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a b s t r a c t

This paper is concerned with the computation of the inverse impulse response of a parame-
trized structural dynamics problem using reduced-order modeling and randomized excita-
tions. A two-stages approach is proposed, involving the solution of both direct and inverse
problems. In the first stage, the parametrized structural dynamics problem is formulated in
the frequency domain, and solved using a reduced-order modeling approach. As a result,
the parametric transfer function of the structure is obtained, and then readily transformed
into a parametric direct impulse response (DIR). In the second stage, the parametric inverse
impulse response (IIR) is computed. We use randomized excitations to generate synthetic
samples inexpensively from the parametric DIR. Based on these, the parametric IIR is com-
puted by minimizing the mean square error between the estimate and the samples. Most
importantly, we show that the randomized excitations can be generated by sampling the
frequency domain only. Hence, the parametric domain does not need to be sampled, which
makes the computation of the parametric IIR very efficient.

1. Introduction

Real-time reconstruction of both dynamic forces acting on a structure and the system state (e.g. structure displacements) 
is of great importance in many engineering applications. While the system state can often be measured at least at specific 
locations, dynamic forces acting on a structure are generally unknown. Extensive research has been done over the past dec-
ades in order to estimate the time history of dynamic forces from indirect measures [42–49].

The dynamic forces recovery problem can be seen as a particular instance of general inverse problems. Literature in this 
area is vast and covers almost every area of science and engineering. However, in next lines we give a general overview on 
the main approaches that have been proposed in the literature to address the ill-posedness of the dynamic forces recovery 
problem. In the framework of linear time-invariant (LTI) systems, it is well known that the impulse response fully captures 
the system behavior. In particular, the system response can be computed from the convolution of the impulse response and 
the input signal, that is the force. In this framework, deconvolution is used to reverse the effects of convolution on the sys-
tem’s response. A naive deconvolution approach based on direct inversion of the impulse response would fail because of the 
drastic amplification of the noise inherent to both measures and computations. There is a vast literature aiming at addressing 
the noise amplification issue in deconvolution [35,18,19].

⇑ Corresponding author.
E-mail addresses: santiago.montagud-perez-de-lis@u-bordeaux.fr (S. Montagud), jose.aguado-lopez@ec-nantes.fr (J.V. Aguado), francisco.chinesta@en-

sam.eu (F. Chinesta), p.joyot@estia.fr (P. Joyot).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2019.106392&domain=pdf
mailto:santiago.montagud-perez-de-lis@u-bordeaux.fr
mailto:jose.aguado-lopez@ec-nantes.fr
mailto:francisco.chinesta@ensam.eu
mailto:francisco.chinesta@ensam.eu
mailto:p.joyot@estia.fr


Regularization methods are based on a functional description of the signal (force, system response) [18,7]. In particular,
we require the deconvolved signal to belong to a certain functional space and to minimize a certain error measure. Several
regularization techniques have been proposed over the years, including Tikhonov regularization [35], which can be used to
constrain the solution to the space of square-integrable functions, for instance. In other fields, such as image processing,
more sophisticated functional spaces may be preferable [6]. Finally, iterative regularization methods have also been pro-
posed in order to address large-scale systems, such as Landweber iteration [27]. Since applications of signal and image pro-
cessing are virtually unlimited, many field-specific deconvolution methods have been proposed in areas such as
radioastronomy [25], optics [37] or geophysics [34], just to cite few examples.

The inverse problem can also be posed into a statistical framework, which uses a statistical description of the signals and
certain assumptions on the nature of the noise. This approach is particularly fruitful in the field of signal processing. The
main advantage is that filtering theory for LTI systems, i.e. Wiener filtering and deconvolution, was extended to general
dynamical systems by Kalman filtering [24], and also nonlinear dynamical systems (extended Kalman filter) [16]. Finally,
Bayesian filtering provides an even more general framework which reduces to the Kalman filter if variables are normally dis-
tributed and transitions are linear. Examples using statistical framework can be found in [22].

Besides to the ill-posedness of the dynamic forces recovery problem, at least two other important challenges can be iden-
tified in the literature. The first one concerns the trade-off between model accuracy and real-time performance. Many prac-
tical applications impose a real-time performance constraint which is not always easy to meet, especially when simple
dynamical models, such as concentrated parameters models, cannot be assumed. Hybrid laboratories [1,23] or soft robotics
[13,33] are two examples of new industrial applications which require continuum mechanics modeling in order to describe
both deformation and forces properly. These usually result in large-scale computer models which are most likely incompat-
ible with the real-time constraint. The second challenge concerns model adaptivity to structural alterations and/or uncer-
tainties. Structures are prone to evolve and deteriorate over the time, making it very difficult to assess the validity of
structural models beforehand.

Reduced-order modeling (ROM) methods [8,29,14] constitute an appealing alternative in order to address both previous
challenges. ROM methods are well-known for providing a scientific and mathematical basis for fast simulation, sometimes
even in real-time, of engineered systems. The basic idea is to exploit the fact that the solution of many models can be
approximated very efficiently provided that a suitable representation basis is chosen. The two principal families of ROM
methods, a priori and a posteriori methods, differ essentially on how they build such appropriate representation basis. In
this paper, we are only concerned with the a priori ROM methods, and more specifically, with the Proper Generalized
Decomposition (PGD) [10,15].

In this work, we propose a two-stages approach involving the solution of both parametric direct and inverse problems,
using PGD and randomized excitations. The proposed approach is only concerned with the forced response of LTI systems.
In the first stage, we rely on parametric direct impulse responses (DIR), already introduced in [2] in the context of thermal
problems, and applied to structural dynamics in [17,28]. The computation of the parametric DIR involves a frequency-
domain formulation of the structural dynamics problem for reasons that will be made clear in Section 2. The key aspect of
the parametric DIR is that it does not only encode the system response, but also captures the system behavior in a wide range
of scenarios thanks to its parametric nature. Specifically, if parameters represent structural alterations and/or uncertainties,
the parametric DIR can account for these changes and still be able to predict the system response. In addition, the parametric
DIR offers a simple procedure to obtain a real-time feedback of the displacements via its convolutionwith the excitation force.

In the second stage, we use randomized excitations to generate synthetic samples inexpensively from the parametric DIR.
Then, the parametric inverse impulse response (IIR) is computed by minimizing the mean square error between the estimate
and the samples using PGD. Most importantly, we show that the randomized excitations can be generated by sampling the
frequency domain only. Hence, the parametric domain does not need to be sampled, which makes the computation of the
parametric IIR very efficient. In summary, the objective of this work is to compute a parametric inverse impulse response
which is able to compute the excitation force by reversing the effects of the structure on the measured displacement, and
that is able to do so in a wide range of scenarios thanks to its parametric nature. Fig. 1 show a general picture of the method.

The rest of the paper is organized as follows. Section 2 presents the model problem being considered in this paper, first in
the time domain, and then we move to the frequency domain. In Section 2.3 we give a brief sketch on the computation of the
parametric DIR using the PGD method. We then show how to use the parametric DIR for real-time monitoring of displace-
ments under arbitrary force. Section 3 is concerned with the computation of the parametric IIR. We first give in Section 3.1 a
brief outline of the proposed strategy in a non-parametric framework. Then, in Section 3.2 we show how to generate syn-
thetic samples for the parametric DIR, which are then used to set up a regularized minimization problem to compute the
parametric IIR. We give the details of the PGD computation of the parametric IIR in Section 3.2.2, which can be completed
with details in Appendix A. Section 4 is concerned with some numerical examples that serve to test the performance of the
proposed approach. Finally, conclusions are drawn in Section 5.

2. Monitoring displacement

In this section we review the formulation of the direct problem, that is, computing displacements from known forces, and
show how to compute the parametric DIR. In order to compute the impulse response, the problem is first formulated in the



frequency domain, and then the solution transformed back to the time domain. Therefore, we start with the model problem
in the time domain and then we move to a frequency-domain formulation. Finally, we show how the parametric DIR can be
used for real-time monitoring of displacements. This constitutes the first stage of the approach presented in this paper.

2.1. Model problem in the time domain

For the purposes of this paper, we consider a linear visco-elastic body that occupies an open bounded domain X � Rd63.
Its boundary, @X, is partitioned into two disjoint parts, Neumann CN and Dirichlet CD frontiers, such that �@X ¼ �CN [ �CD.
Under the assumption of small perturbations, the evolution of displacements uðtÞ in the time interval of interest,
t 2 It ¼ ½0; T final�, is governed by the elastodynamic equation of motion:

q€u� $ � r ¼ 0 in X� It;

r � n ¼ t on CN � It;
u ¼ 0 on CD � It;

8><
>: ð1Þ

where q is the mass density, r is the stress and n is the outward unit normal to @X. On the other hand, t stand for the surface
traction. Appropriate initial conditions for u and _u at X� f0g must also be provided. Eq. (1) is closed with the constitutive
law, the Kelvin-Voigt linear visco-elastic model,

r ¼ D : eþ s _eð Þ; ð2Þ
where D is the fourth-order Hooke elasticity tensor and s is a characteristic time related to the viscous behavior. According to
the small perturbations hypothesis, e ¼ 1

2 $uþ $tu
� �

.
Upon discretization, e.g. using the finite element method [5], we arrive to the matrix differential equations of motion,

M€uðtÞ þ C _uðtÞ þ KuðtÞ ¼ fðtÞ; ð3Þ
whereM;C;K 2 RN�N are the mass, damping and stiffness matrices, respectively, fðtÞ 2 RN is the generalized force vector and
uðtÞ 2 RN is from now on the generalized displacement vector. Since structural dynamics have been studied in many scien-
tific articles and textbooks [4,21,38], we do not provide here an exhaustive literature review.

Many methods have been proposed over the time in order to solve Eq. (3), including time-integration schemes [38],
modal methods [12] and frequency-domain methods based on harmonic analysis [30]. In spite of their wide applicability,
these methods are not always suitable for real-time computation. Besides, they are not designed to accommodate structural
alterations or uncertainty, at least in combination with the real-time constraint. Time integration schemes, for instance,
could not be fast enough in stochastic frameworks, where calibration and active control must coexist. Moreover, modal
methods cannot deal easily with structural changes and uncertainties, because in principle, the modal basis would have

Fig. 1. General picture of the method.



to be computed each time a change in the structure takes place [36]. We recommend the interested reader the works [40,41]
for more information about efficient computation of the modes under structural modifications.

2.2. Forced response via frequency domain formulation

Frequency-domain representations are a powerful approach to study the response of the structure when initial conditions
can be neglected, that is, we are only concerned with the forced response. This framework, which was integrated into the
finite element (FE) framework from the very beginning, still is extensively used today. Since it is well described in many text-
books [11], it is not our aim to provide a detailed literature review here.

Consider that our dynamic system is submitted to some dynamic action represented by the generalized force vector, fðtÞ.
Under rather weak conditions, it is possible to obtain a frequency representation, fðxÞ, of the generalized force vector via the
direct Fourier Transform. And vice versa, from the frequency representation it is possible to recover the time representation of
the generalized force vector via the inverse Fourier Transform. The pair of direct/inverse transforms is defined as follows:

fðxÞ ¼
Z þ1

�1
fðtÞ expð�ixtÞdt and fðtÞ ¼ 1

2p

Z þ1

�1
fðxÞ expðixtÞdx:

No distinct notation is used for time-domain or frequency-domain representations for the sake of simplicity. Analogously,
we may also consider the frequency representation of the generalized displacement vector, uðxÞ, that may be computed
from

�x2Mþ ixCþ K
� �

uðxÞ ¼ fðxÞ: ð4Þ
Notice that Eq. (4) is obtained by taking the Fourier transform over Eq. (3). It can be seen that the dynamic response

depends parametrically on x. This parametric dependence is intrinsic to harmonic analysis and renders it very unattractive
when compared to modal analysis or even direct integration. In practice, harmonic analysis is only used to compute the
response against rather simple (with few frequencies) periodic forcing terms. If arbitrary (non-periodic) forcing terms are
of interest, in principle one has to deal with a continuous frequency spectrum.

2.3. Computing the direct impulse response with PGD

In this section, we use the PGD method in order to deal with the parametric nature of the frequency-domain formulation,
Eq. (4). Specifically, we shall compute a parametric solution in terms of the frequency. Then, by coming back to the time
domain, we obtain the direct impulse response. If extra parameters (other than frequency) are considered in the PGD formu-
lation, we can obtain a parametric DIR.

Space-frequency separated representations have also been considered in [31,32] for the so-called variational theory of
complex rays. Obviously, there have been many attempts considering such descriptions within the model reduction frame-
work; the interested reader can refer to [20,39] and the references therein.

Let us assume that the excitation can be expressed as a combination of harmonics:

fðtÞ ¼ fspðtÞ; ð5Þ
where fs is the vector that collects the space distribution of the excitation and pðtÞ is a function that modulates the excitation
in time. Following classic analysis of LTI systems, the transfer function of the system, denoted by hðxÞ 2 RN , can be com-
puted as the solution against the impulse. That is, we consider pðtÞ � dðtÞ, where dðtÞ stands for the Dirac’s delta distribution.
Recalling that fðxÞ ¼ fspðxÞ and pðxÞ ¼ dðxÞ ¼ 1, we arrive to:

ð�x2Mþ ixCþ KÞhðxÞ ¼ fs: ð6Þ
Note that, if we were able to solve Eq. (6) for every frequency, we would dispose of the transfer function of the system,

which implies that the system response under arbitrary pðtÞ could be obtained readily. Therefore, the idea is to use a
ROM approach, based on the PGD method, to compute hðxÞ efficiently for every frequency in the interval of interest, i.e.
x 2 Ix ¼ ½x�;xþ�.

PGD devises an offline-online strategy to alleviate the computational burden and reach real-time performance. In the off-
line stage, PGD encodes the system response for a wide variety of scenarios, described by the parameters. For the time being,
we are only considering the frequency as a parameter, but as it will be shown later, several parameters could be considered.
This leads naturally to a multi-dimensional problem which has to be addressed carefully in order to avoid the so-called curse
of dimensionality [50]. PGD makes use of separated-variables representations, that is, the solution is sought as a sum of func-
tion products, where each function depends on one parameter. The key point of the PGD algorithm is to split the complexity
of multi-dimensional problems into lower-dimensional ones, much less complex to solve. Specifically, the transfer function
is sought using the following space-frequency separated representation:

hðxÞ ¼
Xn
i¼1

Xi WiðxÞ; ð7Þ



where Xi collects the nodal generalized space modes and WiðxÞ denotes the frequency modes of the solution. Both are a priori
unknown and must be determined by the algorithm. PGD builds Eq. (7) using a greedy enrichment that adds one term at a
time. Each term is computed using an alternating direction method. The enrichment process is stopped using appropriate
error estimation. More detailed information about the procedure can be found in [9].

As noted previously, space-frequency separated representations can be generalized by considering extra parameters
other than frequency. We can take advantage of this feature in order to deal with structural alterations and/or uncertainties.
For illustrative purposes, let us assume that the elastic behavior of the structure is not fully characterized, e.g. we do not have
a precise knowledge of one of the Young’s modulus. Instead, we may have access to a probability density function of the
Young’s modulus. Parametric solutions offer a simple manner to account for that uncertainty, which consists in computing
a parametric transfer function in terms not only of the frequency, but also the Young’s modulus. Let us assume Young’s mod-
ulus E 2 IE ¼ ½E�; Eþ�. PGD allows computing a separated solution in the form:

hðx; EÞ ¼
Xn
i¼1

Xi WiðxÞEiðEÞ; ð8Þ

where Xi collects the nodal generalized space modes, Wi is a frequency mode and E i is a Young’s modulus mode.
Note that, in the online stage, the parametric transfer function defined in Eq. (8) can be accessed in real-time for any

parameter combination by performing no more than look-up table operations.

Remark. (Alternative separated formats) Although basis vectors Xi and functionsWiðxÞ are denoted exactly the same in Eq.
(7) and Eq. (8) for notational simplicity, we are not implying that both bases are the same. They will be different in general,
and neither Xi nor WiðxÞ in Eq. (7) are reused in Eq. (8) (although it is theoretically possible). The number of basis terms,
denoted by n both in Eq. (7) and Eq. (8), is different as well. Eq. (8) uses a canonical format, which is at the base of the PGD
method used here [9]. However, other formats are possible and, in some cases, can be more convenient. The interested reader
can refer to [51] for an introductory review on the topic of tensor formats and their decomposition.

2.4. Real-time monitoring of displacements

Once the parametric transfer function, Eq. (8), is available, we can apply simple LTI systems theory in order to recover the
parametric DIR. Since both Fourier direct and inverse transforms are linear applications, the parametric impulse response
can be written as follows:

hðt; EÞ ¼ F�1 hðx; EÞ½ � ¼
Xn
i¼1

Xi WiðtÞEiðEÞ;

where WiðtÞ ¼ F�1½WiðxÞ� represents the inverse Fourier transform of frequency-domain modes in Eq. (8). Note that the
inverse Fourier transform is applied only on frequency modes, which renders the operation extremely efficient.

Now the parametric DIR can be used to compute the response of the structure under an arbitrary excitation pðtÞ:

uðt; EÞ ¼
Z t

0
pðt � sÞhðs; EÞds; ð9Þ

where uðt; EÞ is a parametric solution that collects the time evolution of the nodal displacements, for all E 2 IE. Note that the
convolution is done between pðtÞ and each component of the parametric impulse response hðt; EÞ:

u ¼
u1ðt; EÞ ¼

R t
0 pðt � sÞh1ðs; EÞds

..

.

uNðt; EÞ ¼
R t
0 pðt � sÞhNðs; EÞds

2
664

3
775:

It is worth to highlight that Eq. (9) allows computing displacements only at those degrees of freedom of interest (e.g.
those where measures are actually done), and consequently an important computational cost can be saved. Thanks to lin-
earity, convolution can be applied only to time-dependent modes, WiðtÞ. We can therefore define:

YiðtÞ ¼
Z t

0
pðt � sÞWiðsÞds;

and the parametric displacements are written as follows:

uðt; EÞ ¼
Xn
i¼1

XiYiðtÞEiðEÞ: ð10Þ

Therefore, displacements can be readily evaluated from the parametric DIR, under arbitrary force excitations and for a vari-
ety of Young’s modulus values. Eventually, this feature could be used to reverse-engineer the Young’s modulus based on sim-



ulation predictions, or to propagate uncertainty if a probability density function on the Young’s modulus is available. How-
ever, in this paper we will use randomized excitations to generate synthetic samples inexpensively from the parametric DIR.

3. Monitoring force via parametric inverse impulse response

While displacements can often be measured at least at specific locations, dynamic forces acting on a structure are gen-
erally unknown. Real-time estimation of dynamic forces is of great importance in many engineering applications. For
instance, in hybrid laboratories [1,23] combine experimentation in the part of the system where complex (i.e. not well-
established) physics happen, and simulation where models can be trusted. Both experiment and simulation communicate
via some actuator. Real-time feedback from the simulation is therefore critical.

However, the force recovery problem is not straightforward as Eq. (3) may not have unique solution for an unknown
force. In this section, we address the force recovery problem in a parametric framework. Starting with the parametric DIR
computed in Section 2, we compute a parametric inverse impulse response using randomized excitations and a PGD
formulation.

3.1. Outline of the proposed strategy

The concept of inverse impulse response (IIR) is at the center of the proposed strategy. Suppose displacement is measured
at node j, with 1 6 j 6 N; then, the IIR associated to that node, gjðtÞ, allows to reverse the effects of the structure on ujðtÞ and
delivers the excitation force pðtÞ:

pðtÞ ¼ ujðtÞ � gjðtÞ �
Z t

0
ujðt � sÞgjðsÞds; ð11Þ

where ‘‘�” stands for the convolution operation. Note that pðtÞ is the force amplitude modulation, as defined in Eq. (5). Para-
metric dependency has been ignored in Eq. (11) for the sake of notational simplicity. Moreover, note that Eq. (11) makes the

(physically reasonable) hypothesis that h�1
j ðxÞ is well defined for all x in the range of interest [52].

Computing the IIR can be seen as a deconvolution problem. As reviewed in Section 1, one of the main approaches to
address the ill-posedness of the inverse problems is regularization [35]. This approach makes use of a functional description
of the signal, and in particular, requires the deconvolved signal to belong to a certain functional space and to minimize a
certain error measure. Although other options are possible, here we follow a regularization approach based on the use of
training samples.

Suppose we are given a set of force samples and its corresponding displacements, denoted by fp‘ðtÞ;u‘ðtÞgntrain‘¼1 , respec-
tively. Note that, in particular, displacements could be computed from the direct impulse response inexpensively as
u‘ðtÞ ¼ hðtÞ � p‘ðtÞ. Then, in order to compute the IIR we consider a regularized approach that seeks to minimize the mean
square error between the estimate and the samples:

Xntrain
‘¼1

ku‘jðtÞ � gjðtÞ � p‘ðtÞk2 þ kkSðgjðtÞÞk2 for 1 6 j 6 N; ð12Þ

where k 	 k denotes the standard L2 norm over It , the time interval of interest; u‘jðtÞ denotes the j-th entry of u‘ðtÞ; k is the
regularization parameter; and Sð	Þ is some linear operator in order to enforce the desired properties to the solution. Note
that the problem defined in Eq. (12) is uncoupled with respect to the degree of freedom j; that is, gjðtÞ can be computed inde-
pendently from gkðtÞ, with k– j.

By discretizing the time domain, and taking into account that convolution is a linear operator, Eq. (12) can be written in
matrix form as follows:

Xntrain
‘¼1

kU‘jgj � p‘k22 þ kkSgjk22; ð13Þ

where U‘j represents the discrete convolution operator associated to u‘jðtÞ. On the other hand, S is the equivalent discrete of
Sð	Þ, usually equal to the identity matrix if we seek the solution with minimum norm, or a Laplace operator, if we want to
enforce smoothness of the solution. Eq. (13) yields the solution:

gj ¼
Xntrain
‘¼1

UT
‘jU‘j þ kSTS

!�1 Xntrain
‘¼1

UT
‘jp‘

!
: ð14Þ

3.2. Parametric inverse impulse response

In Section 3.1 parametric dependencies have been omitted for the sake of simplicity. Now we seek a parametric inverse
impulse response in the following separated-variables format,



gðt; EÞ ¼
X�n
l¼1

�Xl
�WlðtÞ �ElðEÞ; ð15Þ

such that gjðt; EÞ is able to reverse the effects of the structure on displacement ujðt; EÞ, for some d.o.f. 1 6 j 6 N and every

E 2 IE. In Eq. (15), �Xl; �WlðtÞ and �E lðEÞ are space, time and parameter modes of the parametric IIR, which can be seen as the
inverse of the parametric DIR, see Eq. (8). For simpler notation, we shall consider all d.o.f., that is gðt; EÞ 2 RN , but a subset
of the d.o.f. could also be taken. Note that in particular, d.o.f. where essential boundary conditions apply should be excluded.

3.2.1. Randomized excitations and parametric optimization problem
As outlined in Section 3.1, to obtain the parametric IIR, a training set of forces and displacements must be known in

advance, which can come from measurements or simulation. In our approach, we shall take advantage of the parametric
DIR to generate a synthetic set of displacements inexpensively. In particular, we consider a set of ntrain singleton excitations,

P :¼ p‘ðtÞ : p‘ðtÞ ¼ cosðx‘tÞ;x‘ 2 Ix;1 6 ‘ 6 ntrainf g; ð16Þ

where x‘ is drawn randomly from a uniform distribution. Thanks to the parametric DIR, hðt; EÞ defined in Section 2, we can
compute the set of parametric displacements inexpensively by performing a convolution hðt; EÞ � p‘ðtÞ for each element in P.
Specifically, at node j we have:

U :¼ u‘jðt; EÞ : u‘jðt; EÞ ¼
Xn
i¼1

XijYi‘ðtÞEiðEÞ;1 6 ‘ 6 ntrain

( )
; ð17Þ

where Xij represents the j-th entry of Xi in Eq. (8). Observe that u‘jðt; EÞ is written in separated-variables form, where
Yi‘ðtÞ ¼ WiðtÞ � p‘ðtÞ. Recall that WiðtÞ is the i-th time-dependent mode of the parametric DIR.

Next, we proceed very much like in Eq. (12), i.e. we seek to minimize the mean square error between the estimate and the
samples but this time including also the parameter domain:

Xntrain
‘¼1

ku‘jðt; EÞ � gjðt; EÞ � p‘ðtÞk2 þ kkSðgjðt; EÞÞk2; ð18Þ

where k 	 k denotes here the L2 norm over It � IE and gjðt; EÞ denotes the j-th entry of gðt; EÞ. Again, note that each gjðt; EÞ in
Eq. (18) can be computed independently from gkðt; EÞ, with k– j.

By inserting parametric displacements definition given in Eq. (17) into Eq. (18), we arrive to the following parametric
optimization problem: find gjðt; EÞ, for 1 6 j 6 N, which is the minimizer of

Xntrain
‘¼1

Xn
i¼1

XijYi‘Ei

!
� gjðt; EÞ � p‘ðtÞ

�����
�����
2

þ k Sðgjðt; EÞÞ
�� ��2: ð19Þ

3.2.2. PGD method for parametric IIR computation
The stationarity condition of the functional Eq. (19) can be found by means of standard calculus of variations. Minimizing

Eq. (19) is equivalent to solve the following problem: find gj � gjðt; EÞ 2 L2ðIt � IEÞ such that

Aðgj; g
H
j Þ þ kRðgj; g

H
j Þ ¼ LðgH

j Þ 8gH
j 2 L2ðIt � IEÞ; ð20Þ

where we have introduced the following bi-linear forms: A;R : L2ðIt � IEÞ � L2ðIt � IEÞ ! R defined by

Aðu;uHÞ ¼
Xn
i;k¼1

XijXkj

Z
IE

Z
It

uH � ðEiLikEkÞ � udtdE; Rðu; uHÞ ¼
Z
IE

Z
It

SðuHÞSðuÞdt dE; ð21Þ

as well as a linear form L : L2ðIt � IEÞ ! R defined by

LðuHÞ ¼
Xn
i¼1

Xij

Z
IE

Z
It

uH � ðqiEiÞdtdE: ð22Þ

Functions LikðtÞ in Eq. (21) and qiðtÞ in Eq. (22) are defined as follows:

LikðtÞ ¼
Xntrain
‘¼1

Yi‘ðtÞYk‘ðtÞ and qiðtÞ ¼
Xntrain
‘¼1

Yi‘ðtÞp‘ðtÞ: ð23Þ



In next lines we describe the PGD algorithm for the solution of Eq. (20). The main ingredients are a greedy algorithm for
an incremental construction of the separated-variables representation and an alternating directions algorithm for the calcu-
lation of each separated-variables factor.

Greedy algorithm: PGD builds the separated-variables representation given of the solution, Eq. (15), by adding one term
at a time. Therefore, assuming that �n� 1 terms have already been computed, we seek a new term dgðt; EÞ such that the solu-
tion with �n terms writes:

g�nðt; EÞ ¼ g�n�1ðt; EÞ þ dgðt; EÞ ð24Þ
with dgðt; EÞ ¼ �X �WðtÞ�EðEÞ:

Then, for a given d.o.f. 1 6 j 6 N, or a subset of them since they are uncoupled, the weak form given in Eq. (20) becomes:
find dgj 2 L2ðIt � IEÞ such that

Aðdgj; dg
H
j Þ þ kRðdgj; dg

H
j Þ ¼ LðdgH

j Þ � Aðg�n�1
j ; dgH

j Þ ð25Þ
8dgH

j 2 L2ðIt � IEÞ:
The rank �n can be adaptively chosen based on error estimates to achieve the desired precision [3,26].
Alternating directions algorithm: Eq. (25) defines a nonlinear problem for the computation of the factors �Xj; �WðtÞ and

�EðEÞ which is solved using an alternating directions linearization. These algorithms updates one factor at a time while con-
sidering the other factors fixed. The algorithm is stopped when it reaches a fixed point, i.e. the norm of the difference
between two consecutive iterations is small enough. In next lines we derive the updates for each one of the factors:

	 Update �X. Assume both �W and �E known from a previous iteration. Then, for 1 6 j 6 N the test function becomes
dgH

j ¼ �XH
j
�W�E. After some tedious but conceptually simple manipulations, Eq. (25) becomes:

aj
X
�Xj þ kbX

�Xj ¼ cjX � gj
X : ð26Þ

See Appendix A.1 for a detailed derivation. Coefficients aj
X ; bX ; c

j
X and gj

X are also given in the Appendix. In view of the
above, �Xj can be updated for every 1 6 j 6 N by solving an uncoupled equation, i.e. a diagonal system because �Xj does
not depend on �Xk for k – j:

�Xj ¼ cjX � gj
X

aj
X þ kbX

() �X ¼ ðDX þ kbXIXÞ�1ðcX � gXÞ; ð27Þ

where DX is a diagonal matrix whose j-th diagonal entry is aj
X ; IX is the identity in RN and vectors cX and gX collect cjX and

gj
X , respectively, for 1 6 j 6 N.

	 Update �W . Assume both �X and �E known from previous iterations. Then, for 1 6 j 6 N the test function becomes
dgH

j ¼ �Xj
�WH�E. In this case, Eq. (25) becomes:

Xn
i;k¼1

aik
T

Z
It

�WH � Lik � �Wdt þ kbT

Z
It

Sð �WHÞSð �WÞdt ¼
Xn
i¼1

ciT
Z
It

�WHqidt �
Xn
i;k¼1

X�n�1

l¼1

aikl
T

Z
It

�WH � Lik � �Wldt: ð28Þ

See Appendix A.2 for a detailed derivation. Coefficients aik
T ; bT ; ciT and gikl

T are also given in the Appendix. After discretiza-
tion of both time and Young modulus domains, we have:

�W ¼ LT þ kbTS
TS

� ��1
cT � gTð Þ; ð29Þ

where S is the discrete counterpart of the linear operator Sð	Þ. Matrix LT and vectors cT and gT are given in the Appendix
A.2.

	 Update �E. Assume both �X and �W known from previous iterations. Then, for 1 6 j 6 N the test function becomes
dgH

j ¼ �Xj
�W�EH. In this case, Eq. (25) becomes:

aE
�E þ kbE

�E ¼ cE � gE; ð30Þ
See Appendix A.3 for a detailed derivation. Coefficients aE; bE; cE and gE are also given in the Appendix. Observe that this is
an uncoupled equation, i.e. for arbitrary Em 2 IE; �Em � �EðEmÞ does not depend on �Ek, with m – k. In view of the above, �Em

can be updated by solving an uncoupled equation, i.e. a diagonal system:

�Em ¼ cmE � gm
E

am
E þ kbE

() �E ¼ ðDE þ kbEIEÞ�1ðcE � gEÞ; ð31Þ



where am
E � aEðEmÞ, and similarly for cmE and gm

E , with 1 6 m 6 NE, being NE the number of nodes used to discretize IE. DE is
a diagonal matrix whosem-th diagonal entry is am

E ; IE is the identity matrix in RNE and vectors cE and gE collect cmE and gm
E ,

respectively, for 1 6 m 6 NE.

Remark. (Avoiding regularization with the use of separated-variables representation) Numerical evidence (see Section 4)
shows that the PGD method can still be applied for solving Eq. (19) when no regularization is considered, i.e. k ¼ 0. PGD
method shows stability in that case, and therefore it appears to have some kind of built-in regularization capabilities. A pos-
sible explanation may be related to the truncated Singular Values Decomposition as a regularization method, see [18]. This
method expresses an approximated solution to the inverse problem by truncating the singular vectors associated to the
smallest singular values (i.e. those related to high frequencies). A precise truncation can eliminate spurious oscillations intro-
duced by the singular vectors associated to high frequencies. Because PGD proceeds in a greedy manner to minimize the
mean square error, it first extracts the principal modes of the solution, which are indeed those associated to lower frequen-
cies. Higher frequency spurious modes would only appear when PGD convergence is pushed to machine precision, which in
practice is never done because we are usually interested in achieving effective model reduction. Research outside the scope
of this paper would be needed to confirm this hypothesis.

Fig. 2. Geometry and mesh of the numerical test case: a 2D plate with of size 1� 1 m and circular hole in the middle of radius 0:5 m. Measure node P is
marked in red.

Fig. 3. First four space modes of the parametric direct impulse response.



4. Numerical example

In this section we describe the application of the method proposed in this paper to solve a numerical test case.
We consider 2D plate of size 1� 1 m and circular hole in the middle of radius 0:5 m, as depicted in Fig. 2. The mesh con-

tains 124 first-order triangular finite elements and 78 nodes. The plate is fixed at the bottom edge and a dynamic load is
applied on the leftmost edge. Displacements are measured at the right upper corner of the plate (node P), which is marked
in red. Homogeneous isotropic plane-stress visco-elasticity has been considered for the analysis, together with the Kelvin-
Voigt model for the viscous part (see Section 2.1 for details). The mass density is considered q ¼ 1 kg/m3, and the stiffness
is considered as a parameter in a range of E 2 IE ¼ ½10;200� Pa. The Kelvin-Voigt time constant, l, is chosen such as to obtain
make the damping factor n ¼ 10%. Recall that the n and l are related via:

n ¼ 1
2
lx0 with x0 ¼ ffiffiffiffiffiffi

r0
p

;

where r0 is the smallest eigenvalue (i.e. natural frequency) that results from solving the generalized eigenvalue problem
Ku ¼ rMu.

In the offline phase, both DIR and IIR are computed. For the computation of the DIR, a frequency is considered in a range
x 2 Ix ¼ ½0;500� Hz, which allows for a time resolution of Dt ¼ 1 ms (recall Nyquist-Shannon theorem). The frequency
domain is discretized using a step size Dx ¼ 10 mHz, which allows for a signal length T final ¼ 1=2Dx ¼ 100 s). Recall that
frequency is a parameter of the parametric DIR. PGD algorithm converged after computing n ¼ 15 modes. Fig. 3, Fig. 4
and Fig. 5 show the space, frequency and Young modulus modes of the DIR, respectively. For the computation of the para-

Fig. 4. First four frequency modes of the parametric direct impulse response.

Fig. 5. First four Young’s modulus modes of the parametric direct impulse response.



metric IIR, a training set of ntrain ¼ 10 forces covering frequencies in a range of ½1;25�Hz has been considered. The PGD algo-
rithm converged in this case after �n ¼ 80 modes.

In order to validate the ability of the parametric IIR to recover the dynamic forces, we generate a set of synthetic displace-
ment measures at node P. To this end, we consider three test forces with low, medium and high frequency spectrum, respec-
tively. These forces were generated by fitting a cubic spline on randomly drawn points. Therefore, none of this forces was
explicitly contained in the training set used for computing the parametric IIR. The three test forces are shown in the leftmost
column in Fig. 6. Notice that a shorter time scale has been chosen in these figures in order to distinguish high-frequency
oscillations. The frequency spectrum of each test force is shown in the center column in Fig. 6. Then, structure displacements
under the action of each test force can be computed using the parametric DIR. These are shown in the rightmost column in
Fig. 6. It is worth to remark that these displacements are parametric, i.e. valid for all E 2 IE. However, in this numerical exper-
iment we choose E ¼ 100 Pa, which only required a simple particularization of the parametric DIR. For clarity in the graphic
representation, only displacements at measure node P are depicted.

Now, from the only knowledge of displacements measured at node P, we want to recover the dynamic forces (leftmost
column in Fig. 6). To this end, we use the IIR previously computed, i.e. we apply Eq. (11) at node j � P:

prec;iðtÞ ¼
Z t

0
uP;iðt � sÞgPðsÞds; i ¼ 1;2;or3;

Fig. 6. Test forces and synthetic displacements at measure node P for validation. Left column: three test forces with low, medium and high frequency
content. Center column: frequency spectra of the test forces. Right column: displacements at point P under the action of the test forces.

Fig. 7. Comparison of the recovered dynamic forces against the reference shows good agreement.



where prec;iðtÞ are the recovered test forces, uP;iðtÞ are displacements measured at node P and gPðtÞ is the inverse impulse
response at node P. Observe that this equation only requires knowledge on the past signal, and therefore it respects causality.
Furthermore, the computation to be made is so simple that real-time performance can be achieved effortlessly. Fig. 7 com-
pares the three test forces that were recovered by the algorithm against the reference, showing a good matching. Relative
errors, computed as in Eq. (32), were e1 ¼ 3:5 � 10�6; e2 ¼ 6:3 � 10�7; e3 ¼ 8:1 � 10�7.

ei ¼
kprec;iðtÞ � prefðtÞk

kprefðtÞk
: ð32Þ

5. Conclusions

In this paper, a methodology for real-timemonitoring of both displacements and forces of linear time-invariant structures
has been presented. Parametric solutions have been proven very useful in this context, as they have made possible: i) an
enhanced version of the harmonic analysis; and ii) a comprehensive account for the system’s variability via the solution’s para-
metric nature. The PGDmethodwas used to compute the parametric solutionswith an efficient separated-variables represen-
tation, showing good computational performances in terms of both memory and execution time. Finally, we have proposed a
strategy to compute the parametric solution of the inverse problem from the parametric solution of the direct problem. This
approach, which is specifically designed for a parametric framework,makes use of synthetic samples generated from the solu-
tion of the direct problem.Most importantly,we have shown that the parametric domain does not need to be sampled to create
the set of synthetic samples, which would in practice be unfeasible when several parameters are considered. Hence, only the
frequency domain needs to be sampled, making the computation of the parametric inverse solution very efficient.

Appendix A. Derivation of the update for PGD factors

In this section we give a detailed derivation of the equations for updating the PGD factors, as a part of the alternating
directions algorithm presented in Section 3.2.2.

A.1. Updating the space factor �X

Both �W and �E are assumed known from previous iterations. The test function reduces to dgH
j ¼ �XH

j
�W�E. Then, the left-hand

side of Eq. (25) becomes:

Aðdgj; dg
H
j Þ ¼

Xn
i;k¼1

aik
X
�XH
j XijXkj

�Xj � aj
X
�XH
j
�Xj;

Rðdgj; dg
H
j Þ ¼ bX

�XH
j
�Xj; ð33Þ

where we have introduced the coefficients aik
X and bX defined below in Eq. (36). Coefficient aj

X results from the contraction of
the summations in Eq. (33). Likewise, the right-hand side of Eq. (25) becomes:

LðdgH
j Þ ¼

Xn
i¼1

ciX �X
H
j Xij � cjX �X

H
j ;Aðg�n�1

j ; dgH
j Þ ¼

Xn
i;k¼1

X�n�1

l¼1

aikl
X
�XH
j XijXkj

�Xlj � gj
X
�XH
j ; ð34Þ

where �Xlj is the j-th component �Xl, which is the l-th mode, 1 6 l 6 �n� 1, of g�n�1ðt; EÞ, already known at this point of the com-

putation; see Eq. (24). Coefficients ciX and aikl
X are defined in Eq. (36). Coefficients cjX and gj

X result from the contraction of the
summations in Eq. (34).

Considering Eq. (33) and Eq. (34) altogether, we arrive to:

aj
X
�Xj þ kbX

�Xj ¼ cjX � gj
X : ð35Þ

The following coefficient definitions have been used in the above equations:

aik
X ¼

Z
IE

�EEiEk
�E dE

Z
It

�W � Lik � �Wdt;bX ¼
Z
IE

�E�E dE
Z
It

Sð �WÞSð �WÞdt; ciX ¼
Z
IE

�EEi dE
Z
It

�W � qi dt;

aikl
X ¼

Z
IE

�EEiEk
�El dE

Z
It

�W � Lik � �Wl dt: ð36Þ

A.2. Updating the time factor �W

Both �X and �E are assumed known from previous iterations. The test function reduces to dgH
j ¼ �Xj

�WH�E. Then, the left-hand
side of Eq. (25) becomes:



Aðdgj; dg
H
j Þ ¼

Xn
i;k¼1

aik
T

Z
It

�WH � Lik � �Wdt;

Rðdgj; dg
H
j Þ ¼ bT

Z
It

Sð �WHÞSð �WÞdt; ð37Þ

where we have introduced the coefficients aik
T and bT defined below in Eq. (39). Likewise, the right-hand side of Eq. (25)

becomes:

LðdgH
j Þ ¼

Xn
i¼1

ciT
Z
It

�WHqidt;

Aðg�n�1
j ; dgH

j Þ ¼
Xn
i;k¼1

X�n�1

l¼1

aikl
T

Z
It

�WH � Lik � �Wldt; ð38Þ

where �Wl is the l-th time-domain factor, 1 6 l 6 �n� 1, of g�n�1ðt; EÞ, already known at this point of the computation; see Eq.
(24). Coefficients ciT and aikl

T are defined in Eq. (39).
The following coefficient definitions have been used in the above equations:

aik
T ¼

XN
j¼1

�XjXijXkj
�Xj

Z
IE

�EEiEk
�E dE;bT ¼

XN
j¼1

�Xj
�Xj

Z
IE

�E�E dE; ciX ¼
XN
j¼1

�XjXij

Z
IE

�EEi dE;aikl
X ¼

XN
j¼1

�XjXijXkj
�Xlj

Z
IE

�EEiEk
�El dE: ð39Þ

Finally, after discretization, the following definitions have been used in Eq. (29) (recall Eq. (23)):

LT ¼
Xn
i;k¼1

aik
T Lik �

Xn
i;k¼1

aik
T

Xntrain
‘¼1

!T
i‘!k‘cT ¼

Xn
i¼1

ciTqi �
Xn
i¼1

ciT
Xntrain
‘¼1

!T
i‘p‘gT ¼

Xn
i;k¼1

X�n�1

l¼1

aikl
T Lik

�Wl �
Xn
i;k¼1

X�n�1

l¼1

aikl
T

Xntrain
‘¼1

!T
i‘!k‘: �Wl; ð40Þ

where we have denoted by !i‘ (resp. !k‘) the discrete convolution operator associated to Yi‘ðtÞ (resp. Yk‘ðtÞ).

A.3. Updating the parameter factor �E

Both �X and �W are assumed known from previous iterations. The test function reduces to dgH
j ¼ �Xj

�W�EH. Then, the left-
hand side of Eq. (25) becomes:

Aðdgj; dg
H
j Þ ¼

Xn
i;k¼1

aik
E

Z
IE

�EHE iEk
�EdE;

Rðdgj; dg
H
j Þ ¼ bE

Z
IE

�EH�EdE; ð41Þ

where we have introduced the coefficients aik
E and bE defined below in Eq. (45). Likewise, the right-hand side of Eq. (25)

becomes:

LðdgH
j Þ ¼

Xn
i¼1

ciE
Z
IE

�EHEidE;

Aðg�n�1
j ; dgH

j Þ ¼
Xn
i;k¼1

X�n�1

l¼1

aikl
E

Z
IE

�EHEiEk
�EldE; ð42Þ

where �E l is the l-th parameter factor, 1 6 l 6 �n� 1, of g�n�1ðt; EÞ, already known at this point of the computation; see Eq. (24).
Coefficients ciE and aikl

E are defined in Eq. (45).
Note that, very much like in Section A.1, the computation of �E is algebraic, i.e. for arbitrary Em 2 IE, the solution �Em � �EðEmÞ

is uncoupled with respect to all �Ek for k–m. Therefore, let us write both Eq. (41) and Eq. (42) into their strong form:

Xn
i;k¼1

aik
E EiEk

�E þ kbE
�E ¼

Xn
i¼1

ciEEi �
Xn
i;k¼1

X�n�1

l¼1

aikl
E EiEk

�El; ð43Þ

which reduces to:

aE
�E þ kbE

�E ¼ cE � gE; ð44Þ
upon contraction of the summations, defining coefficients aE; bE; cE and gE.

The following coefficient definitions have been used in the above equations:



aik
E ¼

XN
j¼1

�XjXijXkj
�Xj

Z
It

�W � Lik � �Wdt;bE ¼
XN
j¼1

�Xj
�Xj

Z
It

Sð �WÞSð �WÞdt; ciE ¼
XN
j¼1

�XjXij

Z
It

�W � qi dt;

aikl
E ¼

XN
j¼1

�XjXijXkj
�Xlj

Z
It

�W � Lik � �Wl dt: ð45Þ
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