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1. INTRODUCTION

Work-related musculoskeletal disorders (MSDs) are the first cause of occupational disease in developed countries
and therefore represent a major health issue [1]. MSDs develop when biomechanical demands exceed the worker’s
physical capacity. In this regard overhead work is often cited as a MSDs risk factor [2,3]. Overhead work yet
remains very common on assembly lines, especially in the automotive industry. Indeed many complex tasks cannot
be fully automatized because they still require human cognitive skills. One solution to relieve workers while
keeping them in control of the task execution is then to assist them with an exoskeleton [4].

Recently several industrial exoskeletons have been developed to support arms and/or tool weight during overhead
tasks [5-11]. Many of them showed promising results regarding the reduction of physical workload. However,
these studies present only partial assessments of the benefit provided by the exoskeletons. They exclude some
important aspects like side-effects, adaptation, or user acceptance. In this work we present an exhaustive
assessment of a novel passive exoskeleton for overhead work.

2. METHOD

The benefit provided by the use of an exoskeleton cannot be assessed solely based on the reduction of effort in the
targeted limb. An exoskeleton is a wearable device, therefore its use might disrupt human movements or require
additional effort. Supplemental effort can be caused by the weight of the device or, with passive exoskeletons, by
the transfer of force from one joint to another. In addition, users’ opinion of the device also affects its effectiveness.
An exoskeleton that is ill-perceived by the user might remain unused, or cause psychological stress if use is
imposed. Therefore we propose an assessment process that addresses the following aspects:

. Task performance: The task performance should be at least as good with the exoskeleton as without it.

. Fatigue: The exoskeleton should reduce metabolic demand and delay the apparition of fatigue.

. Physical effort: The exoskeleton should relieve the limb that is directly impacted.

. Side-effects: The exoskeleton should not significantly increase effort in limbs that are not directly impacted,

nor cause bad postures.
. Adaptation: Using the exoskeleton should not require a long training nor cause after-effects at removal.
. Acceptance: Users should feel better when using the exoskeleton compared to when not using it.

A. Exoskeleton Description

Within the European project AnDy [12], the provided exoskeleton prototype is an upper-limb passive exoskeleton
intended for supporting the weight of the arms, and possibly of manipulated tools, while the user is working
overhead. This exoskeleton does not enhance the human’s strength, but renders his/her arms virtually weightless,
thereby relieving the shoulder joint. Being passive, hence without motors, the exoskeleton is light, not bulky, and
easy to wear.

B. Experiment

Twelve participants performed an overhead pointing task with a portable tool, with and without the exoskeleton
(Fig. 1). The participants’ physical and physiological state was monitored with whole-body inertial motion capture,
ground reaction force, EMG on shoulder and back muscles (right anterior deltoid and right erector spinae
longissimus), oxygen consumption, and heart rate. The tool motion was recorded with optical motion capture to
evaluate accuracy and completion time. Following the experiment, the perceived workload was assessed with the
NASA Task Load Index (NASA-TLX) [13]. In addition, participants answered a questionnaire and a semi-directed
interview was conducted to evaluate technology acceptance.
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C. Measures

a) Task performance: Task performance was assessed
with the movement accuracy and completion time.

b) Fatigue: Oxygen consumption and heart rate were used to evaluate objective metabolic demand and
fatigue, while the NASA-TLX indicated subjective fatigue. Evolution of task performance over time was used as
an additional indicator for fatigue.

¢) Physical Effort: Given that the exoskeleton aimed at supporting the arms weight, the shoulder joint was
directly impacted by the use of the exoskeleton. Therefore, activation of the anterior deltoid and estimated shoulder
torque were used to assess the physical demand on the impacted limb. Joint torques were computed with inverse
dynamics based on the recorded whole-body kinematics and ground reaction force [14].

Whole-body kinematics
Xsens inertial motion
capture suit

| Metabolic demand
VO2 mask for oxygen consumptio

Heart rate monitor

| Task performance
Optical motion capture on tool tip

Muscle activity
EMG on shoulder and back musclef

|

Acceptance

Nasa Task Load Index
ITAM3 questionnaire

Whole-body dynamics
T sensorized shoes embedding F/T sensors

Fig. 1. Experimental set-up and sensors used to assess the exoskeleton.

d) Side-effects: Activation of erector spinae and back and hip torques were used to assess potential increase
in effort in non-directly impacted limbs. Joint angles obtained by whole-body kinematics served to evaluate
postural changes.

e) Adaptation: The tool 3D trajectory as well as trajectories of the shoulder, elbow and back in joint space
were used to compare movement strategy with and without the exoskeleton. Evolution of task performance over
time was used to detect learning and after-effects.

f) Acceptance: Score obtained in the technology acceptance questionnaire was used to quantitatively
assessed acceptance of the exoskeleton, while opinions expressed during the interview served to shed light on
some of the questionnaire answers.

3. RESULTS

Comparison of the two conditions with and without exoskeleton revealed that muscle activation, oxygen
consumption and heart rate were significantly reduced when using the exoskeleton. Conversely, task performance
was affected neither positively nor negatively. Importantly, the reduction in overall workload observed with
objective measurements was also observed in subjective measurements: the task not only was, but also felt, less
demanding when wearing the exoskeleton. Eventually, acceptance score was high and participants all said that
they would choose to use the exoskeleton again for such a task.

4. CONCLUSION

Future work will be directed towards evaluating the exoskeleton on different tasks, including bending, crouching
and walking to assess its transparency and potential disturbances of the users movements. Experiments on
industrial sites are also planned. Furthermore, results from the evaluation will serve to guide the development of
an intuitive adaptation of the level of support provided by the exoskeleton.
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