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ABSTRACT 27 

 28 

Small RNAs (sRNAs) are a taxonomically-restricted but transcriptomically-abundant class of post-29 

transcriptional regulators. While potentially of importance, we know the function of few. This is in no 30 

small part because we lack global-scale methodology enabling target identification, this being especially 31 

acute in species without known RNA meeting point proteins (e.g. Hfq). We apply a combination of 32 

psoralen RNA cross-linking and Illumina-sequencing to identify RNA-RNA interacting pairs in vivo in 33 

Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are 34 

rare (compared with sRNA/mRNA), we identify a robust example involving the unusually conserved 35 

sRNA (RoxS/RsaE) and an unstudied sRNA that we term Regulator of small RNA A (RosA). This 36 

interaction is found in independent samples across multiple conditions. Given the possibility of a novel 37 

associated regulatory mechanism, and the rarity of well-characterised bacterial sRNA-sRNA 38 

interactions, we mechanistically dissect RosA and its interactants. RosA we show to be a sponge RNA, 39 

the first to be described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS 40 

and FsrA. Unexpectedly, it acts differently on each. As expected of a sponge RNA, FsrA is sequestered 41 

by RosA. The RosA/RoxS interaction is more complex affecting not only the level of RoxS but also its 42 

processing and efficacy. Importantly, RosA provides the condition-dependent intermediary between 43 

CcpA, the key regulator of carbon metabolism, and RoxS. This not only provides evidence for a novel, 44 

and functionally important, regulatory mechanism, but in addition, provides the missing link between 45 

transcriptional and post-transcriptional regulation of central metabolism.  46 

  47 
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INTRODUCTION 48 

To adapt to changing environments and survive exposure to harsh conditions, organisms have evolved 49 

complicated metabolic and genetic regulatory networks to ensure that a homeostatic balance is 50 

maintained 1,2. At the RNA synthesis level, gene expression can be modulated through combinations of 51 

transcription factors controlling genes required for growth and survival under specific conditions 3-5. At 52 

the post-transcriptional level, small regulatory RNAs (sRNAs) act to temper gene expression by short 53 

imperfect base pairing with their mRNA targets, altering the level of protein production by increasing or 54 

decreasing access to the ribosome-binding site, or by facilitating or blocking the access to the mRNA 55 

by ribonucleases (RNases) 6,7. Most regulatory RNAs are independently expressed under the control of 56 

specific transcription factors. However, more recently, it has been shown that sRNAs can also be 57 

produced by processing RNAs that have other functions in the cell, such as tRNAs 8 and mRNAs 9.  58 

 59 

Regulation by RNA is an important mechanism for fine-tuning gene expression in the Gram-positive 60 

model bacterium Bacillus subtilis, recently reviewed in 10. Over 150 potential sRNAs have been identified 61 

in B. subtilis and shown to be expressed in a condition-dependent fashion 11-13. To date the roles of very 62 

few of these putative sRNAs have been determined. However, where targets have been identified, they 63 

have been shown to play key roles in stress adaptation. B. subtilis notably expresses three sRNAs with 64 

C-rich regions (CRRs) with similar predicted secondary structure; RoxS/S415 (Related to oxidative 65 

stress) 14, FsrA/S512 (Fur regulated small RNA) 15 and CsfG/S547 (Controlled by sigma-F and sigma-66 

G) 16, (S numbers relate to transcriptionally active segments identified by Nicolas et al. 12). The RoxS 67 

sRNA is one of the best characterised sRNAs in Gram-positive bacteria 14,17,18 and is conserved among 68 

Bacilli and Staphylococci, where it is named RsaE 19,20. RoxS has been shown to be upregulated in 69 

response to nitric oxide (NO) in B. subtilis and S. aureus, by the two component system ResDE, and its 70 

homolog SsrAB, respectively 14. RoxS expression is also activated when malate is supplied as a carbon 71 

source. This control is mediated by the transcription factor Rex, that is known to sense the NAD/NADH 72 

ratio of the cell. Indeed, this ratio is perturbed by the conversion of malate to pyruvate by the three 73 

malate dehydrogenases of B. subtilis that reduce NAD+ to NADH, and by its cycling through the TCA 74 
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pathway. It has been proposed that one role of RoxS is to re-equilibrate the NAD/NADH ratio of the cell 75 

by inhibiting the expression of enzymes leading to the production of NADH. FsrA is regulated by the 76 

transcription factor Fur and acts as part of the iron-sparing response 15. Fur down-regulates mRNAs 77 

whose protein products contain iron as part of their structures, but are not essential for growth, therefore 78 

ensuring iron availability for essential iron-containing proteins 15,21. Interestingly, both RoxS and FsrA 79 

down-regulate several genes encoding enzymes of the TCA cycle that produce NADH. CsfG is highly 80 

expressed during sporulation, anaerobic growth and after glucose exhaustion 12. During sporulation, 81 

expression of this sRNA is controlled by the sigma factors F and G which are restricted to the forespore 82 

16. However, to date no mRNA target or physiological role for CsfG has been identified. Durand et al. 83 

have hypothesised that its similar sequence motifs and structure to RoxS and FsrA suggests these three 84 

sRNAs may have overlapping targets and play similar roles under different growth conditions 14. 85 

 86 

The lack of well resolved pathways through which sRNAs act in no small parts reflects the difficulty of 87 

global scale target identification, this being more acute in some bacteria than others. In many 88 

enterobacteria, such as Escherichia coli and Salmonella typhimurium, the RNA chaperone Hfq plays a 89 

key role as a mediator of sRNA-mRNA interactions and has greatly enabled the identification of mRNA 90 

targets through pull-down studies 22,23. Although Hfq is conserved in Gram-positive bacteria, it does not 91 

appear to play a global role in RNA-mediated regulation of gene expression 24,25. Hfq-dependent 92 

regulation by only one sRNA in Listeria and a handful in Clostridium are the only known exceptions. It 93 

is therefore generally accepted that sRNA regulation in the Firmicutes either depends on different RNA 94 

chaperones or can occur in the absence of any protein factors. A number of groups have used in vivo 95 

RNA cross-linking with the psoralen AMT, followed by ligation to form chimeras and RNAseq to identify 96 

RNA-RNA interactions in eukaryotic cells 26-28. Here then we employed LIGR-seq 26 to identify sRNA 97 

targets in B. subtilis. In addition to identifying many known members of the FsrA and RoxS regulons and 98 

several new targets, we also identified a new regulatory RNA, S345, that interacts with both FsrA and 99 

RoxS. These interactions are found in independent samples and across multiple conditions. Given the 100 

possibility of a novel associated regulatory mechanism, and the rarity of well-characterised bacterial 101 
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sRNA-sRNA interactions, we mechanistically dissect S345 and its interactants. We show that S345 not 102 

only functions as an RNA sponge for RoxS, but also affects its processing and degradation. We rename 103 

this sRNA RosA (for Regulator of sRNA A). We show that the transcription of RosA is under the control 104 

of the carbon catabolite control protein A (CcpA), linking the action of RoxS to the carbon source 105 

availability in B. subtilis.  106 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/814905doi: bioRxiv preprint first posted online Oct. 28, 2019; 

http://dx.doi.org/10.1101/814905
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

MATERIALS AND METHODS 107 

 108 

Media and growth conditions 109 

Selection for transformations was performed on Lysogeny Broth (LB) at 37°C supplemented with 110 

required antibiotics. For E. coli these were ampicillin (100 µg ml-1) or chloramphenicol (10 µg ml-1) and 111 

for B. subtilis either phleomycin (4 µg ml-1), kanamycin (20 µg ml-1), tetracycline (5 µg ml-1), 112 

chloramphenicol (5 µg ml-1), erythromycin (2 µg ml-1), spectinomycin (100 µg ml-1) or combinations of 113 

the above. Growth experiments were performed in LB, M9 medium supplemented with glucose at a 114 

final concentration of 0.3% 12 or MD medium 29 supplemented with arabinose or malate at a final 115 

concentration of 1%. 116 

 117 

Bacterial strain construction 118 

All E. coli and B. subtilis strains and plasmids used in this study are listed in Supplementary Table I. 119 

Primer sequences can be found in Supplementary Table II. E. coli DH5α and TG1 were used for all 120 

cloning procedures. B. subtilis strains were derived from the B. subtilis 168 trp+. The isogenic deletion 121 

mutants were constructed according to the method described by Tanaka et al 30 without pop-out of the 122 

deletion cassette. Transfer of genetic mutations between strains was achieved by transformation of 123 

genomic DNA extracted from the relevant strain. Reintroduction of sRNAs under the control of their 124 

native promoters was achieved by Gibson Assembly into pRMC that integrates into the amyE locus 31 125 

of a PCR amplicon. Primer annealing sites were chosen to include the native promoter mapped in 126 

Nicolas et al 12. The sequence of cloned sRNAs was subsequently confirmed by sequencing and 127 

transformed into B. subtilis (plasmid pRMC+Pnative-sRNA). Integration into the amyE locus was 128 

confirmed by an iodine halo assay by replica plating transformation plates onto starch plates. The 129 

RosA promoter fusion was constructed at the native genomic locus by integration of the pBSBII 130 

plasmid 32. Combinatorial strains were constructed in the genetic background of the same promoter 131 

fusion strain by transformation of genomic DNA of the respective strain and selection on the 132 

appropriate antibiotics.   133 
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 134 

In vivo RNA interactome  135 

AMT in vivo cross linking 136 

Bacteria were grown to the required O.D before 10 O.D 600 nm units were harvested by centrifugation 137 

(4000 g, 5 minutes, 4°C). Bacteria were resuspended in 2 ml PBS either containing no AMT (to 138 

identify background and levels of spurious interactions) or 0.7 mM AMT. Bacteria were incubated for 139 

10 minutes at 37°C for 10 minutes before being transferred to a 6 well plate. The bacteria were 140 

exposed to UV 365 nm at 0.120 Jcm-2 for 10 minutes before being added to 1 ml of ice cold killing 141 

buffer (20 mM Tris-HCl [pH 7.5], 5 mM MgCl2, 20 mM Na-azide). The bacteria were harvested by 142 

centrifugation at (4000 g, 5 minutes, 4°C). the supernatant was discarded and the pellet flash frozen in 143 

liquid nitrogen. We determined the in vivo RNA interactome of B. subtilis grown in M9 minimal media 144 

supplemented with 0.3% glucose at three points in the growth curve (exponential phase O.D.600nm 0.5, 145 

stationary phase O.D.600nm 1.4 and just after lysis had started to occur, and in LB at mid-exponential 146 

phase (O.D.600nm of 1.0). A ∆fur mutant 33 was prepared in LB at mid-exponential phase to increase 147 

expression of the Fur regulated sRNA FsrA. Samples were prepared in duplicate.  148 

 149 

RNA extraction and formation of chimeras between interacting RNAs 150 

The RNA was extracted by resuspending the cell pellet in 800 µl LETS buffer (10 mM Tris-HCl [pH 8.0], 151 

50 mM LiCl, 10 mM EDTA, 1% sodium dodecyl sulfate [SDS]) and bead beating in a FastPrep using 0.1 152 

µm glass beads for three rounds of 40 seconds. The tubes were transferred to ice in between cycles. 153 

The tubes were briefly spun to remove the bubbles created during bead beating. Two rounds of phenol 154 

chloroform isoamyl alcohol extraction and one round of choloroform isoamyl alcohol extraction were 155 

carried out. Before the addition of 10 % v/v NaAcetate and 1 ml isopropanyl and precipitation of RNA 156 

overnight at -20°C. The RNA was pelleted by centrifugation at maximum speed at 4°C and the pellet 157 

was washed with 70% Ethanol before being air dried and resuspended in water. The RNA was quantified 158 

using the Qubit kit (Fisher Life Science). 10 µg of RNA was treated with Turbo DNase (Fisher Scientific) 159 

to remove contaminating DNA. Ribosomal RNA was removed using Ribozero (Illumina) according to 160 
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the manufacturer’s instructions. To form the chimeric RNAs between RNAs crosslinked with AMT the 161 

protocol described by Sharma et al. was followed as described in the supplementary data 26. The only 162 

modification was the use of CircDNAligase (Epicentre) instead of CircRNAligase as this has been 163 

discontinued. 164 

 165 

RNAseq 166 

Following uncrosslinking at UV 254 nm, RNA was purified and resuspended in 10 µl H2O and processed 167 

through the TruSeq stranded total RNA library kit (150 bp) (Illumina) according to the manufacturer’s 168 

instructions. The resulting libraries were sequenced on the MiSeq (Illumina).  169 

 170 

Analysis 171 

STAR aligner was used to map reads (Version STAR_2.6.0c_08-11) (34). This mapping tool is designed 172 

to analyse splicing of introns and exons, which is similar to what is created through the formation of 173 

chimeric reads where two different RNA fragments have been joined together. By identification of reads 174 

that map to different features (protein coding sequences, sRNAs, UTRs, transcripts for ncRNAs such 175 

as rRNA and tRNA, or transcribed intergenic regions) it is possible to identify RNA interactions. STAR 176 

aligner was set to single end read mode to map read 1 and read 2 separately, the chimeric detection 177 

mode activated, as this has been reported to be more sensitive to chimeric junctions. The allowed 178 

mismatches in mapping was set to default for STARaligner. The output from STAR was merged in to 179 

one Sam file, before being annotated using featureCounts within the package subread-1.6.3 in R, with 180 

all further statistical analysis also carried out in R (35). In our initial analysis we found many reads 181 

mapped to the genome, but to unannotated features. To overcome this problem, we created new 182 

features for the unannotated regions of the genome and these are termed UA-start – stop in the data 183 

files.  184 

 185 

Chimeric reads will map to two different genomic features, whereas non-chimeric reads should only map 186 

to one feature. The exception is of those reads with repetitive mapping or those that map to two 187 
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neighbouring features such as genes in an operon. An interaction count table was generated of reads 188 

that mapped to more than one feature and thus are considered as interacting pairs. The interaction 189 

count matrix then allowed statistical analysis of each interacting pair using a hypergeometric test.  This 190 

compares the number of interaction read counts for each specific interaction with the number of other 191 

interaction read counts formed by each member of that pair, but with other RNAs. All interaction pairs 192 

with a P-value below 0.05 were extracted as significant interactions. To increase confidence in the 193 

identified interactions a second analysis was carried out where the pairs of sequenced samples were 194 

analysed together and untranslated regions were combined with coding sequences. The 195 

hypergeometric test was repeated and a P-adjusted value was calculated using Benjamini and 196 

Hochberg to control for the false discovery rate which was set at 0.05 34.  197 

 198 

To add further confidence to which interacting pairs form the most likely interactions, the interacting 199 

pairs were further assessed by in silico prediction with IntaRNA2.0, which predicts the stability and 200 

binding position between two interacting RNA pairs (36,37). The gene and any untranslated region that 201 

has been identified associated with the gene of interest (12) were included in the prediction to take into 202 

account the transcriptional start and stop sites.  If no UTR had been identified for an mRNA the 50 bp 203 

up and downstream of the start and stop site were employed. 204 

 205 

Proteomics analysis 206 

Strains were grown to O.D.600 nm 1.0 in LB. 20 O.D. units were harvested and washed 3 X with PBS to 207 

remove media components. Cells were resuspended in 200 µl urea buffer (8 M Urea, 50 mM Tris and 208 

75 mM NaCl). 200 µl of urea buffer washed 0.1 µM beads were added to the cells before being disrupted 209 

using three rounds of bead beating for 40 seconds using a FastPrep. Cells were placed on ice between 210 

the three rounds of bead beating. The disrupted cells were then sonicated in a water bath for 15 minutes. 211 

Cell extracts were centrifuged at 15,000 x g, 5 min and supernatants used for protein quantification 212 

(Qubit protein assay kit). Protein reduction and alkylation was conducted by mixing 150 µg of total 213 

protein with 10 mM TCEP and 40 mM CAA, at 600 rpm, for 20 min at room temperature. After, proteins 214 
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were predigested with 1.5 µg of rLysC (Promega) for 3 h at room temperature and samples diluted with 215 

50 mM ammonium bicarbonate, 2 M urea final concentration. Protein digestion was performed with 1.5 216 

µg of Trypsin (Promega) overnight at room temperature. The reaction was stopped by adding 1% TFA 217 

and 10 µg of peptides were desalted using StageTip 35. 218 

 219 

Reversed phase chromatography was used to separate 1 µg of tryptic peptides prior to mass 220 

spectrometric analysis. The cell proteomes were analysed with two columns, an Acclaim PepMap µ-221 

precolumn cartridge 300 µm i.d. x 5 mm, 5 μm, 100 Å and an Acclaim PepMap RSLC 75 µm i.d. x 50 222 

cm, 2 µm, 100 Å (Thermo Scientific). The columns were installed on an Ultimate 3000 RSLCnano 223 

system (Dionex) at 40ºC. Mobile phase buffer A was composed of 0.1% formic acid and mobile phase 224 

B was composed of acetonitrile containing 0.1% formic acid. Samples were loaded onto the µ-precolumn 225 

equilibrated in 2% aqueous acetonitrile containing 0.1% trifluoroacetic acid for 8 min at 10 µL min-1 after 226 

which peptides were eluted onto the analytical column at 250 nL min-1 by increasing the mobile phase 227 

B concentration from 8% B to 25% over 90 min, then to 35% B over 12 min, followed by a 3 min wash 228 

at 90% B and a 15 min re-equilibration at 4% B. 229 

 230 

Eluting peptides were converted to gas-phase ions by means of electrospray ionization and analysed 231 

on a Thermo Orbitrap Fusion (Thermo Scientific). Survey scans of peptide precursors from 375 to 1500 232 

m/z were performed at 120K resolution (at 200 m/z) with a 2x105 ion count target. The maximum 233 

injection time was set to 150 ms. Tandem MS was performed by isolation at 1.2 Th using the quadrupole, 234 

HCD fragmentation with normalized collision energy of 33, and rapid scan MS analysis in the ion trap. 235 

The MS2 ion count target was set to 3x103 and maximum injection time was 200 ms. Precursors with 236 

charge state 2–6 were selected and sampled for MS2. The dynamic exclusion duration was set to 60 s 237 

with a 10 ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor 238 

selection was turned on and instrument was run in top speed mode. 239 

 240 
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Thermo-Scientific raw files were analysed using MaxQuant software v1.6.0.16 35 against the UniProtKB 241 

B. subtilis database (UP000001570, 4,260 entries). Peptide sequences were assigned to MS/MS 242 

spectra using the following parameters: cysteine carbamidomethylation as a fixed modification and 243 

protein N-terminal acetylation and methionine oxidations as variable modifications. The FDR was set to 244 

0.01 for both proteins and peptides with a minimum length of 7 amino acids and was determined by 245 

searching a reversed database. Enzyme specificity was trypsin with a maximum of two missed 246 

cleavages. Peptide identification was performed with an initial precursor mass deviation of 7 ppm and a 247 

fragment mass deviation of 20 ppm. The MaxQuant feature ‘match between runs’ was enabled. Label-248 

free protein quantification (LFQ) was done with a minimum ratio count of 2. Data processing was 249 

performed using the Perseus module of MaxQuant v1.6.0.16 36. Proteins identified by the reverse, 250 

contaminant and only by site hits were discarded. Only protein groups identified with at least two 251 

assigned peptides were accepted and LFQ intensities were log2 transformed. Significantly regulated 252 

proteins were identified in two rounds of analysis. First, a Student´s T-test (FDR 0.05) and a minimum 253 

difference of S0=0.1 was applied on all biological replicates. Second, a finest statistical analysis was 254 

applied using the same parameters as before but removing the outliers identified by principal component 255 

analysis and Pearson correlation test. The significantly regulated proteins were selected from both 256 

analyses. 257 

 258 

Plate reader experiments 259 

Experiments to monitor promoter activity were carried out in a 96-well format in a BioTek Synergy 260 

Plate reader and analysed as described previously 31.  261 

 262 

RNA isolation and Northern Blotting 263 

RNA was isolated from mid-log phase B. subtilis cells growing in the indicated medium by the RNAsnap 264 

method described in Stead et al., 2012. Northern blots were performed as described previously (Durand 265 

et al., 2012). The S345/RosA riboprobe was transcribed in vitro using T7 RNA polymerase (Promega) 266 

and labelled with [a-32P]-UTP using a PCR fragment amplified with oligo pair CC2440/CC2441 as 267 
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template. The oligos CC089, CC964 and CC875 were 5’ end-labelled with T4 polynucleotide kinase 268 

(PNK) and [g-32P]-ATP and used to probe sucC, ppnkB and RoxS RNA respectively. 269 

 270 

Quantitation of sRNAs 271 

S345/RosA and RoxS RNAs where transcribed in vitro from PCR fragments amplified with the oligo 272 

pairs CC2406/CC2407 and CC1832/CC1833 respectively. Known quantities (in fmol) of in vitro 273 

transcribed S345/RosA and RoxS RNAs, and 5 𝜇g total RNA isolated from wild-type cells were loaded 274 

on a denaturing 6% acrylamide gel. The oligos CC2347 and CC875 were 5’ end-labelled with T4 275 

polynucleotide kinase (PNK) and [g-32P]-ATP and used to probe on Northern blot S345/RosA and RoxS 276 

respectively. 277 

 278 

Electrophoretic mobility shift assays (EMSA) 279 

For EMSA assays, S345/RosA, RoxS and FsrA sRNAs where transcribed with T7 RNA polymerase in 280 

vitro from PCR fragments amplified with the oligo pairs CC2406/CC2407, CC1832/CC1833 and 281 

CC2492/CC2493 respectively. A 15 𝜇l reaction was prepared by mixing 2 pmol of S345/RosA RNA with 282 

an increased concentration of RoxS or FsrA RNA (1, 2, 3 and 4 pmol) in 1X the RNA binding Buffer (10 283 

mM tris pH8; 50 mM NaCl; 50 mM KCl, 10 mM MgCl2). The Mix was heated for 3 min and cool down at 284 

room temperature for 10 min. After cooling, 10 𝜇l of glycerol (Stock solution 80%) was added and the 285 

RNA were loaded on a 6% non-denaturing polyacrylamide gel (Acry:bisacry – 37.5:1). RNA was 286 

transferred on to a Hybond N+ membrane and hybridized with the S345/RosA radiolabelled probe 287 

(CC2347). 288 

 289 

Strain Competition experiment 290 

Strains marked with appropriate antibiotics were combined at a 1:1 ratio, inoculated at a starting O.D.600 291 

nm and grown for 24 hours in LB. To confirm starting ratios at a 1:1 ratio colony counts were performed 292 

on the initial inoculum. At 24 hours cultures were serially diluted and plated on LB plates containing the 293 

relevant antibiotics to enable counting of each strain. Ratios of strains were calculated and Welch’s T 294 
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test was used to determine significance. An average of three technical replicates each containing three 295 

biological replicates was carried for each combination of strains. 296 

 297 

RESULTS 298 

 299 

in vivo RNA crosslinking identifies known and unknown sRNA-RNA interactions  300 

To identify new sRNA-mRNA interactions in B. subtilis we applied the LIGR-seq protocol 26 to B. subtilis 301 

cells growing in M9 minimal media supplemented with 0.3 % glucose (exponential and transition phase) 302 

or in LB (WT and ∆fur mutant at exponential phase). The ∆fur mutant was included to increase the 303 

expression levels of the sRNA FsrA, the transcription of which is repressed by Fur. Cells were irradiated 304 

at 365 nm with the chemical crosslinker AMT (4'-aminomethyltrioxsalen). Biological replicates of each 305 

sample were prepared. RNAs were extracted, ligated, and non-crosslinked RNA was digested with 306 

RNase R. Crosslinks were reversed with 254 nm irradiation and RNA samples were subjected to high-307 

throughput sequencing to detect chimeras formed by ligation.  308 

 309 

We designed and analysed the resulting RNA-seq data for chimeras using a customized pipeline. This 310 

included using STAR aligner which is designed for mapping RNAseq data containing splicing of introns 311 

and exons in data sets produced from eukaryotes 37. We discovered that carrying out the alignment 312 

using single-end read mode and activating the chimeric detection increased the sensitivity of the 313 

chimeric read detection. This also enabled us to map chimeric reads where the ligation of the two 314 

fragments occurred close to the read ends.  315 

 316 

In each of the eight individual samples analysed, many potential RNA-RNA interactions were identified 317 

through using the customized pipeline (see Methods). However, to validate the data, we focused on 318 

chimeras identified for the well-characterized sRNAs of B. subtilis, FsrA and RoxS (Supplementary 319 

Table 3 A (FsrA) and B (RoxS)). Many known interactions of FsrA such as citB, gltAB, lutA and leuC 320 

15,21 and for RoxS, citZ 14 were identified in our screen. However, many other interactions were also 321 
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present in the data set. To improve our confidence in identifying new targets of FsrA and RoxS we 322 

combined the data from the sample pairs and reanalysed the data. Statistically significant interactions 323 

and the P-adjusted value for each sample pair are shown in Supplementary Table S4 A (FsrA) and B 324 

(RoxS). The IntaRNA prediction of each interaction is also shown. Several potential new targets that 325 

have a possible link with iron metabolism were identified for FsrA. For example, we identified many 326 

chimeras between FsrA and the yydF mRNA, encoding a secreted peptide that controls LiaRS activity 327 

38. The gene downstream of yydF in this operon, yydG, encodes a protein that contains an Fe-S cluster 328 

and is part of a protein complex required to process YydF into a functional peptide. RoxS regulates the 329 

expression of many RNAs encoding proteins involved in central metabolism, such as citrate synthase 330 

(CitZ) 14. Our data showed a statistically significant interaction between RoxS and the citZ mRNA and 331 

also for odhA which encodes 2-oxoglutarate dehydrogenase (E1 subunit).  332 

 333 

The above data confirm the validity of the LIGR-seq technique to identify new potential sRNA-mRNA 334 

interactions in bacteria. We suggest therefore that as a method AMT crosslinking may be considered 335 

as being complementary to studies focusing on individual RNAs such as MAPS 39 and those focusing 336 

on finding RNA interactions that occur on proteins such as RILseq 23 or CLASH 40, where different 337 

interacting RNAs have been found depending on the technique used. 338 

 339 

Identification of a novel robust sRNA-sRNA interaction 340 

Analysis of the RNA interactome also allowed us to map sRNA-sRNA interactions. Indeed, the most 341 

statistically significant interaction for both FsrA and RoxS was with the predicted sRNA S345 and S346 342 

(annotated as 3’ UTR of S345) (Figure 1). The interaction between S345 and both RoxS and FsrA was 343 

the most represented chimera pair in the interactions that we detected between RoxS and FsrA. The 344 

interaction is not only of strong statistical significance but was found in multiple growth conditions 345 

(Supplementary tables 3,4).  As robustly described sRNA-sRNA interactions are unusual (for other 346 

examples see 41,42) we sought to characterize this further. 347 

 348 
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The sequence of S345 has three G rich regions (GRRs) (Figure 1 and 2A) with potential 349 

complementarity to the C-rich regions (CRRs) of FsrA and RoxS that have been shown to be involved 350 

in the interactions with their mRNA targets. We used RNAfold to predict how FsrA and RoxS might 351 

interact with S345 (Figure 2B and supplementary Figure 1) 43. The interaction with FsrA is predicted to 352 

incorporate GRR2 of S345 and CRR2 of FsrA (Supplementary Figure 1). Intriguingly, the interaction 353 

with RoxS is predicted to incorporate both GRR1 and GRR2 of S345, and CRR1, CRR2 and CRR3 of 354 

RoxS (Figure 2B). Both predictions include two long stretches of interacting nucleotides, suggesting 355 

these two RNA pairs can form stable duplexes.  356 

 357 

RoxS interacts directly with S345 in vitro. 358 

To confirm the potential interaction between S345 and RoxS or FsrA, we performed an Electrophoretic 359 

Mobility Shift Assay (EMSA; Figure 3). S345 was mixed with increasing concentrations of RoxS or FsrA 360 

and loaded on a non-denaturing acrylamide gel. The results show that RoxS can bind very efficiently to 361 

S345, producing a sharp band of higher molecular weight and a full-shift of S345 even at the lowest 362 

molar ratio of RoxS to S345 tested (0.5). Complex formation between FsrA and S345 was less efficient 363 

and the complex was less well defined, but nonetheless visible. A full shift of S345 was not apparent 364 

even at a 2-fold excess of FsrA (Figure 3). When both RoxS and FsrA were incubated together with 365 

S345, the interaction was clearly in favour of RoxS, with only trace quantities of the FsrA-S345 complex 366 

visible. These results suggest that RoxS has a higher affinity for S345 than FsrA and are in agreement 367 

with the longer predicted duplex between these two sRNAs. 368 

 369 

S345 is a highly processed sRNA  370 

To begin to characterize S345, we first assayed its expression pattern and stability in the same 371 

conditions as those used in the crosslinking experiment (LB and in M9 minimal medium + glucose). 372 

Northern blot analysis of total RNA isolated at different times after the addition of rifampicin to block new 373 

transcription showed that the level of the S345 RNA is higher in LB than in M9 at mid-exponential phase 374 

(Figure 4). Moreover, three major forms of S345 were detected. The approximate sizes for species 1, 2 375 
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and 3 are 230 nts, 185 nts and 120 nts, respectively (Supplementary Figure 2A). The half-life of the 376 

largest species (1) was less than 1 minute, while the dominant species (2) had a slightly greater stability, 377 

with a half-life of 1.9 minutes in LB. The shortest species (3) had the longest half-life: 7.1 minutes in LB 378 

(Figure 4). Since the half-lives of the three forms of S345 are similar in M9 + glucose, the lower levels 379 

of S345 in this medium are most likely due to transcriptional regulation (see below).  380 

 381 

The 5’-end of S345 was suggested from the sequencing product of the LIGR-seq data and was 382 

confirmed by primer extension using an oligo close to the putative S345 transcriptional terminator 383 

(supplementary Figure 2B). We were able to predict a putative sigma-A promoter that fits perfectly with 384 

this mapped 5’ end (Figure 1). Moreover, the distance between the mapped 5’ end and the putative 385 

transcriptional terminator is 229 nts, which corresponds well with the size of the largest band detected 386 

by Northern blot and suggests that species 1 corresponds to the primary S345 transcript.  387 

 388 

The Northern blot in Figure 4 was performed with an oligonucleotide probe starting 30 nts from the 5’ 389 

end of S345. A second probe starting only 10 nts from the 5’ end gave a similar pattern (data not shown). 390 

We thus deduced that the three major forms of S345 have the same 5’ end and that species 2 and 3 391 

are processed from the primary transcript at 3’ proximal sites. In agreement with this hypothesis, when 392 

S345 was first identified by tiling array, an extended 3’ region was identified that was annotated as S346 393 

12. The size of our proposed primary transcript corresponds to the sum of the annotated segments S345 394 

+ S346. Our LIGR-seq data showed numerous truncations of S345 at its 3’ end and allowed us to 395 

determine an approximate position for the cleavage site generating species 2 (Figure 2B). The 396 

processing of the 3’ end of S345 was further confirmed as we were also able to map the 5’ end of a 3’ 397 

degradation product (*) stabilized in a ∆rnjA mutant strain by primer extension. This corresponds to an 398 

endonucleolytic cleavage event occurring at the end of the duplex between RoxS and S345 399 

(Supplementary Figure 2 and Figure 2B). The upstream cleavage product, protected from degradation 400 

due to its hybridisation with RoxS corresponds to the smallest (120 nts) S345 species (species 3). These 401 

observations suggest that S345 is quickly processed near its 3’ end to form species 2 and 3, in 402 
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agreement with the shorter half-life of the full length S345 RNA compared to its two derivatives (Figure 403 

4). 404 

 405 

S345 destabilises RoxS  406 

To determine whether S345 had an effect on RoxS levels or stability in vivo, we measured the rate of 407 

RoxS RNA degradation before and after the addition of rifampicin to WT and ∆S345 mutant strains. The 408 

experiment was done in LB, since S345 is expressed at higher levels in this medium. Samples were 409 

taken over a time course of 0 to 60 minutes and the RNA analysed by Northern blot. RoxS expression 410 

was significantly higher in the absence of S345 (Figure 5A). The half-life of RoxS in the presence of 411 

S345 was 13.2 minutes, whereas in the absence of S345 the half-life increased to 46.3 minutes. This 412 

result shows that expression of S345 leads to destabilization of the RoxS sRNA. In contrast, deletion of 413 

S345 has no impact on the stability of FsrA in LB media (Supplementary Figure 3). 414 

 415 

We also calculated the relative amount of S345 and RoxS present in the cells grown in LB. In 5 µg of 416 

total RNA, S345 and RoxS were present at approximately equimolar amounts (10 fmol each; 417 

supplementary Figure 4). This result shows that there is sufficient S345 in the cell to completely titrate 418 

all RoxS present in the cell under equilibrium conditions and suggests that it could act as an RNA sponge 419 

to counteract RoxS activity by titrating it away from its targets. 420 

 421 

Deletion of S345 leads to destabilisation of FsrA and RoxS targets 422 

RoxS has been previously shown to negatively impact the stability of the ppnKB and sucCD mRNAs 423 

encoding an NAD(H) kinase and succinate dehydrogenase, respectively 14. If S345 indeed modulates 424 

the availability of RoxS to interact with its targets, we would predict that the half-life of these transcripts 425 

would decrease in the ∆S345 strain due to the additional free RoxS in the cell (Figure 5A). In Northern 426 

blot experiments performed on cells growing in LB medium, the half-life of the ppnKB mRNA was indeed 427 

decreased 4.7-fold in ∆S345 cells compared to WT (Figure 5B), consistent with the increased amounts 428 

of RoxS in the ∆S345 strain. To confirm that the effect on the half-life of the ppnkB mRNA in this strain 429 
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was due to the increase in RoxS levels, we constructed a strain lacking both sRNAs (S345 and RoxS). 430 

As expected, the ppnKB mRNA became stable again in the ∆roxS ∆S345 double mutant with a half-life 431 

similar to a strain lacking RoxS alone (Figure 5B). This result confirms that the destabilization of the 432 

ppnKB mRNA in the ∆S345 strain is RoxS-dependent. We thus propose that S345 be renamed RosA, 433 

for regulator of sRNA A. 434 

 435 

Intriguingly, unlike ppnKB, the rate of degradation of the sucCD mRNA was not affected in ∆rosA cells, 436 

with its half-life remaining at around 19 minutes in both the WT and the ∆rosA strain in LB medium 437 

(Figure 5B). We previously showed that RoxS is processed by RNase Y to remove the first 20 nts of the 438 

transcript producing a shorter, functional version of the sRNA called RoxS (D) 14. RoxS (D) is far more 439 

efficient at competing with the ribosome for binding to the sucCD transcript than the full-length RoxS 440 

sRNA in vitro 14. Removal of the first 20 nts of RoxS removes a significant portion of a 5’ stem loop, 441 

freeing up nucleotides to base-pair with the sucCD Shine-Dalgarno (SD) region. We therefore asked 442 

whether RosA had an effect on RNase Y processing of RoxS. RoxS (D) can be readily detected in a 443 

strain lacking the 5’-3’ exoribonuclease RNase J1 (encoded by rnjA), since this RNase is involved in the 444 

rapid degradation of the processed species. We therefore performed Northern blots on cells treated with 445 

rifampicin to compare the relative amounts and half-lives of RoxS and RoxS (D) in ΔrnjA versus ΔrnjA 446 

∆rosA cells. Figure 6 shows that RoxS is efficiently processed to produce RoxS (D) in the ΔrnjA strain 447 

and is the most dominant form of RoxS in this strain. In contrast, in the double ΔrnjA ΔrosA mutant, full 448 

length RoxS was the dominant version of RoxS. Thus, RosA increases the efficiency of processing of 449 

RoxS to its truncated form. This is likely because base pairing with RosA is predicted to free up the 450 

RNase Y cleavage site in RoxS that is normally hidden within the duplex structure of the 5’ stem-loop 451 

(Figure 2A). 452 

 453 

To determine the global effect of RosA on RoxS and FsrA targets, and potentially identify other roles for 454 

this non-coding RNA, we performed a global proteomics analysis comparing the WT and ∆rosA deletion 455 

strains grown to mid-exponential phase in LB. The proteomes were analysed by label free quantitative 456 
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proteomics. We detected 1463 proteins in the LC MS/MS analysis and identified 19 proteins that showed 457 

statistically significant (P value <0.05) reduced levels in the ∆rosA strain compared to WT (Table 1). 458 

Interestingly, seven of these proteins have already been assigned to the FsrA and RoxS regulons 14,15,21: 459 

CitB and SdhA have been assigned to the FsrA regulon, and PpnKB, CitZ, EtfA, SucC and SucD are 460 

members of the RoxS regulon. Most of the other proteins showing reduced levels in the ∆rosA mutant 461 

are predicted by CopraRNA or IntaRNA 44,45 to be direct targets of FsrA and/or RoxS, and have been 462 

shown to bind similar metal ions and other cofactors to the proteins encoded by other RoxS/FsrA mRNA 463 

targets. This fits with the general agreement that members of the FsrA and RoxS regulons are involved 464 

in regulating genes involved in iron homeostasis and oxidoreduction 14,21. The reduced levels of the FsrA 465 

and RoxS targets in the ∆rosA strain supports the idea that RosA counteracts regulation by both RoxS 466 

and FsrA and suggests that its primary role is as a sponge for these two sRNAs. 467 

 468 

Production of the short form of RosA requires RoxS  469 

We showed above that RosA is important for the processing of RoxS to RoxS (D); we therefore 470 

wondered whether the converse was also true, i.e. whether RoxS had an effect on the processing of 471 

RosA. In Figure 6B we analysed the expression pattern and degradation rates of the three RosA species 472 

in the presence and absence of RoxS. In the presence of RoxS, all three forms of RosA were detected 473 

as seen above (Figure 4). However, in the absence of RoxS, the RosA species 3 was completely absent. 474 

We conclude that the interaction with RoxS plays a role in the processing of RosA to its smallest form. 475 

The size of species 3 (~120 nts) is consistent with an RNA that extends from the mapped 5’ of all three 476 

RosA species to the end of the duplex with RoxS around nt 116 (Figure 2B). The duplex would protect 477 

the 3’ end of species 3 from 3’ exoribonucleases, consistent with its relatively long half-life compared to 478 

species 1 and 2. No effect on RosA processing could be seen upon deletion of FsrA under these growth 479 

conditions (Supplementary Figure 2).  480 

 481 

RosA provides a fitness benefit for B. subtilis under conditions of oxidative respiration  482 
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We asked whether RosA had an impact on cell doubling time by comparing the growth rate of the ∆rosA 483 

strain to that of the WT. No major difference in growth rate was seen in either LB or in M9. To ask 484 

whether there was a more subtle fitness cost to the cells lacking RosA, we performed competition assays 485 

between WT and ∆rosA cells in LB medium. We mixed the WT strain marked with a spectinomycin 486 

antibiotic resistance cassette and the phleomycin resistant ∆rosA mutant at a 1:1 ratio, which was 487 

confirmed by colony counts carried out on the starting culture. We then counted the number of ∆rosA 488 

and WT bacteria after 24 hours. The ∆rosA strain was recovered at significantly lower levels than the 489 

WT suggesting that it is at a competitive disadvantage (Figure 7). In a control experiment, we also 490 

competed a phleomycin resistant strain deleted for yqbR, a gene located on the Skin prophage region, 491 

that was shown to be transcriptionally inactive in LB by Nicolas et al 12. This strain retained a 1:1 ratio 492 

with the WT strain after 24 hours. We were also able to restore the fitness deficit of the ∆rosA strain with 493 

ectopic expression of RosA at the amyE locus. We propose that the reduction in the levels of enzymes 494 

of the TCA cycle, targeted by increased expression of FsrA and RoxS in the ∆rosA strain, gives these 495 

bacteria a fitness disadvantage as they are unable to generate ATP as quickly the WT strain.  496 

 497 

RosA is subject to carbon catabolite repression 498 

To begin to understand under which physiological conditions RosA might act as a sponge of FsrA and 499 

RoxS, we investigated how transcription of RosA is controlled. We used the DBTBS server to determine 500 

which transcription factors are predicted to bind to the RosA promoter region and regulate its 501 

transcription 46. DBTBS predicted a binding site for the transcriptional regulator CcpA between -1 to + 502 

12 relative to the mapped 5’ end of RosA (Figure 1). CcpA mediates carbon catabolite repression in B. 503 

subtilis, repressing catabolic genes and activating genes involved in excretion of excess carbon 47. The 504 

prediction of a CcpA binding site in the promoter region of RosA was corroborated by Marciniak et al. 505 

who identified the coordinates of the CcpA binding site in front of RosA 48. The expression profile of 506 

RosA in the 104-condition tiling array data for B. subtilis was very similar to known members of the CcpA 507 

regulon, such as MalA, AcoA and AbnA, consistent with the idea that RosA is a CcpA regulated sRNA 508 

12.  509 
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 510 

To confirm the regulation of rosA by CcpA we fused the promoter of rosA to GFP using the BaSysBioII 511 

vector 32. We monitored expression of this fusion in WT B. subtilis and in an isogenic mutant lacking the 512 

ccpA gene. No difference in ProsA-GFP expression could be seen between the WT and the ∆ccpA 513 

strain in LB medium (Figure 8A). Addition of 0.3 % (w/v) glucose to the medium resulted in repression 514 

of rosA promoter activity in the WT strain (Figure 8B), whereas in the absence of ccpA the rosA promoter 515 

remained active, as predicted (Figure 8B).  516 

 517 

We performed a similar experiment where we measured the levels of RosA RNA in a defined medium 518 

with 1% malate or arabinose by Northern blot (Figure 8C). RosA levels were similar in WT and ∆ccpA 519 

mutant strains grown in arabinose where CcpA is inactive on its targets. In contrast, as observed with 520 

the promoter fusion, RosA expression was repressed in the WT strain and this repression was alleviated 521 

in the ∆ccpA mutant strain grown in a medium supplemented with malate. 522 

 523 

We also measured RosA expression during a switch in carbon source. B. subtilis WT and ∆ccpA strains 524 

were first grown to late exponential phase in a defined medium with arabinose as the sole carbon source, 525 

before adding 1% malate to promote carbon catabolite repression. Cells were harvested during 526 

exponential phase and 30 and 60 min after addition of malate and RosA RNA levels were measured by 527 

Northern blot (Figure 8D). Expression of RosA decreased after addition of malate in both the WT and 528 

∆ccpA strain. However, the level of RosA was higher in ∆ccpA strain than in the WT demonstrating that 529 

RosA is subject to the catabolite repression, and that this regulation is partially CcpA dependent. In 530 

contrast, when the same membrane was re-probed for RoxS, we observed expression of RoxS was 531 

induced upon addition of malate as previously observed 17. These experiments confirm that RosA is a 532 

carbon catabolite responsive sRNA controlled by CcpA and that RoxS and RosA are important to 533 

manage the reprogramming of gene expression during a switch in carbon sources. 534 

 535 

 536 
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DISCUSSION 537 

 538 

In this study we report the use of in vivo RNA cross-linking using the psoralen AMT to globally identify 539 

RNA-RNA interactions occurring in the Gram-positive model organism B. subtilis. Our results identified 540 

hundreds of potential interactions, including previously well described sRNA-mRNA interactions. Two 541 

of three known sRNAs containing C-rich regions in B. subtilis, FsrA and RoxS, have been shown to 542 

target transcripts encoding essential components of central metabolism using their C-rich regions 14,15,20. 543 

In addition to the identification of known and new mRNA targets for RoxS and FsrA, we also showed 544 

that these two sRNAs interact with a new sRNA, S345, that we renamed RosA in this study.  545 

Deletion of RosA from the genome of B. subtilis leads to a 3.5-fold increase of the half-life of RoxS 546 

showing that RosA controls RoxS turnover. In parallel, a proteomic analyses in the ∆rosA strain show a 547 

reduced levels of the known RoxS and FsrA targets like the TCA cycle enzymes, SucCD, OdhAB, CitZ, 548 

SdhA and CitB 14,15,21. Many of the other proteins with reduced levels, identified by the proteomic 549 

experiment, were also predicted to be targets of either RoxS or FsrA using CopraRNA 44,45. A predicted 550 

target of RoxS is acsA, which encodes a key enzyme in central metabolism since it catalyses the 551 

conversion of ATP, acetate and CoA to AMP, diphosphate and acetyl-CoA, thus acting as a balancing 552 

point for the levels of CoA and acetyl-CoA in the cell 49. Furthermore, the SrtN protein is used by the cell 553 

to deacetylate AcsA and this reaction depends on NAD+ 50. The goal of RoxS-mediated reduction in 554 

AcsA levels may be to reduce non-essential NAD+ consumption. Moreover, we showed that the level of 555 

RosA and RoxS is comparable in LB and that one-to-one mixtures of RosA and RoxS in vitro result in 556 

full-duplex formation. Thus, these results show that RosA has the potential to be a highly efficient sponge 557 

of RoxS and FsrA activity in B. subtilis cells. Our data show that RosA acts differently on the two target 558 

RNAs. FsrA is sequestered in classic sponge RNA activity as the levels of the FrsA RNA remain 559 

unchanged, but its proteins targets are reduced in the absence of RosA. Whereas for RoxS we have 560 

shown that the levels, processing and its target efficacy are being affected. 561 

 562 
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In the field of eukaryotic RNA regulation, sponge RNAs are well-accepted as part of the regulatory 563 

landscape 51 and this idea has recently been getting increased traction in bacteria. Indeed, several 564 

sponge RNAs have been described in Gram-negative organisms and, intriguingly, many are derived 565 

from other transcripts (reviewed by Figueroa-Bossi and Bossi 42 and Azam and Vanderpool 41). In 566 

contrast, RosA is a stand-alone sRNA. Interestingly, another stand-alone sRNA in S. aureus, namely 567 

RsaI (RsaOG), was also shown to be CcpA-regulated and to interact with the sRNAs RsaG, RsaD and 568 

RsaE, the RoxS homologue in S. aureus, 52. RsaI, like RosA, contains two G-rich regions to bind to 569 

RsaG, RsaD and RsaE. These results suggest that RsaI and RosA could fulfil the same functions in S. 570 

aureus and B. subtilis and that similar sponge RNA-mediated regulatory pathways exist in Firmicutes to 571 

balance the metabolic requirements of the cell. Indeed, RsaI is conserved in the genus Staphylococcus 572 

but not in Bacilli, while RosA is conserved in some Bacilli but not in the Staphylococci. The role of RsaI 573 

as a sponge RNA remains to be definitively proven since the impact of RsaI on RsaE, RsaD and RsaG 574 

mRNA targets has not yet been investigated. In contrast to RosA, RsaI has also been shown to 575 

additionally have a C-rich region used to bind mRNA targets. It could thus act as both a direct regulator 576 

and as an sRNA sponge. The absence of equivalent C-rich regions in RosA may limit its function to that 577 

of a sponge RNA. However, we plan to study whether RosA can directly regulate its own mRNA targets. 578 

 579 

In this study, we identified three forms of RosA, with different half-lives. Full length RosA (229 nts) is 580 

very short-lived and is quickly processed to the 185 nts form that appears to be the main functional form 581 

of RosA. The shortest form of RosA (species 3) has a half-life of 7.1 minutes and its generation is RoxS 582 

dependent. We believe that this form of RosA corresponds to a stable degradation product protected 583 

from 3’ degradation by duplex formation with RoxS. None of the three most commonly used RNases in 584 

B. subtilis, RNase J1, RNase III or RNase Y could account for the processing of RosA to its different 585 

forms (data not shown). The role of RosA in facilitating the processing of RoxS and the possible 586 

persistence of a RoxS-RosA duplex in cells (RosA species 3) raises the interesting question of whether 587 

RoxS can be recycled from RosA to regulate mRNAs such as sucCD that prefer the shorter form of 588 

RoxS? One could imagine that this duplex might be a reservoir of mostly processed RoxS, that could 589 
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switch to new partners for which it had a greater affinity. Further experiments are required to explore 590 

this possibility. 591 

 592 

Expression of RoxS is tightly controlled by two transcription factors, ResDE and Rex 14,17. Why then is 593 

this additional level of post-transcriptional regulation of RoxS by RosA required? Our previous data 594 

suggests that RoxS is involved in readjusting the transitory imbalances in NAD/NADH ratio that occur 595 

upon encountering carbon sources such as malate. Through its role in reducing NADH levels, RoxS 596 

eventually increases the DNA binding capacity of the transcriptional activator Rex, turning down its own 597 

expression. However, RoxS is a relatively stable sRNA, with a half-life of 13 min in a WT strain that 598 

increases to >45 min in the absence of RosA. The use of this non-coding sponge RNA is thus likely be 599 

a way to dial down RoxS activity more efficiently than by simply turning off transcription, first by 600 

neutralizing the C-rich regions involved in the regulation of all known targets so far and then by 601 

stimulating its degradation. We propose that RosA accelerates the degradation of RoxS by stimulating 602 

the opening of the 5’ stem loop of RoxS, where RNase Y is known to cleave to produce the truncated 603 

form of RoxS, named RoxS (D), i.e. the processing pathway that leads to the functional form of RoxS 604 

required for sucCD regulation is also the first step in RoxS turn-over. In agreement with this hypothesis, 605 

the 45 min half-life of RoxS observed in the ∆rosA strain is similar to that measured previously in a strain 606 

deleted for RNase Y 14.  607 

 608 

We determined that RosA is transcriptionally repressed by the main carbon catabolite repressor in B. 609 

subtilis, CcpA, and that the expression of RoxS and RosA is anticorrelated during a switch of carbon 610 

source. When B. subtilis is grown on one of its preferred carbon sources such as malate 53, a large 611 

proportion of the carbon is metabolized only as far as pyruvate and acetyl CoA by malate 612 

dehydrogenase (Figure 9). These enzymes use NAD as a co-factor, leading to an increase of NADH 613 

concentration in the cell known to inhibit the DNA binding abilities of the transcriptional regulator Rex. 614 

This inhibition allows the transcriptional derepression of RoxS and, instead of directing malate into the 615 

TCA cycle, malate is converted to lactate and acetate via fermentation pathways normally repressed by 616 
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Rex. Fermentation allows the regeneration of NAD+ from NADH. Concomitantly, RosA is repressed by 617 

CcpA allowing RoxS to bind its targets including mRNAs encoding enzymes of the TCA cycle which use 618 

NAD as co-factor. CcpA enables B. subtilis to quickly adapt to the presence of these preferred carbon 619 

sources. Indeed, CcpA represses genes involved in the metabolism of secondary carbon sources and 620 

turns down expression many of the enzymes of the TCA cycle and transporters of TCA cycle-621 

intermediates, to ensure resources are not wasted 47,54 (Figure 9). CcpA also activates the transcription 622 

of genes whose products are responsible for overflow metabolism when the bacteria are grown on a 623 

preferred carbon source. The targeting of these metabolic pathways is strikingly similar to what was 624 

observed previously by Durand et al. for RoxS, i.e. CcpA and RoxS have many overlapping targets 17 625 

(Figure 10). In contrast, when B. subtilis is grown on a non-preferred carbon sources like arabinose, the 626 

inactivation of the carbon catabolite protein CcpA will allow the transcriptional derepression of the RosA 627 

sRNA and other CcpA regulated genes, including those encoding enzymes of the TCA cycle. RosA in 628 

turn sponges RoxS and impairs the post-transcriptional repression of RoxS targets, also including 629 

mRNAs implicated in the TCA cycle. Rex, for its part, represses the fermentation pathways (Figure 10). 630 

 631 

The discovery here of the RosA RNA sponge under the control of the transcription factor CcpA, provides 632 

the missing link between RoxS and CcpA. In other words, RoxS is connected to the CcpA regulon via 633 

the RosA non-coding RNA, and RoxS ensures an additional, potentially more rapid control at the post-634 

transcriptional level for more than 30 % of genes that are regulated by CcpA. The effect of RosA on 635 

RoxS also significantly expands CcpA regulon. 636 

  637 

CONCLUSIONS 638 

We have shown that in vivo AMT crosslinking of RNA is a suitable method to identify novel RNA-RNA 639 

interactions including sRNA interactions. We have focused here on a novel interaction between the two 640 

sRNAs FsrA and RoxS with the RNA sponge S345 that we have renamed RosA (Regulator of sRNA A) 641 

and have highlighted its role in balancing the metabolic state of the cell. However, there remains many 642 
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newly identified interactions in the interaction data set to be investigated that likely represent many novel 643 

regulatory mechanisms. 644 
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TABLES AND FIGURE LEGENDS 817 

 818 

Table 1 Proteomics analysis for ∆rosA/WT shows reduced levels of RoxS and FsrA targets 819 

Protein BSU 
Number 

log2(∆S3
45/WT) 

Copra/IntaRNA 
predicted 

target 

Dysregulated 
in ∆FsrA or 

∆RoxS 
Protein description and 

Biological Process 

AcsA BSU29680 -2.27 RoxS  
acetyl-CoA synthetase 

utilization of acetate, fatty 
acids 

SpoVS BSU16980 -1.57 FsrA  
Unknown 

spore coat assembly, spore 
core dehydratation 

CitB BSU18000 -1.40 FsrA ∆FsrA aconitase, trigger enzyme 
TCA cycle 

NadK2/ 
PpnKB 
/YtdI 

BSU29540 -1.14 RoxS ∆RoxS ATP-NAD kinase 
NADP biosynthesis 

YrhF BSU27210 -1.07 RoxS  Unknown 

EtfA BSU28520 -0.95 RoxS and FsrA ∆RoxS 
electron transfer flavoprotein 

(alpha subunit) 
fatty acid degradation, 

CitZ BSU29140 -0.95 RoxS and FsrA ∆RoxS Citrate synthase 2 
TCA Cycle 

OdhB BSU19360 -0.87   
TCA Cycle 

2-oxoglutarate dehydrogenase 
complex 

OdhA BSU19370 -0.85 RoxS  
TCA Cycle 

2-oxoglutarate dehydrogenase 
(E1 subunit) 

SucC BSU16090 -0.84 RoxS ∆RoxS 
succinyl-CoA synthetase (beta 

subunit) 
TCA Cycle 

YvyI/Pm
i BSU35790 -0.78 FsrA and RoxS  

mannose-6-phosphate 
isomerase 

mannose utilization 

GudB BSU22960 -0.78   

glutamate dehydrogenase, 
trigger enzyme 

glutamate utilization, control of 
GltC activity 

CitA BSU09440 -0.78 FsrA and RoxS  minor citrate synthase 
Unknown 

SucD BSU16100 -0.76  ∆RoxS 
succinyl-CoA synthetase 

(alpha subunit) 
TCA Cycle 

YpbR/ 
DynA BSU22030 -0.73 RoxS  dynamin-like protein fusion of 

membranes 
YkrA BSU14550 -0.62 RoxS  Unknown 

YcsA BSU04000 -0.62 RoxS  putative tartrate 
dehydrogenase Unknown 

SdhA BSU28440 -0.61 FsrA ∆FsrA 
succinate dehydrogenase 

(flavoprotein subunit) 
TCA cycle 

YpiB BSU22580 -0.48 FsrA  Unknown 
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 820 

 821 

 822 

 823 

 824 

Figure 1 Sequence of S345 and its promoter region 825 

The -10 and -35 sequence of the putative σA promoter are indicated in red. The Cre site for CcpA 826 

binding starting at -1 is italicized. The 3 G-rich regions (GRR) of S345 are underlined. 827 

 828 

  829 

TAAAAAAACC CTTGTCATCG GAAAGGAAAA CTGAGATAAT AACATTGAAA GCGCCTACAC 
TTACCTATTT CAAATGGATA CGGTCGCATA TCATGCCGTT ATATAGAGGG GATAAGCAAC 
AGAGAGTAAG TGTTCGGAGC GCATCATTGG TCAAACAAGG GGTTCCTGAT ACATGATTTT 
TCGTAAATCG AAATAACGAT ATTAGGGAGA ATGGCTGCTT CGATCGTATC CTATCAACAA 
GCCATACATA AAGTCTGCTG AGCCAGGCTT TTTTTGCTTT 

-35 -10 +1 
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Figure 2 Prediction of the interaction between S345 and RoxS 831 

A. Prediction of the secondary structure of S345 with RNAfold web server (http://rna.tbi.univie.ac.at/cgi-832 

bin/RNAWebSuite/RNAfold.cgi) B. The interaction between RoxS and S345 sRNAs was predicted with 833 

IntaRNA web server (http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp). The RoxS sRNA is 834 

coloured in blue. The C-rich region of RoxS and the G-rich region of S345 are coloured in red and grey 835 

respectively. The RNA processing site of RoxS and the two main processing site of S345 are indicated 836 

with red and purple pairs of scissors respectively (see also Fig. 5). 837 

  838 
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 839 

 840 

Figure 3 S345 interacts with RoxS and FsrA sRNAs 841 

Electrophoretic mobility shift assays (EMSA) of S345 with RoxS and FsrA. 1 pmol of S345 was incubated 842 

with an increasing concentration of RoxS and/or FsrA. The ratio of sRNA/S345 is indicated.  843 
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 844 

Figure 4 S345 is a differentially expressed, highly processed sRNA  845 

A representative Northern blot showing total RNA isolated at times after addition of rifampicin (Rif) to 846 

WT strain grew in LB or M9 with glucose (0,3%). The three different forms of S345 are indicated by 847 

arrows. For each form of S345, the half-life with their standard deviation calculated from two independent 848 

experiments (biological replicates) are given under each autoradiogram. 849 

  850 

<1 <1 

2,05 +/- 1,1 1,9 +/- 0,5  
7,1 +/- 1,5 7,7 +/- 0,3 
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 851 

Figure 5 Deletion of S345 alters the turnover rate of RoxS and RoxS targets 852 

(A) A representative Northern blot of total RNA isolated from wild-type (WT) and ΔS345 strains probed 853 

for the RoxS sRNA at times after addition of rifampicin (Rif) at 150 μg/mL. The blot was re-probed for 854 

the 5S rRNA as a loading control (B) Northern blot of total RNA isolated from wild-type WT, ∆S345, 855 

∆roxS and ∆S345 ∆roxS strains probed for the sucCD or ppnKB mRNA. The blot was re-probed for 16S 856 
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rRNA as a loading control. Calculated half-lives are shown beneath the autoradiographs and are the 857 

average of 2 experiments, with standard errors as shown.  858 

 859 

  860 
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 861 

Figure 6 RNA processing events of S345 and RoxS are interdependent on the presence of the 862 

other 863 
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A. A representative Northern blot of total RNA isolated from ∆rnjA and ∆rnjA ΔS345 strains probed for 864 

the RoxS sRNA at times after addition of rifampicin (Rif) at 150 μg/mL. The blot was re-probed for 5S 865 

rRNA as loading control. RoxS: Full size transcript, RoxS(D): truncated form of RoxS. Half-lives are 866 

given under each autoradiogram B. Northern blot of total RNA isolated from WT and ΔroxS strains 867 

probed for the S345 sRNA at times after addition of rifampicin (Rif) at 150 μg/mL. The blot was re-868 

probed for 5S rRNA as loading control. The three forms of S345 are indicated by arrows. Calculated 869 

half-lives are shown beneath the autoradiographs and are the average of 2 experiments, with standard 870 

errors as shown.  871 

 872 

  873 
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 874 

Figure 7 ∆S345 is reduced in fitness  875 

The fitness deficit of the ∆rosA strain in LB was shown by co-culturing ∆S345 with the wild type strain 876 

mixed in a 1:1 ratio. The fitness deficit of ∆rosA was complemented by cloning the RosA sRNA under 877 

the control of its native promoter into the pRMC plasmid. Strains were grown for 24 hours and plated on 878 

antibiotics to enable CFUs to be determined for each strain in the mixed culture. An antibiotic marked 879 

wild type strain was used as a control. Statistically significant differences in fitness between strains 880 

calculated using Welch’s T test are shown by **. The experiment was repeated three times. 881 

 882 

  883 
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 884 

Figure 8 RosA is a CcpA regulated sRNA 885 

A. Assay of the RosA promoter fused to GFP in wild type B. subtilis and ∆ccpA in LB with no glucose 886 

and B. with the addition of 0.3% glucose. Black line with triangles WT growth curve, grey line with 887 

triangles ∆ccpA growth curve. Black line with circles promoter activity of RosA in WT, grey line with 888 

circles promoter activity in ∆ccpA. Experiments were done in triplicate.C. Northern blot of RosA in WT 889 

and ∆ccpA mutant strain grown in MD medium with arabinose (1%) or malate (1%) as carbon sources. 890 

RNA was extracted at several O.D.600 during growth as indicated. D. Northern blot of RosA and RoxS in 891 
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WT and ∆ccpA mutant strain grown in MD medium with 1% arabinose. At mid exponential phase 892 

(O.D.600=0,6), malate has been added to the culture and samples taken before (-30 min) and after (0, 30 893 

and 60 min) the addition of malate. The blot was re-probed for 5S rRNA as loading control. 894 

 895 

 896 

  897 
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 898 

Figure 9 Model for the regulation of the fermentation and respiration pathways by the two sRNAs 899 

RoxS and RosA 900 

A. In the presence of the preferred carbon source malate, malate dehydrogenases (M.D.) convert 901 

malate into pyruvate using NAD as co-factor. The increase of the NADH pool in the cell leads to the 902 

inhibition of Rex activity. RoxS is derepressed and regulates its targets (including TCA cycle and 903 

respiration enzymes). CcpA is activated and represses numerous genes including those encoding 904 

enzymes of the TCA cycle and RosA sRNA avoiding its sponging effect on RoxS. The goal of this 905 

regulation is dual: 1) To avoid the hyperactivation of electron transport chain (ETC) due to the increase 906 
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of the NADH pool to limit oxidative stress 2) To activate fermentation pathways in response to the Rex 907 

inhibition to regenerate NAD. B. In the presence of a non-preferred carbon sources like arabinose, the 908 

high NAD/NADH ratio activates Rex which in turn represses fermentation pathways and RoxS sRNA. 909 

The carbon catabolite control by CcpA is also inhibited, allowing RosA expression. RosA sponges RoxS 910 

sRNA present in the cell and blocks its activity. This cascade of regulation allows the full activation of 911 

the TCA cycle and the aerobic respiration of the cell.  912 
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Supplemental Data 913 

 914 

Supplementary Figure 1 Prediction of the interaction between S345/RosA and FsrA 915 

The interaction between FsrA and S345/RosA sRNAs was predicted with IntaRNA web server 916 

(http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp). FsrA sRNA is coloured in orange. The C-rich 917 

region of FsrA and the G-rich region of S345 are coloured in red and grey respectively. 918 
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 921 

Supplementary Figure 2 Sizes of S345  922 

WT ΔroxS ΔfsrA 
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 47 

A. Northern blot analysis of S345/RosA in the WT, ΔroxS and ΔfsrA strains before and after the addition 923 

of rifampicin to inhibit transcription. The three forms of S345/RosA are indicated by arrows. A 924 

radiolabelled DNA marker was loaded on the left side. B. Primer extension to determine the 5’-end of 925 

S345. RNA was extracted from WT and ∆rnjA strains grown in LB. The sequencing reaction and the 926 

primer extension was done with an oligonucleotide closed to the 3’ end of S345/RosA. (1) indicates the 927 

5’ end of S345. (*) The 5’ end of a 3’ degradation product. 928 

  929 
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 930 

 931 

Supplementary Figure 3 S345/RosA has no reciprocal impact on FsrA degradation or 932 

processing  933 

Northern blot analysis of the FsrA sRNA in WT and ΔS345/RosA strains before and after the addition of 934 

rifampicin to inhibit transcription. Calculated half-lives are shown beneath the autoradiographs and are 935 

the average of 2 experiments, with standard errors as shown.  936 
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 940 

Supplementary Figure 4 Quantification of S345/RosA and RoxS 941 

Northern blot with a defined amount of in vitro transcript of S345/RosA (left side) and RoxS (right side) 942 

and 5 𝜇g of total RNA extracted from a WT strain grown in LB. The experiment was repeated 2 times. 943 
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Supplementary Tables 1 and 2 946 

Strains and Oligos used in this study 947 

 948 

Supplementary Table 3 949 

All statistically significant interactions between FsrA (A) and RoxS (B). Columns - Sample (condition 950 

and strain), Target (interacting feature name), Target id (BSU number, Nicolas et al locus id, UA id), P 951 

value, sRNA_target_interaction (count of sRNA interactions with target), other_sRNA_interaction 952 

(count of other sRNA interactions in individual sample), other_target_interaction (count of other target 953 

interactions in individual sample), total_sRNA_reads (total read count for sRNA in sample, interacting 954 

and non-interacting), total_target_read (total read count for target in sample, interacting and non-955 

interacting). 956 

 957 

Supplementary Table 4 958 

Most statistically significant interactions between FsrA (A) and RoxS (B) across the pairs of 959 

sequenced samples.  960 
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