. Estimation by kriging with numerical variograms

209 In this section, kriging with numerical variograms (KNV) is carried out

20 to estimate the tritium activity of the plume modeled in section 3, from

11
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the observations of volumic activity previously sampled. First, hydraulic pa-
rameters random fields are generated from the punctual texture observations
available in the reference dataset (section 3.4). Then, 2,000 unconditioned
tritium plumes are simulated by means of a flow and transport model. These
simulations are used to compute numerical variograms of activity and finally
inter polate punctual activity cbservations from the reference dataset (accord-

ing to scenarios 81 or 52, section 3.4).

4.1, Bydraulic parameters random fields
A large number of random fields describing the MvG hydraulic parameters
(£, @, n, &,, &) within the surficial formation are generated based on two

different approaches.

1. Approach 1: the observations of sand, silt and clay contents available
in the reference dataset are used to compute experimental variograms,
which allow the generation of 1,000 triplets of conditional fields of sand,
silt and clay contents. The variogram parameters are randomized (see
Appendix 2} and the conditional simulations follow the distribution
{close to normal) given by the cbservations from the reference dataset.
Theresulting triplets of random fields describing the textural properties
are converted into MvG parameter fields using rosetta3 PTF (for given
sand, silt and clay contents, the average values of Mv QG parameters are
considered). It results in 1,000 sets of 5 random flelds.

2. Approach 2: the sand, silt and clay contents awvailable in the refer-
ence dataset are converted into MvG parameters using rosettal PTF
(for given sand, silt and clay contents, the average values of MvG pa-

rameters sre considered). Experimental variograms are computed from

12
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280

these values of Mv G parameters, which are then interpolated by means
of a conditional simulation tool considering variogram models with ran-
domized parameters (Appendix 2). Normal distributions of &, and &,
and lognormal distributions of X, o and n are considered (e.¢., Botros
et al., 2009; Pannecoucke et al., 2019), with means and variances given
by the values of hydraulic parameters at sampled locations. It results

in 1,000 sets of 5 random fields.

4.2. Simulations of fow and solute transport

The MvG parameter fields cbtained via the two previous approaches are
set as inputs to MELODIE code to simulate 2,000 tritium plumes. All the
other model parameters are kept constant compared tothe test case described

in section 2.3.

4.5, Estimation and performance assessment

The set of 2,000 simulated plumes is used to compute the numerical var-
iograms between each couple of points needed to build the kriging system.
The KNV estimate is computed using (i) the cbservations from 7 boreholes
(51); and (ii) the observations from 4 boreholes (52).

Two other kriging methods are used as benchmarks: (1) crdinary kriging
(OK), with a stationary model of variogram based on the observations only;
and (i) kriging with an external drift (KED) with auxiliary variables given
by simulation cutputs (Rivest et al., 2008). More precisely, the empirical
average of the simulations (mesan plume) is used as an auxiliary variable,
and thus the empirical mean of £ is considered variable over the modeling

domain (see Appendix 1).
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In order to assess the performances of KNV compared to OK and KED,

several indicators are computed.

1. The maps of estimation, estimation error and kriging error standard

deviation are computed. For OK and KED, the maps of kriging error
standard deviation are corrected by a proportional effect (Donati and
de Fouquet, 2018) in order to account for the zones of low or high values
of estimated activity. This supplementary modeling step is not needed
for KNV, because numerical variograms directly account for the local

variability of activity in the contaminated zone.

. The errors are guantified in terms of mean absolute error (MAE), root-

mesn-square error (RMSE) and mean relative error (MRE). The MRE

iz given by:

L 7 (e) - D) o
Toells <=t maz (1, 2% (2;))

where fges s the number of cells in the modeling domain (without

MRE =

the observations), 2" (z;) (resp. 2*(z;)) is the value of activity of the
reference plume (resp. the estimation) at location #,;. 'I'he denominator
is set to 1 if 4" (2,) < 1 in order to avoid huge relative errors when

Z?'ef(mi) iz close to O

. The ability of the estimator to reproduce the distribution of the actual

contarmination is assessed via the selectivity curve (Chiles and Delfiner,
2012). This curve is parametrized by the contamination threshold 2.

For each z, two quantities are computed.

¢ the percentage of grid cells in the modeling domain such that

Z(2:) = # (on the x-axis), defined as:

14
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Tioells
> Lz(enze
= <100 (9)
Teetis

where Ly(s,)=s equals 1 if Z(z;) > 2, 0 otherwise;

¢ the corresponding percentage of total volumic activity contained

by the previous grid cells (on the y-axis), defined as:

Maslls
>, @ s(a)ze
=1 x 100. (10)

Teaells

2 A=)

4. The proportions of false-positive and false-negative surfaces are com-

puted for several contamination thresholds (z). The proportion of
falze-positive surface is defined as the number of grid cells such that
Z*(25) = 2 and £ (2;) < 2z, divided by the number of grid cells such
that Z7%(2;) > 2 (the actual surface of the contaminated zone on the
reference, which depends on the comtamination threshold). The pro-
portion of false-negative surface iz defined as the number of grid cells
such that Z*(z;) < z and Z"(2;) > 2z, divided by the actual surface of
the contaminated zone. This indicator assesses the risk of leaving on-
site contamination (false-negative) or on the contrary of overestimating
the extent of the contamination and the associated remediation costs

(false-positive).

5. Results

In this section, the performance indicators described above are computed

for the estimates of the reference plume obtained by OK, KED, KNV and

15
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for sampling scenarios 51 and 32 Then, the results are presented for the
additional test case (section 3.4, Figure 2). Finally, the KNV estimates
computed when distinguishing the two sets of simulations based on approach

1 or approach 2 (section 4.1) are compared.

4.1, Sampling scenario 51

The maps of estimation are almost similar (Figures 3a, 3b, 3¢) for the
three methods. Yet, the errors are slightly higher for OK and KED than for
KNV (Figures 3d, 3e, 3f). Besides, the theoretical standard deviations of
kriging error are much higher for OK and KED than for KNV, even when a
proportional effect is taken into account (Figures 3g, 3h, 3i). In accordance
with this gqualitative assessment, KNV results in smaller mean errors than
OK and in a lesser extent KED (Table 1), whatever the actual activity values
(Figure 4a).

The selectivity curves show that KNV estimate slightly better reproduces
the actual distribution of activity than OK and KED estimates (Figure 4b).
The curves obtained with the three approaches are yet almost overlaying
each other.

The proportion of false positive surface is smaller for KNV that for OK,
whatever the contamination threshold (Figure 4c). This propertion is re-
duced of 10%, except for contamination thresholds above 1,000 Bq.m®gq0
(mainly because the contaminated surfaces are more and more reduced when
the threshold increases). The proportion of false-positive surface is yet
smaller for KED than for KNV for very low contamination thresholds (below
20 Bq.m®g20); for higher contamination thresholds, KNV leads to smaller

proportion of false-positive surfaces than KED. The proportion of false

16
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260

negative surface is slightly higher for KNV than for OK and KED for con-
tamination thresholds below 500 Bg.m®gy (Figure 4d). For higher con-
tamination thresholds, KNV performs better than OK and KED, because
numerical variograms are non stationary and enables a better estimation of

high values of activity.

4.2, Sampling scenario 52

For sampling scenario 52, the maps of estimation obtained by the three
approaches lock different (Figures Ba, 5b, 5c). The shape of the plume esti-
mated by OK appears poorly consistent, while the plumes estimated by KED
and KNV respect the global shape of the reference plume. Yet, the plume
estimated by KED iz more attenuated than the one obtained by KNV, Be
sides, standard deviations of kriging error are higher for OK and even more
for KED than for KNV (Figures 5g, 5h, 5i). MAE, RMSE and MRE are
smaller for KNV than for OK and KED (Table 1). In particular, OK and
KED tend to reduce the actual variability of activities (overestimation of low-
est activities, underestimation of highest activities), while KNV results in a
more consistent distribution of activities, despite an overall overestimation,
especially for the highest values of activity (Figure 6a).

''he zelectivity curves show that KNV and KED better reproduce the
actual distribution of activity than OK (Figure 6b). For example, 10% of
the modeling surface contains 80% of the whole contamination for KED and
KNV estimates, while 18% of the modeling domain contains the same amount
of contamination for the activity field estimated by OK.

The false-positive surfaces obtained by KNV are smaller than the ones
obtained by OK and KED (Figure 6c), except for contamination thresholds
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higher than 1,000 Bq.m g0 (due to the fact that OK and KED tend to un-
derestimate high values of activity while KNV overestimates high values of
activity). The false-negative surfaces obtained by KNV are generally larger
than the ones obtained by OK and KED, at least for contamination thresh-
olds below 800 Bq.m™® s (Figure 6d).

5.8 Additional test case

In order to test the reproducibility of the proposed approach, the same
study has been made on the additionsal test plume (Figure 2), which has a
more complex shape than the reference one. MAE, RMSE and MRE are
reduced for KNV, compared to OK and KED (Table 2, Figures 7a and 8a)
for sampling scenarios 31 and 32. Contrary to the reference test case, the
errors are higher for KED than for OK (Table 2).

The selectivity curves (Figure 7b and 8b) show that KNV better re-
produces the distribution of the actual contamination than KED and OK,
especially for sampling scenario S2.

The false-positive surface is smaller for KNV than for OK and KED, for
both sampling scensarios (Figure 7c and 8c). For the false-negative surfaces,
the performances of each method depend on the contamination threshold.
For 81, for low thresholds (below 50 Bg.m™®g,0) KED performs better than
OK and than KNV, while for higher thresholds, KNV performs better than
OK and than KED (Figure 7d). For 82, OK and KNV perform better than
KED (Figure 8d).
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4.4, Hydroulic porameter fields

In section 4.1, two slightly different approaches have been introduced to
generate MvG parameter random fields. For the results presented above,
the simulated plumes obtained via the two approaches have been gathered
and mixed to compute numerical variograms. In order to compare both
approaches, KNV is implemented with (i) numerical variograms computed
from 1,000 simulations generated with approach 1 (KNV-1); (ii) nwmeri-
cal variograms computed from 1,000 simulations generated with approach 2
(KNV-2).

For the reference test case, the estimated plumes are almost the same
for KNV-1, KNV-2 and KNV, Indeed, MAE are really close, especially for
51 (Table 3). For 82, KNV-2 leads to smaller errors than KNV and than
KINV-1. For the additional test case, the results obtained with KINV-2 and
KNV sre almost similar (Table 3). On the contrary, the results obtained
with KNV-1 are unacceptable (the estimated plumes are not consistent at

all), for both sampling scenarios.

6. Discussion

Spatial variability of MvG parameters is generally poorly characterized
at field scale even if it can significantly affect the evolution of contaminant
plumes within the unsaturated zone (Pannecoucke et al, 2019). For exam-
ple, in this study, the tritium plumes simulated using a similar groundwater
flow and transport model but various MvG parameter fields (generated from
observations of texture sampled in 8 boreholes) are significantly differemt:

their surfaces range from 60 to 150 m® and their mass centers sre spread
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over 20 m wide (Figure 9). Therefore, although the initial and boundary
conditions of the flow and transport model are fixed, the uncertainties re-
lated to hydraulic parameters within the surficial formation do not lead to
an accurate characterization of the contamination.

To improve plume characterization and delineation, kriging with numer-
ical variograms, consisting in using flow and transport simulation outputs
to compute numerical variograms, appears to perform better than standard
geostatistical tools (OK and KED), at least for most of the various indicators
considered in this study. KNV appears to be particularly interesting when
the awailable cbservations are scarce, as shown by the larger difference of
performances between OK and KNV {or KED and KNV) for scarce (52, 4
boreholes) compared to dense (81, 7 boreholes) sampling scenarios. Besides,
it iz interesting to notice that KNV enables the estimation of high values of
activity, even if those high values are not sampled, which is not the case for
OK and KED (e.g. reference test case, scenario 82). When the actual plume
differs from the mean simulated plume, KED iz poorly efficient, e.g., in the
case of the additional test case with a more complex plume geometry.

However, for reproducing such a complex plume shape, KNV estimator
results in better performances when the MvG parameter fields are generated
from interpolation of punctual values of these parameters (approach 2) than
from conversion of soil texture flelds (approach 1). This could be explained
by the fact that the approach 2 leads to a higher variability in MvG param-
eters and thus in more variable simulated plumes as outputs of the flow and
transport model (Figure 9). A relevant characterization of the varisbility in

hydraulic parameters therefore remains a key issue for taking advantage of
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KNV, 'I'his requires to develop in situ approaches for better estimating soil
hydraulic parameters and their variability at field scale (e.g., Léger et al,
2014 and 2016).

This work focuses on uncertainties in spatial variability in MvG parameter
fields. However, other input parameters, such as the location of the source of
pollution or the boundary conditions, also impact flow and solute transport in
the unsaturated zone. In areal study case, those parameters are not perfectly
known and it would be interesting to take into account the uncertainties in
those inputs.

Besides, inthe case of areal contaminated site with a regulatory threshold
to be respected, the delimitation intc contaminated and uncontaminated
zone should take into account uncertainties on the estimates, expressed by
the standard deviation of kriging error, and some probabilities of exceeding a
given threshold. Geostatistical conditional simulations could also have been
implemented, but it requires strongest assumptions and more computational
time. That is why the application was limited to estimation (as in Saby et

al., 2006 or Liang et al., 2018).

7. Conclusion

This study shows that kriging with numerical variograms improves the
estimates of tritium activities in the unsaturated zone. Although the as
sumptions might appear simplistic (stationary mean), this method leads to a
reduction of the estimation errors, and more importantly of the corresponding
error standard deviation (i e., more trustworthy estimators). This method is

all the more interesting that the number of observations of pollutant concen-
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tration iz reduced. However, the assessment procedure detailed in thizs study
iz baged on a synthetic cage study with well constrained boundary conditions.
The next step iz be to carry out the method on a real contaminated site.
In addition, the kriging with numerical variograms method can be trans-
posed to other scales of heterogeneities, such as systems with several geo-
logical unite, or other pollutants with a more complex chemical behavior, as
soon ag a numerical code that simulates the studied phenomenon is available.
It could also be applied in completely different domains, such as air quality
characterization, estimations of ocean temperatures, or population dynamics

in ecology.
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o Appendix 1: A varying mean for Z

601 In section 2.2, the mean of 2 is assumed to be constant. '|'his assumption
sz may not be consistent with the mean plume computed as the average of the

sz simulations and used as an external drift in this study:

H2(2)] = m(z) = 5 3 Zy(x). (1)

604 To take into account this computed drift, a slightly different method iz
ws  examined. In KNV ag presented in section 2.2, a constant mean for Z leads

ws Lo the following unbiasedness condition:

N
D> =1 (.2)
a=1
07 If the mean of 7 depends on the location 2 in the modeling domain, the

ae  Unbiasedness conditions becomes:

N
Z/\am(ma) = mizg). (.3)

600 The variance of the kriging error is given by:
NN N
Var[Z"(z0) — ZZ/\ M C(2a,28) — 2 Z/\ Cl(za,z0) +Cl0, 20),
a=1 h=1 a=1
(4)
810 where C(z,2') is the numerical coveriance between z and

z,2 PZ[Z (@)][Zp(=) = m()]. (:5)

i1 Hence the kriging system:
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where O = [C(z,, z,)] is the matrix of covariances between each couple
of observations, M = [m(x,)] is the vector comtaining the empirical means
of # at observation locations, Cy = [C(za,20)] s the vector of coveriance
between the target and the observations and me = mixo) is the mean of 2
at the target point.

The estimates of the reference plume and the additional plume have be
computed with this slightly different approach. The results are almost iden-
tical to those cbtained when considering that the mean of Z iz constant over
the modeling domain (Figure 10). This method, which lowers the assumption

of the stationary of 2, iz more complex to implement than the one described

in gsection 2.2 and does not seem to perform better.

Appendix 2: Uncertainties in the input parameters

The modeling of the uncertainties in the input parameters to the nu-
merical code (these parameters are denoted ¥ in section 2.2) focuses on the
hydraulic parameters fields. Thus, those fields are randomized, while the
rest of the input parameters is kept constant for all simulations. To take into
account the uncertainties in the experimental variograms computed from
observations of sand, silt and clay contents (for approach 1) or from MvG
parameters (for approach 2), the parameters of the variogram model are ran-
domized. For each realization, the parameters of the variogram model used

to simulate the fields are drawn from the following probability distributions:
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1. the sill iz sampled from a gaussian distribution centered on the sill of

the experimental variogram with a 4 20% range of variation;

. the vertical range iz sampled from a gaussian distribution centered on

the vertical range of the experimental variogram with a £+ 20% range

of variation;

. the horizontal range is sampled from a triangular distribution with a

mode equals to the horizontal range of the experimental variogram and
the minimum and maximum values respectively to twice the vertical
range and ten times the vertical range. It leads to a stronger dispersion
than for the vertical range, since the inference of the horizontal range

iz less accurate than the vertical range due to the sampling scheme;

. the behavior of the variogram at short distances is randomly chosen

between 2 cases: a cubic model without nugget effect, an exponential
model without nugget effect or an exponential model with a nugget

effect (between O and 5% of total sill).

31



Table 1

Click here to download Table: Table 1.doc

Table 1: MAE [Bq.m™;0], RMSE [Bq.m™,50] and MRE [-] for both sampling scenarios and for the
reference test case. Scenario S1 corresponds to 918 unknown grid cells (119 observations) and

scenario S2 corresponds to 969 unknown grid cells (68 observations).

S1 52
OK KED KNV OK KED KNV
MAE 61 53 29 173 71 47
RMSE lol 138 89 348 174 147
MRE -4.6 -2.8 -2.2 -47 -6.8 -0.8




Table 2

Click here to download Table: Table 2.doc

Table 2: MAE [Bq.m'stg], RMSE [Bq.m'stg] and MRE [] for both sampling scenarios and for the
additional test case.

$1 52
OK KED KNV OK KED KNV
MAE 72 119 43 139 140 82
RMSE 184 230 125 302 355 233
IMRE -1.8 31 -2.2 -5.6 -4.2 -2.7




Table 3

Click here to download Table: Table 3.doc

Table 3: MAE [Bq.m” 0] for both sampling scenarios and both test cases, by differentiating KNv-1

and KNY-2 from KNV.

Reterence test case

Additional test case

51

52

51 52
KNV-1 30 58 163 481
KNV-2 32 41 44 92
KNV 29 47 43 82
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