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Abstract—Assessing the performance of opportunistic net-
works requires a subtle understanding of both contact and
intercontact patterns. While the analysis of intercontacts has
attracted significant attention from the research community,
surprisingly only a few works have focused on explaining what
happens during a contact. In this paper, we perform an in-
depth analysis of contacts using both empirical measurements
and reference models. We make several observations that allow
us to better capture the adaptive nature of device-to-device (D2D)
links. In particular, in the case of Wi-Fi 5, we show that a slight
modification of the nominal modulation scheme is enough to
achieve an accurate characterization of opportunistic contacts
for some categories of propagation models. As a consequence,
we confirm previous observations that the evaluation of protocols
and algorithms for D2D networks based on links of fixed rate may
lead to inaccurate results. We finally propose a tool that extends
mobility traces with plausible values of per-link capacity.

I. INTRODUCTION

It is no more a debate that device-to-device (D2D) and
opportunistic networking open promising expectations in wire-
less communications [1], [2]. Designing and implementing an
efficient opportunistic network is however challenging because
of the highly dynamic nature of the topology. Individual nodes
have their own mobility patterns, and communication opportu-
nities appear whenever two nodes get in communication range
of each other. An accurate characterization of such interactions
is then a must-have step.

The literature is full of outstanding contributions that assess
the underlying phenomena governing opportunistic device-
to-device communications [3], [4]. In particular, we have
today a good understanding of inter-contact patterns in such
networks. Unfortunately, there are still critical open questions
regarding the contact characterization. While inter-contacts
depend primarily on the mobility of the nodes, characterizing
a contact in detail also depends on other parameters such as
the device-to-device communication technology. In this paper,
we investigate issues explicitly related to the contact between
two mobile nodes.

A common limitation of existing works is that they assume
either that contacts have infinite capacity, allowing the transfer
of any amount of data during a single encounter, or that
the communication throughput during the contact follows the
nominal values of the technology (e.g., Bluetooth or Wi-
Fi). This leads to a sort of fixed-rate characterization of
contacts, where either nodes are in contact (with a unique

characteristic), or they are not. In this paper, we advocate that,
to achieve a better characterization of opportunistic contacts,
we should adopt a finer representation of the relative mobility
of nodes to better capture the communication possibilities.

The central premise of our work is that the distance sepa-
rating two nodes is likely to vary during a contact. Because
of the inherent characteristics of the wireless medium, the
quality of the signal varies with the distance between the
nodes.1 The varying node-to-node distance suggests that the
link throughput between the nodes varies accordingly. This
variation depends on the communication technology under
consideration (in Section II, we will discuss the technology
we use in our experiments), but regardless of this latter, the
throughput always fluctuates as a function of the distance
between the transmitter and the receiver.

Fortunately, some authors have already raised some issues
with the traditional fixed-rate approach. Chowdhury et al.
approximated the distance-to-throughput by first fixing a path
loss equation and then observing the distances covered by each
modulation in the case of IEEE 802.11n standard [5]. The
authors notably propose the contact capacity as an integral
of throughput capacity over time. Qayyum et al. proposed to
measure the distance-to-throughput using a mobile application
in Android [3]. Although sharing some goals with us, their
work was restrained to short D2D links as they focused on
Bluetooth links. Neto et al. proposed to estimate the contact
capacity by taking into account the speed of a mobile node [6].
They transferred data, and attempt to establish a relationship
between speed, RSSI, and throughput.

In this paper, we help advance the state of the art in several
regards. We investigate the impact of the varying relative dis-
tance between nodes on the capacity of opportunistic links. By
capacity, we mean the amount of data that can be transferred
during the entire duration of the contact. Our ultimate goal is
to establish a basis for more accurate design and evaluation
of device-to-device communication strategies. We adopt an
empirical methodology to achieve a realistic characterization
of device-to-device links. Our experiments involve Android
smartphones equipped with the Google Nearby API. We
apply the observed characterization parameters to two mobility
datasets, namely a vehicular one in the city of Luxembourg and
a pedestrian one in Stockholm. We confront our observations

1Of course, other parameters come at play, but in this work we focus on
the distance only and avoid including environment-dependent parameters.978-1-7281-0270-2/19/$31.00 ©2019 European Union



with the traditional fixed-rate contact characterization strategy
and make some observations. We confirm the fact that consid-
ering only the duration of a contact and a fixed throughput is
far from enough to capture the actual capacity of the contact.

Although the quantitative analysis that we show in this
paper is dependent on the communication technology, on the
type of devices that we considered during our data collec-
tion campaign, and on the test environment conditions, the
qualitative observations can be extended to any setup, given
that the wireless technology adopts a rate-adaptive strategy.
We finally propose a transformation tool that takes mobility
traces as inputs and generates realistic contact capacity traces
as outputs. We are hopeful that this will entice the community
to compare traditional contacts with adaptive ones. As a
summary, our contributions are:

• Data collection and analysis. We measure the through-
put of modern Android devices according to the distance
to assess the maximum communication range of D2D
technologies on contemporary smartphones. We use this
data as a means to compute the throughput as a function
of distance and set a reference model for our work.

• Adaptive contact characterization. We thoroughly char-
acterize the contact capacity, meaning the amount of
exchangeable data through a contact, when we consider a
fixed-rate contact and an adaptive-rate contact. We show
they are not equivalent, mostly due to many contacts
happening at a near-maximum range.

• Fixed parameter selection. Even though we advocate
against fixed-rate contacts as a way to estimate contact
capacity, we also propose a recommended fixed-rate
contact value, to yield more realistic results.

• Dataset contact capacity tool. We propose a transfor-
mation tool that takes mobility a dataset as an input
and generates contact datasets; which include plausible
contact capacity for each pairwise D2D link between
nodes.

The rest of the paper is organized as follows. In Section II,
we state the problem, recall the traditional definition of fixed-
rate contact characterization, and present the methodology
we follow in our work. Since the fine characterization of
contacts depends on the technology under consideration, we
detail in Section III our experimental campaign as well as
the measurement-based adaptive contact characterization. We
describe the evaluation scenarios and present all the analysis
in Section IV. In Section V we explain how the open-
source software we propose calculates the contact capacity.
We postpone the related work to Section VI so that the reader
has enough material to understand our contributions better and
conclude the paper in Section VII.

II. DEFINITIONS AND PROBLEM FORMULATION

We use the common definition of contacts in an oppor-
tunistic network, which is the period during which two nodes
have a valid wireless link and can exchange data. We note
this duration as τ . Nodes are mobile, and a contact starts as
soon as the two nodes are within communication range of

TABLE I
THEORETICAL TRANSMISSION RATE IN IEEE 802.11AC (WI-FI 5) USING

A 80MHZ BANDWIDTH AND TWO SPATIAL STREAMS.

RSSI (dBm) Modulation Rate (Mbps)
[−55;−] 256-QAM 5/6 866

[−57;−56] 256-QAM 3/4 780
[−58;−58] 64-QAM 5/6 650
[−59;−59] 64-QAM 3/4 585
[−63;−60] 64-QAM 2/3 520
[−67;−64] 16-QAM 3/4 390
[−70;−68] 16-QAM 1/2 260
[−72;−71] QPSK 3/4 195
[−75;−73] QPSK 1/2 130
[−;−76] BPSK 1/2 65

each other. In this paper, we consider that all nodes have the
same antenna characteristics leading to symmetric links. We
also assume omnidirectional antennas. We note the distance
between two nodes A and B as dAB(t).

In this paper, we are interested in the contact capacity
CAB , defined as the maximum amount of data that can be
transferred between A and B during a contact. The contact
capacity depends on the duration of the contact and the data
rate of the opportunistic link between the two nodes.

In the literature, many authors simplify the problem by
considering that nodes can exchange data at a fixed rate δfixed

when within communication range. In this case, the contact
capacity is simple to obtain:

Cfixed
AB = δfixed × τ. (1)

Although the fixed-rate contact characterization is simple to
manipulate, it falls short in capturing the actual characteristics
of a contact in a real setup. Because of several physical
phenomena, the throughput that we can get in a wireless link
depends on several factors, including the distance separating
the sender from the receiver and the propagation conditions.
The consequence is that the contact capacity is seldom a linear
function of the duration.

Although the wireless medium shows a continuous decreas-
ing behavior in terms of signal delivery, existing technologies
adopt a step-wise transmission data rate calculation in function
of the received signal strength indication (RSSI). In Table I,
we show this dependence in the case of IEEE 802.11ac (Wi-
Fi 5), the one we consider in our experiments. As we can
see, the ratio between the maximum and minimum achievable
throughputs is higher than one order of magnitude. A contact
between two nodes is likely to traverse several of these data
rate levels; depending on the mobility pattern, the resulting
contact capacity can be anything between τ × δL and τ × δH ,
where τ is the contact duration and δL (resp. δH ) is the
lowest (resp. the highest) data rate authorized by the wireless
technology. For these reasons, considering only the contact
duration may not be enough to characterize and analyze
opportunistic networks.

The rest of this paper will focus on investigating how much
impact we may get from a finer characterization of contacts.
The first step is to make sure that nodes do observe varying
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Fig. 1. Four contacts of ∼100 seconds each. Note that the distance between
the nodes show the most variable patterns.
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Fig. 2. From distance to throughput.

distances concerning neighbors for the same contact duration –
this is precisely what we observe in practice. In Figure 1,
we plot four different contacts of approximately 100 seconds
in a real-world pedestrian scenario. As we can see, the four
patterns show that, for the same given contact duration, the
distances between the two nodes may vary unpredictably from
one contact to another. We can find a case (red curve) where
the nodes get very close (about 10 m) before moving away
again. However, we can also find a case (blue curve) where the
nodes remain very far from each other during all the duration
of the contact and never approach less than 250 m.

Problem statement. The estimation of the throughput accord-
ing to distance involves essentially two steps, as shown in
Figure 2. The first one relates distance to RSSI based on some
signal propagation model. The second step transforms RSSI
into throughput, and this depends mainly on the modulation
scheme. While there are common practices to determine the
propagation model to fit a given scenario, finding which
modulation scheme reflects best the system is more tricky. To
the best of our knowledge, there is no well-defined method
to transform a given RSSI into a throughput. In this paper,
the main challenge will be to find models that can transform
distance to throughput so that existing mobility datasets can
also be extended to include information on the amount of data
that can be transferred whenever two nodes meet.

A. Adaptive contact capacity

In opposition to the traditional fixed-rate contact character-
ization, whose contact capacity is given in Equation 1, we
propose adaptive contact characterization as an alternative to
better capture the behavior of opportunistic links.

We involve the two components of the system shown in
Figure 2: propagation and modulation. Let RSSI(dAB(t)) be
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Fig. 3. RSSI-to-throughput experimental results. The step-wise black line
represents the theoretical maximum values provided by the standard.

the RSSI measured on an opportunistic link when the nodes
are at a distance dAB(t) (varying distance over time) and
δadaptive(RSSI(dAB(t))) be the throughput.

The contact capacity for the adaptive contact characteriza-
tion is given by:

Cadaptive
AB =

∫ T+τ

T

δadaptive(RSSI(dAB(t)))dt. (2)

where [T, T + τ ] is the contact interval.

III. EMPIRICAL REFERENCE LINK CHARACTERIZATION

To establish a realistic reference basis, we run an experiment
to observe how the relationship between RSSI and throughput
behaves in off-the-shelf devices.

A. Experimental RSSI to throughput estimation

We carried out a day-long measurement campaign to collect
throughput values for different RSSIs in a quasi interference-
free environment. For the communicating devices, we used
two OnePlus 5T smartphones equipped with the Android 8.1
operating system and 2 × 2 MIMO antennas. We used the
Google Nearby framework to establish device-to-device links
between the nodes [7]. Google Nearby is a proprietary device-
to-device library which uses Wi-Fi 5 (5 GHz band) for high-
speed throughput. We initially set the devices at a one-
meter distance, measure the RSSI and the throughput using
Nearby, move the devices away and perform another round of
measurements. We repeat the process until the two nodes lose
connectivity.

Theoretical versus empirical throughput. One may believe
that it suffices to use the technology’s specification (e.g., table
I) to obtain realistic contact capacity estimation according to
distance. To verify the validity or not of this assertion, we
show the results of our experiment in Figure 3. The black step-
wise function represents Wi-Fi 5’s theoretical data rate, and
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Fig. 4. Modulation schemes considered in this paper. They all have a null
throughput under -87 dBm, being the minimum sensitivity of our receiver.

red dots show the empirical throughput we observed during
our experiments. The median, shown as a blue line in the
plot, represents the expected empirical throughput for a given
RSSI. We refer to this median as the “empirical goodput”
since it represents the observed transfer capacity of off-the-
shelf devices (OnePlus 5T devices in this case).

We can make two main observations. Firstly, the theoretical
data rate is too optimistic, especially for the highest RSSI
values, due to hardware limitations as well as implementation
choices in the Nearby framework. Secondly, for the BPSK
modulation, corresponding to the lowest RSSI levels (below
-75 dBm), the experimental curve goes down to 0 Mbps at
-87 dBm. As we will see later on, the fact that the theoretical
curve remains horizontal at this very last modulation mode
has a significant impact on the behavior of the model.

B. Finding an appropriate modulation scheme

To assess the effects of the modulation scheme, we inves-
tigate the probability density function of contact capacity for
the four different modulation schemes illustrated in Figure 4:

• Step-wise maximum. This is the theoretical step-wise
function taken from the Wi-Fi 5 specification.

• Step-wise linear adjusted. Almost the same as the
step-wise maximum, except that the slowest modulation
(BPSK) has its data-rate linearly decreasing until it
reaches 0 at -87 dBm.

• Step-wise fit. In this scheme, we move all of the steps
from the Wi-Fi 5 specifications to the same levels as the
experimental data.

• Empirical goodput. For a given RSSI, the empirical
goodput is the median throughput of collected samples
over the RSSI (median blue curve in Figure 3). Similar to
the step-wise fit, this modulation scheme requires heavy
experimentation to be correctly estimated.

To evaluate the influence of these modulation schemes on
the capacity of a contact, we first need a mobility scenario.
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Fig. 5. Contact capacity probability density function for all modulations using
a two-ray propagation model in Stockholm.

In this section, we consider the Ostermalm dataset [4], a
pedestrian mobility trace in the city of Stockholm. The trace
was generated with Legion Studio [8], a mobility simulator
meant for architects and designers to test out pedestrian
flows in large infrastructures. The trace has a duration of
approximately five hours, with a total of 2,400 nodes moving
within a 5,872 m2 area. The dataset covers a period of 5 hours
and shows coordinate updates every 0.6 seconds. This high
frequency of position updates is necessary as we need an
accurate estimation of the distance between the nodes. The
population does not vary significantly throughout the trace,
holding a constant value around 60 nodes.

We also need a propagation model to transform distances
into RSSI (recall Figure 2 and Equation 2). We consider the
two-ray propagation model as it is the one that best fits our
experimental scenario (we will discuss about the propagation
models in Section IV-A). The results are shown in Figure 5.

Two patterns emerge. While the step-wise maximum and
the step-wise linear curves show a humped behavior, the step-
wise linear adjusted is the only one that succeeds to capture
the behavior of the empirical data. Even though the step-wise
linear adjusted overestimates the overall capacity of the system
when compared to the empirical goodput, the most important
observation here is the shape of the curve, as in a real-world
scenario, we expect to observe lower capacity anyway due to
interference from neighboring communications.

The main takeaway from this experimental evaluation is
the necessity to take the effect of the modulation scheme
into account when estimating the adaptive contact capacity.
Most importantly, one has to model this carefully, to take into
account the asymptotic behavior of throughput according to
RSSI and, by extension, throughput according to distance.

C. Explaining the step-wise linear adjusted scheme

As we could see in the previous subsection, the step-wise
linear adjusted scheme was the only one able to capture the
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behavior of the experimental results, albeit a small difference
compared to the step-wise maximum. Our intuition is that most
contacts happen at the edge of the communication range, thus
using the lowest throughput modulation (in the case of Wi-
Fi 5, BPSK 1/2).

We check which of short-range or long-range contacts
contribute the most, by evaluating the contact capacity of a
mobility trace. To this end, we consider the two-ray ground
model for the propagation. For the modulation schemes, we
first assess the suitability of the step-wise maximum and the
empirical goodput. In Figure 6, we show the CCDF of the
total capacity of the network as a function of the distance
between nodes. As we can see in this figure, regardless of
the idealistic (step-wise max) or realistic (empirical goodput)
modulation scheme, between 68% to 61% of the total capacity
of the network happens due to communications occurring at
more than 60 m, which shows the importance of long-distance
communications and thus of BPSK modulation. As a result,
the modulation scheme used over long distances should not
be neglected. The use of a realistic modulation scheme, where
the throughput decreases with distance until reaching zero, is
recommended.

Part of the explanation also comes from the fact that, in
the case of freespace and two-ray ground reflection models,
the area “covered” by the BPSK modulation is much bigger
than those covered by the other modulation schemes. In
Figure 7, we illustrate the differences between the areas. The
bigger the area, the more neighbors are likely to communicate
through longer links. Other propagation models (especially
those adapted for indoors) would lead to different observa-
tions; for this reason, we will have further insights into this
problem in Section IV-A.
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Fig. 7. Propagation and modulation on the space. The outer disk represents
the coverage zone of BPSK 1/2.

IV. FIXED VS. ADAPTIVE CONTACT CHARACTERIZATION

Let us now compare the capacity of contacts when they are
modeled by the fixed-rate and adaptive approaches. For all
contacts, we compute the capacity by applying Equations 1
and 2, respectively. To showcase the generalization of the
upcoming observations, we consider two datasets, the afore-
mentioned pedestrian Ostermalm dataset (presented in Sec-
tion III-B) and the Luxembourg dataset. Luxembourg LuST [9]
is a vehicular mobility trace created using SUMO [10], a state-
of-the-art micro-mobility simulator. The simulation runs over
24 hours and covers a 20 km2 area and a total of 167,000
nodes. The trace simulates a realistic daily traffic pattern,
with peaks of population during the morning and evening with
approximately 2,500 simultaneous nodes.

A. Influence of propagation model

We previously investigated the impact of modulation
schemes on the contact capacity, and we now propose to gen-
eralize our observations using different propagation models.
We consider three propagation models: freespace [11], two-
ray ground [12], and log-distance [11].

As previously explained, the minimum sensitivity of our
devices is -87 dBm. As the propagation model dictates the
maximum communication range, we consider contact duration
along with contact capacity to justify the distributions. For the
sake of reference, in our work, the maximum communication
range using freespace and two-ray propagation is ≈ 300 m,
and for the log-distance ≈ 45 m. We set the modulation
as the step-wise linear adjusted for the rest of this section.
Lastly, we also plot the contact capacity for a fixed-rate contact
δfixed = 65 Mbps (this throughput being the same data rate as
the BPSK 1/2 for Wi-Fi 5).

Let us first consider the vehicular case, shown in Figure 8.
The contact duration distribution, as seen in Figure 8a, exhibits
two different behaviors. The freespace and two-ray propaga-
tion models behave similarly, with a mean contact duration
around 30 seconds, whereas the log-distance model leads to a
higher probability for contact durations closer to zero. This is
a consequence of few contacts happening at a short distance
(small coverage surface); even when short-distance contacts
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Fig. 8. Contact duration and contact capacity distribution on a vehicular dataset (Luxembourg).

happen, the velocity of vehicles prevent the contact from
lasting longer than a few seconds.

When observing the contact capacity distribution (Fig-
ure 8b), as expected, the fixed-rate curves reflect pretty well
the distribution of contact duration of Figure 8a. What is eye-
catching in this figure is the behavior of the adaptive capacity
when using the log-distance propagation model. Contrarily
to freespace and two-ray propagation models, log-distance is
much more restrictive and intended to reflect indoor scenarios.
This means that the coverage zone of BPSK 1/2 is much
smaller compared to the other modulations. In this way, the
ratio of neighbors communicating through low-throughput
links decreases significantly.

In the pedestrian case (Figure 9), contact duration distri-
bution shows a more spread behavior than Luxembourg’s.
This is due to the shorter relative speeds between human
beings compared with the vehicular case which leads to
longer contact duration. As such, this yields a more spread
out distribution for the freespace and two-ray models and
a completely different shape for the log-distance model. In
fact, for the log-distance model, the highest contact duration
probability is found between 25 to 30 seconds.

The distribution of contact capacities in the Stockholm
scenario, depicted in Figure 9b, has several similarities with
the plots of the Luxembourg case – the fixed-rate plots follow
the same shape as the distribution of contact duration, while
the adaptive plot looks like that of a decreasing exponential,
except for the log-distance.

The unusual shape the log-distance with a step-wise linear
adjusted modulation scheme contact capacity distribution is
explained by carefully observing the behavior of nodes, which
act as pedestrians. Indeed, due to the much shorter communi-
cation range in the case of log-distance, there are only two
sorts of contacts. Either the contact is very short, leading
to poor capacity, or the contact is long with little distance

between the two nodes. These two sorts of behaviors are a
direct consequence of the pedestrian mobility behavior with
short communication range; either pedestrians cross each other
for a brief period, or two pedestrian walk next to each other
for a longer duration thus yielding higher capacity.

We also confirm once again that the fixed-rate approach
exhibits an unrealistic behavior, and we conclude from our
results that designers willing to set up an opportunistic network
based on device-to-device communications should account
for the type of modulation the underlying technology relies
on. The influence of the environment, represented by the
propagation model, is limited compared to the modulation
scheme. By adopting this strategy, they may be able to obtain
much more accurate results compared to what they would
obtain with the fixed-rate characterization.

B. Picking a better fixed-rate value

If for some reason, one still prefers to use a fixed-rate
characterization, she ought to better select δfixed. To select
a better fixed-rate contact throughput value, we compute the
vertical least squares fitting curve based on a simple linear
equation for each of the distributions as shown in Figure 10.
We remind the reader that in the case of contact capacity as
a function of contact duration, a fixed-rate contact follows the
linear equation δfixed = ax + b = ax, since b is always equal
to 0; a contact of 0 second yielding 0 contact capacity.

The boxplots in Figure 10 represent the distribution of
contact capacity for a given contact duration, considering an
adaptive contact. With each box having a height corresponding
to 50% of the data, and the bottom (resp. top) whiskers
corresponding to the 5th (resp. 95th) percentile. The curve
with triangle symbols holds the arithmetic mean of all values
found inside the bin.

When focusing on the vehicular case Figure 10a, we can
see that the linear fit for the fixed-rate contact does not seem
like a good match. For contacts of less than 40 seconds
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Fig. 9. Contact duration and contact capacity distribution on a pedestrian dataset (Stockholm).

0 40 80 120 160
Duration of contact (in seconds)

0

5000

10000

15000

20000

25000

C
on

ta
ct

 c
ap

ac
ity

 (M
bi

ts
)

fixed=linear fit
adaptative mean

(a) Luxembourg

0 40 80 120 160 200 240 280 320 360
Duration of contact (in seconds)

0

5000

10000

15000

20000

25000

30000

35000
C

on
ta

ct
 c

ap
ac

ity
 (M

bi
ts

)
fixed=linear fit
adaptative mean

(b) Stockholm

Fig. 10. Contact capacity as a function of contact duration.

long, the spread around the empirical mean is quite small,
but the contact capacity growth between one bin to the next
is less than linear. This shows that most contacts under 40
seconds happen on the edge of the node communication
range, where the data rates are the slowest. Knowing from the
distribution of contact times in section IV that the majority of
contacts in Luxembourg happen under 40 seconds, these edge-
communications concern most contacts. With this in mind, the
closest recommendation for the value of a fixed-rate contact
for Luxembourg we can make is 53.84 Mbits/s.

For the Stockholm case, as represented on Figure 10b, the
linear fitted function seems to be a better match. Since the
surface in which nodes evolve inside the Stockholm dataset
is significantly inferior to the Luxembourg one, making the
average contact about 80 seconds long. Our recommendation
for the value of a fixed-rate contact for Stockholm is 41.10

Mbits/s.
Overall, having a fixed-rate contact is more realistic in the

pedestrian case than the vehicular case. We, however, remind
the reader that the significant spread around the means shows
fixed-rate contacts are far from being the optimal way to
portray realistic contact capacity.

V. CONTACT NETWORK CAPACITY COMPUTATION TOOL

As a contribution to the community, we propose an open-
source software to quantify the contact capacity of a mobility
trace.2 The software, implemented as a Python library, pro-
poses several preset models for the propagation model and
modulation scheme to meet the requirements of the user. As
an incentive for users to fine-tune the software to their specific

2https://github.com/Bertier/OpportunistiKapacity
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Fig. 11. Contact capacity probability according to contact duration in the
Stockholm scenario. Here, the two-ray propagation and step-wise linear
adjusted modulation scheme is used.

needs, we provide access to lower-level functions in case one
wishes to implement customized models. The tool can handle
both mobility and contact traces.

A. Mobility traces

For this type of trace, the computation is straightforward.
The software takes a mobility trace as input (i.e., a sequence
of GPS coordinates) and calculates the distance between nodes
at each snapshot to determine if there is a contact or not. A
contact exists if the distance between the nodes is below the
threshold set by the model. If a contact is found, it computes
the capacity using the throughput estimation based on the
distance between the two nodes, until they lose connectivity.

B. Duration-based contact capacity estimation

Contact traces offer the duration of a contact but not the
geographical coordinates of the nodes. Thus, we cannot handle
these traces as we do with mobility traces. Recall that, in
Section II, we presented Figure 1 that clearly showed that
contacts of the same duration are likely to hide different
mobility patterns. To circumvent this issue, we propose to
rely on probability density functions that relate duration to
capacity.

Let us illustrate this idea with an example. Let us assume
the user chooses the two-ray propagation model along with
the step-wise linear adjusted modulation scheme. Firstly, we
calculate the contact capacity for each contact duration, as
seen in Figure 11. This figure comes from the measured
data we showed in Section III, and we expect to extend our
reference dataset with other measurement campaigns in the
future. The software computes then a contact capacity based
on the duration of the contact directly from the appropriate
probability density function.

VI. RELATED WORK

In the literature, fixing a data exchange rate for a contact
has been an on-going issue for more than a decade. While

it depends on the wireless technology used, as well as the
mobility scenario and the environment, most often these issues
are entirely overlooked.

Delay tolerant networks (DTN), or more specifically DTN
routing/diffusion algorithms, is a field where contacts and
inter-contact times are used as a way to quantify exchange
opportunities [13]–[16]. Some algorithms focus on the fact
that nodes (i.e., transmitting or receiving devices) have a finite
amount of memory that limits their receiving/forwarding ca-
pabilities and forces fine buffer management [14], [16]. While
it is a common practice to take in consideration hardware
limitation due to memory, we are surprised to see that transfer
speed is ignored. In other words, it is commonly assumed
that the packet transfer between two nodes always succeeds
if two nodes are within communication range (though, these
algorithms assume small packet size).

Let us pick the example of the Opportunistic Network
Environment simulator (The ONE), a state-of-the-art simulator
aiming to simplify the evaluation of DTN algorithms in a
realistic fashion [17]. For the throughput of mobile devices,
they chose a conservative and simplistic estimate by setting a
fixed-rate throughput for contacts. For instance, they assume
that nodes using Bluetooth can exchange data at a 2 Mbps
throughput within a 10 m radius and that nodes using Wi-
Fi have a 4.5 Mbps throughput within a 30 m radius [17].
A recent example of such a practice is proposed by Zhu et
al. [18], where a contact happens with any vehicle inside a
200 m range with an exchange rate of 20 Mbps. Our study
shows that such a characterization is not very precise and that
distance between communicating nodes should be taken into
account to model these interactions accurately.

Fortunately, some authors shed light onto this issue. The
closest work to our study has investigated the idea of tuning
throughput according to the distance. For instance, Chowdhury
et al. [5] observed that the Wi-Fi protocol adapted its rate
according to the RSSI, and therefore proposed to calculate
the amount of transferable data between a Wi-Fi access point
and a mobile node according to the distance between them.
Neto et al. [6] take this idea and empirically try to verify
this model by measuring the throughput between a mobile
node (car) and a base station. Last, Qayyum et al. [3] take an
empirical measurement of the throughput according to distance
using a mobile application.

Contrary to the approaches mentioned above, in this paper,
we consider several new aspects. First, instead of assuming
only one of the two nodes is mobile, which is unrealistic in
a pedestrian or vehicular environment, we suppose that both
nodes in contact are mobile. Moreover, where the other studies
simulate random positions of nodes or real traces with a small
number of nodes, we use realistic traces with hundreds, even
thousands, of mobile nodes to understand how the adaptive
rate affects the contact capacity in a large network.

Another essential difference between our study and the
previously mentioned works is the method used to estimate
the throughput between two devices according to the distance
separating them. Chowdhury et al. [5] took the theoretical link



speed as specified in the Wi-Fi 4 (IEEE 802.11n) standard,
and tried to fit a piece-wise and polynomial function to obtain
the link speed from the RSSI. Then, they estimate the RSSI
according to distance by using a log-distance propagation
model. Qayyum et al. [3] first empirically measure the distance
to throughput by implementing a Bluetooth data transfer
scheme in a mobile application, and then propose a distance to
throughput model using cubic spline interpolation. Compared
to our model, they report a notably lower throughput, and
in their case, shorter range (≈10 m). While detailed in a
companion paper, our model takes the best of these two
approaches, by using a mobile application to measure the
RSSI to throughput on contemporary hardware (notably, using
IEEE 802.11ac instead of IEEE 802.11n) and by using an
empirically verified model for RSSI estimation.

VII. CONCLUSION

In this paper, we investigated contact characterization based
on the throughput between the nodes, namely fixed and
adaptive. Our adaptive contact characterization relies on the
principle that one should take the distance between two nodes
into account to properly estimate the throughput between
them. The adaptive contact characterization adopts a two-
step calculation strategy: firstly, the distance is turned into a
received signal strength (propagation model), then the signal
strength is turned into a throughput (modulation scheme).

We applied our strategy in two mobility datasets. We
observed that the most important factor when capturing the be-
havior of a contact is that the modulation scheme’s throughput
must decrease with distance until reaching zero. Also, although
distant contacts have the poorest data-rate, they contribute the
most in terms of global network capacity regardless of opti-
mistic or realistic modulation schemes. By comparing the fixed
and adaptive contact capacity distributions, we noticed that
their distribution shapes are entirely different, thus showcasing
that fixed-rate contacts are not enough to capture the essence
of realistic contact capacities.

We additionally provide a piece of software that computes
the contact capacity of a mobility trace, either based on the
distance between the nodes or, if the latter is not available,
on the contact duration with greater accuracy than fixed-rate
contacts. With this tool as a means to simplify the contact
capacity computation, we hope that the community will get
further insights into how the varying contact throughputs
impact protocols and algorithms for D2D networks.

In our future work, we intend to provide a mathematical
framework to calculate the contact capacity based on the
duration of contact. Additionally, we also intend to conduct
more experimental campaigns so that our tool encompasses
more scenarios (e.g., indoors).
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