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Abstract | Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is 

temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during 

which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the 

circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and 

secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs 

transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian 

clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, 

growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, 

eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to 

energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization 

and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian 

processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as 

opposed to the negative metabolic consequences of mistimed eating. 
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Key points 

• Short-term food consumption is regulated by a balance between orexigenic and anorexigenic factors. 

• Daily pattern of eating is controlled by circadian clocks, including the master clock in the superchiasmatic nuclei reset by ambient light and other brain 

clocks reset by feeding time, via hormonal, nutrient and visceral cues. 

• Circadian desynchronization — owing to mistimed eating or chronodisruption — has deleterious consequences on metabolic health. 

• Timed dietary patterns may help to prevent circadian desynchronization and reduce metabolic disorders. 

Fig. 1 | Circadian control of the daily feeding–fasting cycle by brain clocks. a | The daily feeding–fasting cycle is controlled by a multi-oscilla-

tory system linking the light-entrainable master clock in the suprachiasmatic nuclei (SCN) of the hypothalamus with food-entrainable clocks in the metabolic 

hypothalamus and brainstem. In addition, animals can predict time of food availability, leading to anticipatory changes in behaviour and physiology. Such food-

anticipatory changes rely on a food clock comprising food-entrainable clocks in the metabolic hypothalamus, the dorsal striatum, the cerebellum and the para-

brachial nuclei (PB). Feeding and fasting cues generated by peripheral organs provide information on energy status and meal time to the brain via circulating 

nutrients and hormonal inputs as well as visceral neural inputs. b | Food intake is regulated on a daily basis by homeostatic drive (dashed grey line) and circa-

dian gating (dotted blue line). The feeding phase at night in nocturnal rodents corresponds to a period when energy reserves are replenished, while their sleep–

fasting phase during daytime is a period of depletion of energy stores. ARC, arcuate nuclei; DMH, dorsomedial hypothalamic nuclei; GLP1, glucagon-like 

peptide 1; LH, hypothalamic lateral areas; NTS, nuclei of the solitary tract; PVN, paraventricular nuclei; TMN, tuberomammillary nuclei; VMH, ventromedial 

hypothalamic nuclei. 

Fig. 2 | Reciprocal interactions between the circadian clocks and metabolism at cellular and systemic levels. Circadian clocks are intra-

cellular mechanisms that generate self-sustained oscillations close to 24 h. The molecular clock involves intermingled feedback loops of clock proteins, includ-

ing CLOCK and brain and muscle ARNT-like 1 (BMAL1), that activate the transcription of many clock genes and rhythmic expression of target genes, called 

clock-controlled genes. In turn, PER1 and PER2, and cryptochrome 1 (CRY1) and CRY2 repress the transcriptional activity mediated by CLOCK and/or 

BMAL1, while REV-ERB , REV-ERB  and retinoic acid receptor-related orphan receptor-α (ROR , ROR  and/or ROR  regulate the transcription of Clock 

and Bmal1. Clock-controlled proteins provide intracellular and extracellular rhythmic signals. Multiple functional interplays link the molecular clockwork with 

intracellular metabolism via changes in redox state, sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK) and other metabolic sensors and with the meta-

bolic transcription factors called peroxisome proliferator-activated receptors (PPARs). The master clock in the suprachiasmatic nuclei (SCN), mainly reset by 

ambient light, adjusts the phase of secondary clocks in the brain and peripheral organs, controls the sleep–wake cycle and hormonal rhythms and participates in 



the feeding–fasting cycle. Many secondary brain clocks reset by feeding time also participate in the feeding–fasting cycle and control food-anticipatory pro-

cesses. Peripheral organs, whose circadian clocks are reset by food-related signals, control the rhythmicity of glucose and lipid metabolism and generate feeding 

cues conveyed to the secondary clocks in the brain. Albeit not reset by timed feeding when restricted feeding schedules are in competition with light–dark cy-

cles, the master clock in the SCN can be affected by metabolic cues associated with unbalanced diets, such as a high-fat diet or calorie restriction. mTOR, mech-

anistic target of rapamycin; PARP1, poly(ADP-ribose) polymerase 1. Adapted with permission from REF.208, Elsevier. 

Fig. 3 | Synchronization of food-entrainable clocks by metabolic hormones. Synchronization to meal time of secondary clocks is partly medi-

ated by pancreatic hormones and glucocorticoids. Glucagon (yellow) and glucocorticoids (blue) are pre-feeding timers because they are predominantly secreted 

before meal time during restricted feeding. By contrast, insulin (red) secreted in response to food intake is a post-feeding timer. It is noteworthy that both gluco-

corticoids and insulin signalling target the same clock genes. AKT, protein kinase B; BMAL1, brain and muscle ARNT-like 1; CLOCK, circadian locomotor 

output cycles kaput; CREB, cAMP-response element-binding protein; CRTC2, CREB-regulated transcriptional co-activator 2; MAPK, mitogen-activated pro-

tein kinase; PI3K, phosphoinositide 3-kinase. 

Secondary clocks 

Circadian clocks found in brain structures outside of the suprachiasmatic nuclei and in peripheral organs. Self-sustained rhythmicity of extra-suprachiasmatic clocks and their cellular coupling are less 

robust, which might confer more flexibility to resetting cues, than the more rigid, master suprachiasmatic clock. The majority of the secondary clocks can be shifted by timed feeding (see the glossary 

entry for ‘Food-entrainable clocks’). 

Free-running conditions 

Housing conditions without external time cues, such as constant light or dark or constant temperature, that allow for the detection of the endogenous nature of circadian rhythms. 

Clock genes 

Specific genes involved in the molecular clock machinery. 

Daily rhythm 

A 24 h rhythm expressed under a light–dark cycle that is not necessarily endogenous. 

Phase-shift 

Change in phase of a circadian clock (or its readout, a circadian rhythm) 

Food-entrainable clocks 

Secondary clocks in the brain and peripheral tissues that can be phase-shifted by timed feeding. 

Synchronizing factors 

Sometimes called zeitgebers or time-givers; temporal signals, such as light or feeding time, that are able to reset circadian clocks, that is, to adjust their phase. 
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