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Abstract: Over the past few years, cryptocurrencies (especially Bitcoin) have attracted a particular 

attention.  As the number of transactions increase, these systems tend to become slower, expensive, 

and unsustainable for a use-case such as payment. In this way, the Bitcoin sidechain seeks to provide 

prompt and confidential transactions between major trading platforms. Although poor performance 

and high volatility can push potential users away from Bitcoin, this study reveals that the introduction 

of sidechain solves some of the problems Bitcoin is facing. Using relatively new techniques, we find 

that the implementation of sidechain reduces Bitcoin price volatility, rises its efficiency, and enhances 

its usefulness as a transaction tool and a diversifier. We explain these changes in Bitcoin 

characteristics by the sidechain‟s capacity to speed up the circulation of money by shortening block 

validation times and to an improvement in the scalability of Proof of Work and Bitcoin payment 

services. Our results also indicate that the sidechain liquid network lead to a less energy-consuming 

and in turn to less polluting Bitcoin system. But a weakly vanishing causality between Bitcoin mining 

and Bitcoin energy consumption implies that the concentration of miners is still follow available 

electrical supply. 
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1. Introduction 

Bitcoin is the first and most famous virtual currency to date. Its core protocol initiated the 

concept of a blockchain, a type of cryptographic consensus protocol in which transactions are 

organized into blocks. Consensus is fulfilled through a proof-of-work which is a required precondition 

for a block to be valid. The transactions moving value within such blockchains have been effectively 

assessed to be highly secure in that consensus is reached, in turn offering a way for attaining 

consensus in a setting where neither reliable point-to-point channels exists nor a public-key 

infrastructure. Since the creation of Bitcoin in 2009, the idea of exploiting its technology to develop 

applications beyond currency has been fulfilling a wide level of international recognition. From the 

opinion of Bitcoin‟s advocates, the main purpose of this cryptocurrency is to be used as an alternative 

to the existing payments system and to enable transactions without the interference of governments or 

central banks. According to Bitcoin‟s supporters of cryptocurrencies, central banks always impose 

controls including restrictions on convertibility, without overlooking the exorbitant foreign transaction 

fees. From its supporters‟ views, Bitcoin nevertheless seems to provide a variety of advantages. One 

can cite, among others, it is based on decentralized system not related with any sovereign entities or 

central banks, and therefore its users are insulated from unforeseen events. Bitcoin guarantee security, 

transparency, authenticity and credibility. Security is warranted via encrypted transactions that are 

pseudonymous and sealed into blocks. Transparency is justified through the open public decentralized 

ledger that anyone can view. Authenticity and credibility are mainly ensured through an unalterable 

record of events (see, inter alia, Yermack, 2013; Bouoiyour and Selmi, 2015; Weber, 2016). However, 

multiple concerns have been raised about these Bitcoin characteristics. The extreme fluctuations have 

been dominantly due to the scandals and frauds which are frequent in the Bitcoin ecosystem, the wide 

unknowns involved in the development of cryptocurrency (Bouoiyour and Selmi 2016; Ciaian et al. 

2016; Bouoiyour et al. 2019), and the informational inefficiency (Bariviera 2017; Selmi et al. 2018). 

In addition, as Bitcoin is a decentralized currency that not backed any central entity, the core system 

defies regulation and enforcement efforts, which intensifies the anxiety of financial regulators and 

cybercrime fighters (Möser et al. 2013). The blockchain poses also a barrier to utilizing Bitcoin for 

general-purpose payments (Bouoiyour and Selmi 2019). Furthermore, because of the centralization in 

the Bitcoin ecosystem, counterparty risk has become greater (Böhme et al. 2015). The operations 

established with fraudulent intent also pose potential dangers to the Bitcoin ecosystem (Vasek and 

Moore 2015).  

Interestingly, given the increasing number of transactions, the average confirmation time for a 

transaction and the block difficulty rose. In this background and for widespread adoption of 

blockchain systems, scalability or the capacity of Blockchain to provide the same services whatever 

the number of transactions seems another major obstacle. In short, the main problem of this kind of 

network thus resides in the scalability, that is to say the capacity of this Blockchain to provide the 

same services (processing speed) whatever the number of transactions. Also, when platforms such as 

Bitcoin or other giant cryptocurrencies like Ethereum or Ripple started to become famous and 

frequented by many users, their ability to process transactions promptly ran into latency issues. The 

technology of the sidechain is a response to this problem of scalability. A sidechain connects several 

blockchains among themselves. It is a blockchain “pegged” to the main blockchain allowing transfers 

of key informations (tokens) from one chain to the other. A sidechain is a private blockchain similar to 

other private blockchains but there is some control (by “federation members”) over who is allowed to 

send transactions (Hueber, 2019). This sets it apart from open systems, such as Bitcoin or Litecoin, 

that any user can join. Instead of being a self-contained system like some other private blockchains, a 

sidechain is designed as a layer beside of the parent blockchain (for instance the Bitcoin's blockchain). 
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A sidechain is a decentralized peer-to-peer networks of value exchange that do not need any central 

banks or other third parties (Hueber, 2018).  On october 30, 2018, Kiayias and Zindros (2018) 

introduced the trustless construction for proof-of-work sidechains, depicting precisely how to build 

generic communication between blockchains. More interestingly, of all the implications of blockchain, 

the energy use of Bitcoin has captured tremendous attention. Since the marked rise of Bitcoin‟s value 

in 2017, attention turned to the Bitcoin‟s energy and environmental footprint. Several articles 

documented that the electricity use of the bitcoin network had equaled that of medium-sized 

countries and was on track to consume as much electricity as the United States in 2019 and all of the 

world‟s energy by 2020 (see, inter alia, Bendiksen et al. 2018 ; Bevand 2018 ; de Vries 2018). Mora el 

al. (2018) showed that if Bitcoin is implemented at similar rates at which other technologies have been 

incorporated, it alone could generate enough emissions to push global temperatures above 2°C as soon 

as 2033. This study compares Bitcoin features (with respect volatility, speculation, efficiency, its 

usefulness as a transaction tool, its energy use, and its diversification opportunities and downside risk 

reduction) prior and post the introduction of proof-of-work sidechains. For this purpose, we first use a 

GARCH–jump model, to adequately estimate the volatility of Bitcoin price index. The technique is 

much more flexible than the standard GARCH extensions since the asymmetric effect of the good 

versus bad news can be different for the jump versus normal innovations. These relatively new 

characteristics allow a richer characterization of volatility dynamics, particularly with respect to events 

in the tail of a distribution. Second, we apply the MF-DFA procedure to compare the multifractal and 

efficiency properties of Bitcoin. Third, another novelty of this research lies in the usage of the 

frequency domain causality test, which allows us to understand in a different way the causality 

between Bitcoin and the exchange-trade ratio (ETR) as a proxy of Bitcoin‟s use in transactions. 

Instead of computing a single Granger causality measure for the connection between Bitcoin and ETR, 

the direction of the Granger causality is determined for different frequency components. Precisely, the 

covariance of these variables is decomposed into various spectral components. The aim is that a 

stationary process can be depicted as a weighted sum of sinusoidal components with a certain 

frequency, allowing us to evaluate dissimilar cyclical components. These techniques are appealing as 

the behavior of time series often appear to go through several phases.  Fourth, we compare the Bitcoin 

energy use before and after the implementation of sidechains by referring to recent published estimates 

of bitcoin‟s electricity consumption. Fifth, we conduct a risk management analysis using different risk 

measures in order to compare the risk of the Bitcoin-stocks portfolio holdings and a benchmark 

portfolio composed of stocks only before and after the introduction of sidechain. Such comparative 

and accurate analysis would be useful for both portfolio risk managers, traders and investors aimed at 

utilizing Bitcoin as a transaction tool and a safe haven investment allowing to safeguard against rising 

uncertainty. 

Our findings reveal that the introduction of sidechain technology mitigates the volatility of 

Bitcoin price, improves its efficiency and reinforces its function as a transaction tool and its 

diversification ability. It also reduces even moderately its energy use. 

The remainder of the article is organized as follows: Section 2 displays an overview of the main 

advantages of the sidechain technology. Section 3 discusses the data, and provides a detailed account 

of the methodology. Section 4 reports the empirical findings. Section 5 concludes. 

2. An overview of the advantages of sidechains 

The sidechain technology enforces privacy with transactions made with tokens (e.g. Bitcoins) 

from the parent chain (for example, the blockchain of bitcoins). The essential property on which the 

sidechains rely is the two-way peg (2WP) which needs to be set up to transfer assets from one chain to 

another. Indeed, if one wants to have a system that keeps its economic coherence, it must be able to 

move the asset concerned in both directions. The tokens coming from the parent chain have to be sent 

https://www.nytimes.com/2018/01/21/technology/bitcoin-mining-energy-consumption.html
https://www.nytimes.com/2018/01/21/technology/bitcoin-mining-energy-consumption.html
https://www.weforum.org/agenda/2017/12/bitcoin-consume-more-power-than-world-2020/
https://www.newsweek.com/bitcoin-mining-track-consume-worlds-energy-2020-744036
https://www.newsweek.com/bitcoin-mining-track-consume-worlds-energy-2020-744036
https://www.newsweek.com/bitcoin-mining-track-consume-worlds-energy-2020-744036
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to a multisignature address on the sidechain (Peg-in). Such a multisignature address is controlled by 

members of what‟s called a “strong federation”. Conversely, the transfer back from sidechain's tokens 

to the parent chain (Peg-out) requires its holder to go through a federation member (see Appendix A). 

A sidechain enables to safely develop new exchange of tokens without jeopardizing the parent chain 

core code (Back, 2015). The members of a Sidechain can tokenize fiat currencies, diploma, smart 

contracts, securities, or even other cryptocurrencies. With sidechains, a Parent chain (for instance, The 

Bitcoin‟s blockchain) can acquire innovations from alternative chains. Three main categories of users 

of tokens created inside the sidechain can be especially interested by the advantages of the Sidechain 

technology. It is about the lenders, the businesses and the crypto-money lenders. The lenders of smart 

contracts can ensure that the tokens of the sidechain are used as collateral. They stay locked up as long 

as the loans get repaid over time. In case of default, the locked tokens are seized by the lender. In 

counterpart of the sidechain's tokens, enterprises can issue their own security tokens, like tokens for 

investors accreditation, tokens to certify a diploma holding, tokens to give access to specific 

geographic areas, tokens for playing online videogames... (see Appendix B).  The value of altcoin (for 

example, Bitcoins or Litecoin) holdings by cryptomoney traders can be secured by pegging altcoins to 

an amount of sidechain‟s tokens. Moreover, the convertibility among altcoins themselves is made 

easier and cryptomoney exchanges are more reliable. In addition to the fact that sidechains are bridges 

to move from one blockchain to another and not to be limited to the tokenization of cryptocurrencies. 

A significant advantage of the Sidechain‟s technology lies in its capacity to significantly speed up 

the circulation of money by shortening block validation times. Any blockchain working in the same 

way as the Bitcoin‟s blockchain requires a long confirmation time before certifying a transaction. With 

a sidechain, any transaction can be fully completed in a couple of minutes (see Appendix C for the 

operating principle). Members of a Sidechain can provide verifiable audit records to third parties. Such 

a transaction is time saving and can be settled in less than 2 minutes compare to on average 7 minutes 

in the Bitcoins Blockchain‟s. The search for speed in the settlement of transactions is very important. 

In comparison, the Visa centralized payment network easily reaches 24,000 transactions per second. 

On this aspect of speed, the blockchain technology cannot compete with electronic currencies carried 

by official interbank systems.  The procedure to establish a transaction within a sidechain is a real 

progress in terms of speed even if 1 to 2 minutes for a transaction is relatively long. However, this 

performance is still insufficient to compete with payments in legal tender electronic money via Visa or 

Mastercard. Although the sidechain technology is a real progress in terms of speed in comparison with 

to the duration of certification of blocks in cryptocurrency blockchains, this peg-in / peg-out 

technology is not the fastest. It is possible to accelerate the speed of settlement of transactions by using 

a single sparse Merkle tree to provide an authenticated data structure for the ledger history (Merkle, 

1987). Such a protocol allows sharing the database across multiple machines which increases capacity 

and rapidity of certification.   

The shortening of transactions confirmation times in the sidechain goes hand in hand with a 

reduction in transaction costs. The cryptocurrency blockchains, like that of Bitcoins, are with time 

more and more energy hungry. With the increase of the length of the blockchains (parent chain) the 

problem of scalability is more and more acute. Not only blockchains are energy intensive but they can 

also suffer from congestion even collapse. Such a phenomenon has already occurred in the past (for 

example, Ethereum in 2017 with the CryptoKitties bubble). The implementation of a sidechain pegged 

to a main chain can overcome such problem of scalability. At the present time, to ensure the scalability 

of the Bitcoin, the Bitcoin‟s blockchain is pegged to two sidechains, RSK and Liquid. The first 

focuses on the execution of smart contracts, while the secondeases transactions between different 

financial players.   
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3. Methodology and data 

3.1. Measuring volatility  

The excessive volatility of the main financial prices is largely regarded as a measure of risk. 

The literature on volatility has frequently focused on two approaches. The first consists of the time-

varying volatility models that enable for market extremes to be the result of normally distributed 

shocks that have a randomly varying variance. The second is related to models that include 

discontinuous jumps in the asset price dynamics. As the type of shocks are critical to appropriately 

examine a complex phenomenon like the Bitcoin price dynamics, this study differentiates between the 

changes in Bitcoin prices due to normal innovations and those due to unusual innovation or 

unexpected events (i.e., jumps). In this way, the GARCH-jump model for returns maintains an 

unobserved news process that directs the time series returns. In general, news events together with 

investors‟ expectations of these events lead to changes in time series.  

This study does not focus on the latent news process directly but rather uses a model, proposed 

by Maheu and McCurdey (2004), of the conditional variance of returns implied by the impacts of 

various types of news. The latent news process is presumed to have two dissimilar components, 

dubbed normal and unusual news events. These news innovations (normal and unusual) are identified 

through their impacts on the return volatility. In particular, the impact of unobservable normal news 

innovations is assumed to be captured by the return innovation component ( t,1 ). This component of 

the news process causes smoothly evolving changes in the conditional variance of returns. The second 

component of the latent news process is assumed to generate large changes in returns. The effect of the 

unusual news events is labelled jumps ( t,2 ). 

We start by identifying the components of returns. Given the information set at time t- 1, 

which consists of the history of returns  111 ,..., rrtt   , the two stochastic innovations, t,1 and 

t,2 determine the returns, 

tttr ,2,1  
 

(1) 

where t,1  is specified as a normal GARCH error term such that 0][ 1,1 ttE  , t,2 is a jump 

innovation with a normal stochastic forcing process such that 0][ 1,2 ttE  , t,1 is 

contemporaneously independent of t,2 . 

The conditional variance of returns is disentangled into two components, namely a smoothly 

evolving conditional variance component associated with the diffusion of past news effects, and a 

conditional variance component related to the heterogeneous information arrival process which 

induces jumps. The conditional variance of returns is, 

)()()( 1,21,11   tttttt VarVarrVar 
  

(2) 

The first component of the conditional variance, )( 1,1

2

 ttt Var  is expressed as a GARCH 

function of past return innovations, 

2

1

2

11

2 )(   tttt g 
 

(3) 
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where g(·) is a function of the parameter vector or the feedback coefficients from past return 

innovations, and 1,21,11   ttt  is the total return innovation observed at time t-1. The GARCH 

volatility component (
2

t ) enables past shocks to exert influence on expected volatility and detects 

thereafter the smooth autoregressive changes in the conditional variance that are predictable based on 

past news impacts. 

The second component or the conditional variance component associated with the jump 

innovation is denoted as: 

tttVar  )()( 1,2    
(4) 

where  refers to the number of jumps and potential jump clustering or the jump-persistence 

coefficient,  is the jump-size standard deviation parameter, and t is the conditional jump intensity. 

Based on Equation (4), the contribution to the conditional variance from jumps will change over time 

as the conditional jump intensity varies.  

 

3.2. Testing for efficiency  

Over the past five decades, the efficient market hypothesis (EMH) has been a topic of intense 

thought and debate. Since the EMH has emerged (Fama 1970), it has been subject to a huge number of 

academic studies. This hypothesis postulates that asset prices fully reflect all available information. 

The efficiency hypothesis also necessitates a significant transparency and instantaneous reactivity with 

respect to new information. Fama (1970) differentiated among three forms of efficiency, with the 

weak form being the most frequently assessed. A market is proclaimed to be weak form efficient, if 

investors cannot utilize past information to predict future returns. The weak form EMH has been 

investigated in the literature for many traditional financial assets (Fama, 1970; Frenkel, 1976) and 

several commodities (Danthine 1977; Koutsoyiannis 1983). Some works use the detrended fluctuation 

analysis (DFA) method to test the validity of the efficiency hypothesis (see, for example, Cajueiro and 

Tabak, 2005). The underlying hypothesis of the DFA method is to assume mono-fractal structure for 

financial time series. Despite the relevance of this technique, Kwapień et al. (2005) and Oświęcimka et 

al. (2005), Sensoy (2013), Kristoufek and Vovsrda (2016) and Bouoiyour et al. (2017) claimed that 

financial time series are multifractal and underscored the ineffectiveness of a single scaling exponent 

to appropriately describe financial data since it may prompt spurious conclusions. Several empirical 

studies have utilized the multifractal methods to investigate the degree of EMH and the dynamics of 

financial markets. We identify wider number of papers focused on stock markets. For example, Rizvi 

and Arshad (2017) employ the MF-DFA to test whether the Japanese stock market follows the 

efficient market hypothesis. The authors suggest that the efficiency of this market is time-varying. 

Moreover, Wang et al. (2017) examine the multifractal features of Asian stock markets, and indicate 

that the Asian stock markets are multifractal in nature. He and Wang (2017) apply the multifractal 

detrending moving average algorithm while attempting to identify the potential sources of 

multifractality in the US and Chinese stock markets. It was shown that the long-dependence and fat-

tailed distributions are among the main sources of multifractility in those markets. In short, there are a 

noticeable number of researches focusing on the multifractality and efficiency in financial markets. 

Nevertheless, much less attention was paid to the Bitcoin market which has witnessed an impressive 

growth during the last years. Despite its increasing popularity and acceptance, the discussion about the 

efficiency of Bitcoin market is relatively very scarce (for instance, Bartos 2015; Urquhart 2016; Selmi 

et al. 2018). This study is the first to implement the the Multifractal Detrended Fluctuation Analysis 

http://www.nasdaq.com/investing/glossary/e/efficient-market-hypothesis
https://en.wikipedia.org/wiki/Asset
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(MF-DFA) method to compare the multifractal properties of Bitcoin price index before and after the 

implementation of sidechain. The MF-DFA is a dynamic approach that accounts for irregularities that 

may be embedded in the Bitcoin market including nonlinearities, asymmetries, fat-tails and volatility 

clustering.  

Following Kantelhardt et al. (2002), the MF-DFA method is a generalization of the Detrended 

Fluctuation Analysis (DFA), which consists of five steps. Let assume that  𝑥𝑡 , 𝑡 = 1, … , 𝑁 be a time 

series of length N.  

Step 1: we determine the “profile” yk of the time series x(k) for k = 1,… , N, as: 

𝑦𝑘 =   𝑥𝑖 − 𝑥  𝑘
𝑡=1 , 𝑘 =  1, … , 𝑁  (5) 

where𝑥  denotes the average over the whole time series. 

Step 2:  we divide the “profile”  𝑦𝑘 into 𝑁𝑠 ≡ 𝑁
𝑠 non-overlapping segments of equal lengthswhere s is 

the scale. 

Step 3: we estimate a local trend by fitting a polynomial to the data. Thereafter, we calculate the 

variances by the two following formulas, depending on the segment v: 

𝐹2 𝑠, 𝑣 =
1

𝑠
  𝑌  𝑣 − 1 𝑠 + 𝑖 − 𝑦𝑣 𝑖  

2𝑠
𝑖=1    (6) 

for𝑣 = 1,2,⋯ , 𝑁𝑠 , and 

𝐹2 𝑠, 𝑣 =
1

𝑠
  𝑌 𝑁 −  𝑣 − 𝑁𝑠 𝑠 + 𝑖 − 𝑦𝑣 𝑖  

2  𝑠
𝑖=1 (7) 

for𝑣 = 𝑁𝑠 + 1, ⋯ , 2𝑁𝑠 . 

Step 4:  By averaging the variances over all segments, we obtain the q
th
 order fluctuation function: 

𝐹𝑞 𝑠 =  
1

2𝑁𝑠
  𝐹2 𝑠, 𝑣  

𝑞
2 

2𝑁𝑠
𝑣=1  

1
𝑞 
   (8) 

where the index variable q can take any real values except zero. For q = 2, the standard DFA 

procedure is retrieved.  

Step 5: we investigate the multiscaling behavior of the fluctuation functions Fq (s) by determining the 

slope of log-log plots of Fq (s) vs. s for various values of q.  

𝐹𝑞 𝑠 ~𝑠ℎ 𝑞   (9) 

The time series is multifractal ifℎ 𝑞 depends on q. 

It is well documented that the generalized Hurst exponent h(q) defined by the MF-DFA is 

linked to the multifractal scaling exponent τ(q) known as the Rényi exponent:  

τ(q) = qh(q) – 1  (10) 

Ultimately, we test the efficiency of the Bitcoin market by using the inefficiency index based 

on the multifractal dimension (IDM), given by: 



8 
 

𝐼𝐷𝑀 =
1

2
  ℎ −5 − 0.5 +  ℎ 5 − 0.5  =

1

2
ℎ   (11) 

The Bitcoin market is efficient if the value of IDM is close to zero, while strong IDM values 

indicate a less efficient market. 

 

3.3. Bitcoin’s use in transactions 

 

To explore the usefulness of Bitcoin as a transaction tool, we test the causality between Bitcoin 

returns and the exchange-trade ratio. The concept of causality test was initiated by Granger (1969). 

Subsequently, Geweke (1982) proposed a measure for this Granger causality under a frequency 

domain framework. Given its usefulness, testing causality has been widely and extensively examined 

(Breitung and Candelon 2006) and then has been employed in several researches to evaluate lead-lag 

relationships between macroeconomic variables with respect to frequency rather than time (Bodart and 

Candelon 2009; Arouri et al. 2014; Bouoiyour et al. 2015, among others). The Breitung and Candelon 

(2006)‟s test disentangles the short-, medium- and long-run Granger-causality between two series 

investigated. Hence, the starting point of this testing procedure will be the Granger causality test “A 

variable Yt is said to Granger cause Xt, if Yt contains information to predict Xt that is not available 

otherwise” (Lütkepohl 2006, pp.41).   

 To define the frequency causality test, we consider    as a two-dimensional time series 

vector with t = 1… T. It is supposed that zt has a finite-order VAR representation  where 

is a 2 × 2 lag polynomial with . It is assumed that the vector εt is 

white noise with  and E (εtεt′) = Σ, where  is a positive definite matrix. 

The system is stationary denoted as: 

                                   (12) 

     

The spectral density can then be derived from the previous matrix and expressed as follows: 

                                       (13) 

Spectral analysis enables to identify the cyclical properties of data. The frequency domain 

causality test relies on a modified version of the coefficient of coherence. It allows deriving the 

distributional properties of time series. Let xt and yt  (the variables of interest) be stationary variables of 

length T. The goal of this study is to test whether xt Granger cause yt , at a given frequency λ, even if 

we control for Zt ( additional control variables). Geweke (1982) proposed a measure of causality 

denoted as: 

                        (14) 

As is a complex function of the VAR parameters, Breitung and Candelon (2006) and in 

order to resolve this drawback argue that the hypothesis M x→y/Z (ω) = 0 correspond to a linear 

restriction on the VAR coefficients. 
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(15) 

where  

The significance of the causal relationship can be tested by a standard F-test or by comparing the 

causality measure for ω ∈ [0, π] with the critical value of a χ
2
 distribution with 2 degrees of freedom, 

which is 5.99. 

 

3.4. The Bitcoin energy use 

The electricity use of Bitcoin has yielded to huge difficulties regarding where to put the 

facilities that reckon the proof-of-work of Bitcoin. Throughout this paper and to check if the 

implementation of sidechain limits Bitcoin energy use, we test the causality that runs from Bitcoin 

mining to Bitcoin energy consumption prior and post the introduction of the proof-of-work sidechain. 

To this end, we conduct the frequency domain causality approach explained above. Unlike the causal 

standard approaches that consider the direction of causality between economic variables across the full 

studied period, the frequency causality enables to evaluate causality among different frequencies. 

Basically, the standards measurement of the causality for various periods may be performed by 

standard models by subdividing the sample period to well specific sub-periods. This procedure seems 

vulnerable since it is based on a relatively small number of data that may threaten the robustness of the 

results. To avoid this drawback, the frequency analysis seems able to keep all the observations over 

the period of investigation in each of the frequencies involved. 

 

3.5. Portfolio risk management 

Following Reboredo (2013), we evaluate the usefulness of Bitcoin for portfolio risk 

management by comparing the risks for portfolios composed of Bitcoin and S&P500 stocks (Portfolio 

II) with the risk of a benchmark portfolio composed of stocks only (Portfolio I). Precisely, we attempt 

to examine the potential reduction in the portfolio risk generated by the incorporation of Bitcoin in a 

portfolio prior to and post the implementation of sidechain. We consider a risk-minimizing Bitcoin-

stock portfolio without reducing the expected return. Based on Kroner and Ng (1998)‟s study, at time 

t, the optimal weight of Bitcoin price in this portfolio (wt
BTR

) is denoted as: 
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where ht
BTR

, ht
Stocks

 and ht
BTR,Stocks

 are the conditional volatility of the Bitcoin price, the conditional 

volatility of the stocks and the conditional covariance between the Bitcoin price and the stocks, 

respectively.  

To ascertain the robustness of our results, we also assess the attractiveness of the Bitcoin in 

providing risk protection after the introduction of sidechain, using four different risk measures. For the 

two portfolios I and II, we estimate the Value-at-Risk (VaR), the Expected Shortfall (ES), the semi-

variance (SV) and the regret (RE).  

The VaR provides the maximum loss in a portfolio value for a given time period and confidence level. 

At time t, the VaR for a portfolio with return Rt is given by the p
th
 percentile of the return distribution: 

                                           (17) 
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where yt-1is the information provided at t-1; the VaR can be written as following: 

                                               (18) 

where mt and are the conditional mean and standard deviation for the asset returns, and tv
-1

(p) 

denotes the p
th
quantile of the Student-t distribution with v degrees of freedom. 

The ES is presented as the expected size of the loss given that the VaR is exceeded: 

 .                                          (19) 

The SV determines the returns variations drawn below a specific threshold. Potentially, SV measures 

the return variance of negative returns. It is expressed as follows: 

                                          (20) 

The RE measures the expected value of returns that they are below zero: 

 .                                              (21) 

 

3.6. Data and descriptive statistics 

As mentioned at the outset, this study compares Bitcoin characteristics prior to and post the 

introduction of sidechain in terms of its volatility, its efficiency, its speculative behavior and its 

usefulness as a transaction tool. The Coin Desk Bitcoin Price Index represents an average of Bitcoin 

prices across leading Bitcoin exchanges, and therefore it detects global Bitcoin prices better than other 

alternatives. As a measure of the transactions use, we employ the ratio between trade and exchange 

transaction volume or the ratio between the volumes on the currency exchange markets and in trade. 

Besides, the creation of new bitcoins is mainly determined by the difficulty that mirrors the 

computational power of Bitcoin miners (or the hash rate, HR). The latter is the measuring unit 

of the processing power of the Bitcoin network. It makes an intensive mathematical operation 

that has a significant impact on Bitcoin purchasers.  Since its creation, the trust-minimizing 

consensus of Bitcoin has been allowed by its proof-of-work algorithm. The machines performing the 

“work” consume wide of energy to achieve this work. The Bitcoin Energy Consumption Index (BECI) 

was mainly developed to offer precise information into this amount, and raise consciousness on the 

unsustainability of the proof-of-work algorithm.Table 1 reports all the data used and their sources.  

 

 

Table 1. Data sources 

Variables Definition Sources 

BTR The returns of  Bitcoin price index  CoinDesk (www.coindesk.com/price)  

ETR The exchange trade ratio  Blockchain(http://www.blockchain.info)  

HR The hash rate Blockchain (http://www.blockchain.info)  

BECI The Bitcoin energy consumption index Digiconomist 

(https://digiconomist.net/bitcoin-energy-

consumption) 
 

1 ( ) ( )
t t v t

VaR p t p hm

th

ES E( | ( ))
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R R VaR p 
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 
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 
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Table 2 provides the descriptive statistics for the daily returns
1
 of the variables of Bitcoin 

(BTR), the exchange-trade ratio (ETR), the hash rate (HR) and the Bitcoin energy consumption index 

(BECI) before and after the implementation of sidechain. In particular, we consider two equal periods 

before and after October 30, 2018 (Period 1: from February 01, 2018 till October 30, 2018; Period 2: 

From 31 October till 31 July 2019, i.e., 275 observations each period). We show that the average daily 

returns of all the time series under study is positive for the two considered periods (see Table 2). The 

mean returns are close to zero for all of the return series and appear small relative to their standard 

deviations, which would imply that there is no significant trend in the data. The standard deviation 

values indicate that Bitcoin returns, exchange-trade ratio, the Bitcoin difficulty or the hash rate and the 

Bitcoin energy consumption become less volatile after the introduction of sidechain. For Period 1, the 

skewness coefficient for all the variables is negative and the kurtosis coefficients is above three, 

indicating that the probability distributions of the considered return series are skewed and leptokurtic, 

thereby rejecting normality. On the contrary of Period 1, BTR becomes positively skewed, implying 

that including Bitcoin in a risky portfolio may improve the portfolio‟s skewness and then reduce risk 

exposure. In addition, for Period 1 and Period 2, the Jarque–Bera test statistics imply a rejection of the 

null hypothesis that the time series are normally distributed. 

 

Table 2. Descriptive statistics of return series 

 

Period 1 : Before the introduction of sidechain Period 2 : After the introduction of sidechain 

BTR ETR HR BECI BTR ETR HR BECI 

 Mean  0.0914  0.0416 0.0148 0.0221 0.0816 0.0201 0.0265 0.0613 

 Median  0.0786  0.0386 0.0127 0.0194 0.0692 0.0228 0.0257 0.0481 

 Std. Dev.  6.1257  4.1134 2.1223 1.0310 3.0310 3.0214 1.0393 0.8112 

 Skewness  -0.0500  -0.0678 -0.1950 -0.0372 0.1356 -0.2017 -0.1862 -0.1583 

 Kurtosis  3.6500  4.1578 3.6266 3.9831 3.9812 4.2134 3.6753 3.5167 

 Jarque-Bera  11.263***  13.245*** 24.778*** 14.895*** 12.909*** 15.855*** 11.493*** 17.034*** 

            Notes: in the table denotes statistical significant.  

 

4. Empirical results 

4.1. Bitcoin price volatility 

The conditional variance is a combination of a smoothly evolving GARCH component and a 

jump volatility component. Conditional on the type and the importance of the information shown by 

the news, the jump size may be negative, positive, strong or relatively moderate. Jumps may also 

reflect good or bad news events. Hence, the Bitcoin price dynamics are determined here by the time-

varying rate of jump arrival, jump size, asymmetry and volatility clustering. The volatility refers to the 

amount of risk related to the size of unexpected Bitcoin changes. Table 3 reports the estimation output 

of the GARJI model for Bitcoin price volatility before (Period 1) and after the introduction of 

sidechain (Period 2). The mean equation coefficient µ is significant and close to zero for both periods. 

The GARCH equation of the GARJI model indicates that α, the coefficient measuring the size effect 

of an innovation on volatility is small, whereas β, the coefficient corresponding to the persistence of 

volatility shocks is high for the second period. This implies that innovations in Bitcoin has a modest 

impact on the conditional variance when they arrive but persist in the memory of the variance process 

for a long time. This holds true over the period before the implementation of sidechains. The 

                                                           
1
 The use of daily data enables us to evaluate the immediate market reaction to specific innovations. With high 

frequency data, we can set a narrow time window around each unforeseen event to effectively address whether 

the Bitcoin market responded to particular news. 
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asymmetric effect η appears positive, implying that negative shocks raise volatility more than positive 

shocks.  Interestingly, when considering Period 2 (i.e., post the introduction of sidechains), ηappears 

negative meaning the conditional variance reacts more strongly to positive shocks. Also, unlike the 

Period 2, the jump-size mean coefficient θ is negative when considering Period 1, indicating that 

jumps have a negative impact on the respective return series. Because jumps are highly linked to the 

arrival of abnormal news, this highlights that for Bitcoin return the unusual bad news outweighs the 

unusual good news. The estimation results show that the jump-persistence coefficient λ is stronger for 

Period 2 rather than Period 1. The impact of innovations on the jump intensity,  , appears 

insignificant for Period 2 and significant for the Period 1.  

Table 3. Bitcoin price dynamics: Estimation output of the GARCH with Jump intensity model 

 Period 1 : Before the 

introduction of sidechain 

Period 2 : After the 

introduction of sidechain 

Dependent variable: rt 

Mean Equation 

 

 

0.0416** 

(0.0038) 

-0.0345*** 

(0.0000) 

 

-0.0392** 

(0.0067) 

-0.0267* 

(0.0119) 

Variance Equation 

 
 

3.4821** 

(0.0044) 

4.117*** 

(0.0004) 

 
 

0.0091*** 

(0.0007) 

0.0056*** 

(0.0000) 

 
0.1847 

(0.1011) 

0.3415*** 

(0.0002) 
 0.0514** 

(0.0069) 

-0.1127* 

(0.0183) 

 6.1532*** 

(0.0000) 

11.054** 

(0.0010) 

 -0.0229*** 

(0.0008) 

0.0341* 

(0.0126) 

 0.0954*** 

(0.0000) 

0.1457*** 

(0.0001) 

 

0.0186** 

(0.0054) 

0.0034 

(0.2675) 

Notes: ***, ** and * imply significance at the 1%, 5% and 10%, respectively; rt: the Bitcoin returns at date t; r t-1: 

the lagged Bitcoin returns. 

 

4.2. Bitcoin market efficiency 

Figure 2 describes the multiscaling behavior of the fluctuations Fq (s) versus the time scales 

during the periods before and after the introduction of sidechains. One crossover point can be 

observed for Bitcoin returns over the two periods under consideration (Period 1 and Period 2, 

Figure 1). This reflects a change in the properties of Bitcoin at various scales of time. It is also 

revealed that the function h(q) presents a nonlinear decreasing form for increasing values of q which 

underscore‟s the multifractal nature of Bitcoin market. We find that generally observed irregularities 

including nonlinearities, asymmetries, fat-tails and volatility clustering are embedded in the Bitcoin 

behavior, which makes it risky but a profitable market for investors. In general, the price fluctuations 

in financial markets are governed by a very complex law. This complexity can be explained by the 





1tr
















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nonlinear interactions among heterogeneous agents and by events happening in an external 

environment. 

 

 

Figure 2. Dynamic returns, multifractal spectrum and the curve of Fq(s) vs. s in a log–log 

plot of Bitcoin returns 

Period 1 : Before the introduction of sidechain Period 2 : After the introduction of sidechain 

  
 

After the crossover identification, we compute the fitting curves‟ slopes (i.e., the generalized 

Hurst exponent) and reports the generalized Hurst exponents h(q) for large and small fluctuations. The 

generalized Hurst exponents for various small and large time scales can reflect the autocorrelated 

behavior of the Bitcoin market in the short- and long-term horizons. In general, the short-term traders 

pay attention to the dynamics of Bitcoin prices very frequently. They focus on the analysis of the daily 

Bitcoin prices and execute the transactions at a high frequency. Nevertheless, the long-term traders do 

not concentrate in the evolution of the Bitcoin market every day. Rather, they focus on the market 

long-run circumstances and execute transactions at low frequencies. For our case, we examine the 

different behaviors for the scales of both less than a month and more than a month (for about 30 

trading days). Table 5 reports the generalized Hurst exponents for s < 30 and s > 30 with q varying 

from −5 to 5 for the two periods under study. The evolution of h(q) for s < 30 and for s > 30 appears to 

significantly depend on the values of q, thereby suggesting that the Bitcoin returns are multifractal 

both in the short-run and in the long-run. Besides, we note that all of the generalized Hurst exponents 

are larger than 0.5 for s < 30, highlighting that all kinds of Bitcoin variations seem to be persistent in 

the short-term. However, the generalized Hurst exponents for s > 30 diminish, depending on q. 

Overall, for the two periods under study, we note that the Bitcoin market is distinguished by a long-

memory phenomenon seen in the short-term by the speculating attitudes of investors. In other words, 

Bitcoin is still mainly used for speculative purposes. 
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Table 5. The generalized Hurst exponents of Bitcoin returns with q varying from -5 to 5 

 Period 1 : Before the 

introduction of sidechain 

Period 2 : After the introduction 

of sidechain 

q s<30 s>30 s<30 s>30 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

0.8819 

0.6289 

0.7312 

0.5912 

0.5067 

0.5193 

0.5877 

0.6234 

0.7251 

0.7714 

0.8213 

0.7234 

0.7003 

0.6642 

0.6131 

0.5432 

0.5817 

0.5072 

0.4671 

0.4118 

0.4038 

0.4211 

0.6453 

0.7124 

0.6815 

0.5596 

0.5318 

0.5064 

0.5976 

0.5159 

0.6342 

0.6651 

0.7038 

0.5987 

0.6324 

0.6192 

0.5982 

0.5641 

0.5389 

0.4126 

0.3851 

0.3214 

0.2658 

0.1943 

 

 

Table 6 summarizes the mean values of IDM in the Equation (11) during periods of upward and 

downward linear trends of the Bitcoin price index for the period before the introduction of sidechain 

(Period 1) and the period after implementation of sidechain (Period 2). To test the significance of the 

difference of IDM, we utilize the following equation: 

IDMi = α + β∗Di + εi  (16) 

Where IDMi describes the value of IDM defined in Eq. (12) for Bitcoin return series in the i
th
 rolling 

window. Di is a binary variable where Di equals 1 if the Bitcoin price index in the i
th
 time window 

shows an upward trend, and Di equals 0 otherwise. Finally, εi is the stochastic noise. 

For the period 1, we find that the IDM mean value during the upward period is stronger than 

during the downward period for Bitcoin, implying less efficiency in period of distress. The findings 

change fundamentally when accounting for the period 2. Specifically, we show that Bitcoin becomes 

more efficient in downward periods rather than upward times. This underscores that the introduction 

of the sidechain increases the Bitcoin predictability power, highlighting that investors could better use 

the forecasting predictability to evaluate the risk and make better portfolio choices based on the market 

conditions.  

 

Table 6. IDM mean values during downward and upward periods 

 Period 1 : Before the introduction of 

sidechain 

Period 2 : After the introduction of 

sidechain 

 Downward 

trends 

Upward 

trends 

t-statistics Downward 

trends 

Upward 

trends 

t-statistics 

BTR 0.2145 0.1817 -11.4261*** 0.1614 0.1891 -2.6751** 

Notes: ** and ***:  indicates significance at the 5% and 1% levels. 

 

4.3. Bitcoin as a transaction tool 

Instead of computing a single Granger causality measure for the entire causality running from 

BTR to the ETR, the direction of the Granger causality is determined here for different frequency 

components. Precisely, the covariance of these variables is decomposed into various spectral 

components. Figure 3 contains the test statistics with their 5 percent critical values (blue line) over the 
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interval [0, π] for the causal relationship between BTR and ETR over Period1 and Period 2 under 

consideration. Prior to the introduction of sidechains (i.e., Period 1), we observe that the null 

hypothesis of BTR no Granger-cause ETR is rejected for for  corresponding to a 

cycle length of 79 days
2
. When we consider the period after the introduction of sidechains, the results 

change but not markedly. In particular, we note an improvement in the Bitcoin‟s function as a 

transaction tool. Specifically, there exists a significant causality running from BTR to ETR in the 

short-term but with more extent, for ω less than 2.16 for a cycle length of 87 days, superior to that of 

the first period. This outcome may be attributed the sidechain‟s capacity to speed up the circulation of 

money by shortening block validation times and to an enhancement in the scalability of Proof of Work 

and then in the Bitcoin payment services.  

 

 

Figure 3 The frequency domain causality between Bitcoin price and exchange trade ratio 

Period 1 : Before the introduction of sidechain Period 2 : After the introduction of sidechain 
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Notes: The horizontal line (in blue) represents the 5.99% critical value of the null hypothesis test of no Granger causality at 

frequency w.  

 

4.4.Energy use of Bitcoin 

Some previous studies indicated that the Bitcoin‟s electricity consumption is likely to be large-

ranging, about 20-80 TWh annually, or approximately 0.1-0.3% of the global electricity usage (see, 

for instance, Bendiksen et al. 2018; Bevand, 2018;  De Vries, 2018; Digiconomist, 2019;  among 

others). The increasing Bitcoin‟s price, especially in December 2017, rises the hash rate and difficulty, 

and pushes the development and deployment of more powerful and energy efficient mining hardware. 

From these analyses (see Figure 1), we clearly note that since the trustless construction for proof-of-

work sidechain on October 2018, the Bitcoin energy use collapse, but such a decline seems short-

lived.  

 

 

                                                           
2
 Recall that the frequency )(   on the horizontal axis can be translated into a cycle or periodicity of T days by

)/2( T , T is the period. 

 

]03.3;38.2[ 

https://coinshares.co.uk/wp-content/uploads/2018/11/Mining-Whitepaper-Final.pdf
http://blog.zorinaq.com/bitcoin-electricity-consumption/#summary
https://doi.org/10.1016/j.joule.2018.04.016
https://digiconomist.net/bitcoin-energy-consumption
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Figure 4. Bitcoin energy use estimates 

 
Source: International Energy Agency (IEA); https://www.iea.org/newsroom/news/2019/july/bitcoin-energy-use-

mined-the-gap.html 

 

Throughout the rest of our analysis, we check the consistency of these results by testing the 

causal relationship between Bitcoin mining and Bitcoin energy use. Figure 5 contains the test statistics 

with their 5.99 percent critical values (blue line) over the interval [0, π]. We try to evaluate whether 

Bitcoin mining proxied by the hash rate Granger-cause Bitcoin energy consumption, and whether this 

causality is affected by the implementation of sidechain across different frequencies. We provide 

evidence of short-run predictability for the first period, corresponding to cyclical components with 

wave lengths inferior to 2.27 corresponding to 83 days. For Period 2, the causality running from 

Bitcoin mining to Bitcoin energy consumption vanishes but moderately for wave length of less than 

2.49 corresponding to 76 days.  

Figure 5.  The frequency domain causality between Bitcoin mining and Bitcoin energy consumption 

Period 1 : Before the introduction of sidechain Period 2 : After the introduction of sidechain 
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Notes: The horizontal line (in blue) represents the 5.99% critical value of the null hypothesis test of no Granger causality at 

frequency w.  
 

 

https://www.iea.org/newsroom/news/2019/july/bitcoin-energy-use-mined-the-gap.html
https://www.iea.org/newsroom/news/2019/july/bitcoin-energy-use-mined-the-gap.html
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4.5.Portfolio risk management 

Table 7 reports the risk evaluation findings at the 99% confidence level for Bitcoin and S&P500 

stocks
3
 in order to underscore if the introduction of sidechain improves the performance of Bitcoin as 

a diversifier.  Our findings, firstly, indicate that the risk reduction measure reveals that the weighted 

portfolio II can help investors reduce risk much more than the portfolio I composed only by stocks. In 

particular, the introduction of Bitcoin in the S&P500 stock portfolio, market participants reach a more 

pronounced risk reduction especially for the period following the implementation of sidechain. 

Second, the conditional coverage test implies that the portfolio composed of Bitcoin and stocks 

perform well with respect the VaR, since the null of correct conditional coverage cannot be rejected at 

the 5% significance level. This holds for the two periods under study. Third, for period 2, we find no 

evidence of expected loss (ES) for the portfolio including stocks and Bitcoin. As far as SV and RE are 

concerned, portfolio II provides a high risk reduction. Summing up, the results derived from all the 

considered risk measures underpin that the diversified portfolio II is likely to perform better than 

portfolio I, particularly for the second period. This implies that sidechain enhances the diversification 

ability of Bitcoin. This result is not surprising. The sidechain technology provides a more secure, rapid 

and confidential way to transfer Bitcoin. This would undoubtedly plays a significant impact in 

reducing the volatility of Bitcoin, and in turn induces to a less risky Bitcoin.   

 

                 Table 7. Risk evaluation for Bitcoin and S&P500 stocks portfolios 

 
Period 1 : Before the 

introduction of sidechain 

Period 2 : After the 

introduction of sidechain 

Risk Red. 0.1756* 0.2345* 

Cond. Cov. 0.1589* 0.1972* 

VaR Red. 0.0982 0.1124* 

ES Red. 0.1345 0.1752* 

SV Red. 0.2817* 0.5461* 

Re Red. 0.2146* 0.3284* 

Notes: This table displays the risk evaluation outcomes for portfolios composed of Bitcoin and S&P500 stocks compared to a 

portfolio composed only of S&P500 stocks. Risk Red indicates the risk effectiveness ratio; Cond cov indicates the P values 

for the conditional coverage test; VaR. Red is the reduction in the value-at-risk portfolio II with portfolio I. Similarly, ES 

Red., SV Red. and Re Red indicate, respectively, a reduction in expected shortfall, semivariance and regret; *: indicates 

significance at the 5% level. 

 

4.6.Robustness checks 

We now investigate how various econometric specifications and data may change our 

estimates. We first assess the robustness of our findings in terms of the persistence of volatility, we 

use an optimal GARCH model determined via the Akaike information criterion. Based on this 

criterion, the best GARCH extensions chosen to capture the volatility of Bitcoin  is the Threshold 

GARCH model for the period 1 and the Exponential GARCH model for the period 2
4
. The Threshold-

                                                           
3
 The S&P 500 stock market index incorporates 505 common stocks issued by 500 large-cap companies and 

traded on American stock exchanges, and covers nearly 80 percent of the American stock market by 

capitalization.  
4
The detailed Akaike information criterion results will be available for interested readers upon request.   

 

https://en.wikipedia.org/wiki/Stock_market_index
https://en.wikipedia.org/wiki/Common_stock
https://en.wikipedia.org/wiki/Market_capitalization
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GARCH developed by Zakoin (1994) accommodates structural breaks in volatility. It allows 

describing the regime shifts in the volatility, denoted as: 

 (22)                             

 where , ,  and  are the parameters to estimate. 

The Exponential- GARCH introduced by Nelson (1991) contributes to the standard GARCH model by 

allowing to control for asymmetry. This model specified the conditional variance in a logarithmic 

form: 

(23) 

where , , , are the parameters to estimate, and ztthe standardized value. 

The volatility parameters derived from the optimal GARCH models are reported in Table 4. 

We show that the volatility persistence appears much more pronounced for Period 1 prior to the 

implementation of sidechain rather than Period 2, consistently with GARCH-jump model outcomes 

(see Table 3). Even though Bitcoin seems to be more reactive to bad news in Period 1 (negative 

leverage effect) it becomes relatively more responsive to good news over Period 2 (negative leverage 

effect). 

Table 4. Bitcoin price dynamics: Estimation output of the optimal GARCH model 

 Period 1 : Before the 

introduction of sidechain 

Period 2 : After the introduction of 

sidechain 

Dependent variable: rt 

Mean equation 

 
 

3.0781*** 

(0.0000) 

4.1532** 

(0.0045) 

rt-1 0.1876*** 

(0.0000) 

0.2342* 

(0.0112) 

Variance equation 

 
 

0.018 

(0.1467) 

-0.111*** 

(0.0000) 

 
 

0.5452*** 

(0.0000) 

0.131** 

(0.0089) 

 
 

0.2183 

(0.1349) 

0.411*** 

(0.0000) 

 

0.2049** 

(0.0067) 

-0.003* 

(0.0167) 

The duration of persistence: 

 

0.85 0.54 

The leverage effect: 

 

0.114 0.153 

Notes: ***, ** and * imply significance at the 1%, 5% and 10%, respectively; rt: the Bitcoin returns at date t; r t-1: the lagged 

Bitcoin returns. : the reaction of conditional variance; α: the ARCH effect; β: the GARCH effect; : the leverage effect. 
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We re-run also the frequency-domain causality tests for the relationship between Bitcoin price 

and the exchange-trade ratio while accounting for potential control variables including Bitcoin 

velocity, gold price and economic policy uncertainty and the implied volatility index (i.e., conditional 

data analysis). Similarly, for the causality running from Bitcoin mining to Bitcoin energy use, we re-

conduct the same exercise while considering the cost of per transaction as a determinant of the 

difficulty in Bitcoin mining. To test the sensitivity of the impact of sidechain on Bitcoin diversification 

and downside risk opportunities, we consider further portfolios, Portfolio III composed of Bitcoin and 

U.S. bonds and Portfolio IV composed of Bitcoin and one commodity (in particular, Oil). Our results 

are still fairly robust. We usually find that the introduction of sidechain mitigates the volatility of 

Bitcoin, improves its transaction and diversification abilities. To keep the simplicity and the clarity of 

our presentation, the results are available for interested readers upon request. 

 

5. Conclusions 

The present research is the first, to the best our knowledge, to examine the properties of 

Bitcoin with respect volatility, speculation, efficiency and its usefulness as a transaction tool prior 

to and post-the introduction of sidechains. Using different econometric tools, our results reveal 

that Bitcoin behaves distinctly after the introduction of sidechain with regard its volatility, its 

efficiency, its multifractal and speculative bahaviors and its use in transactions. It is shown that after 

the introduction of sidechains a) Bitcoin appear less volatile, less persistent and relatively more 

responsive to good news, b) the Bitcoin market has more pronounced predictability power during 

downward periods than upward periods; c) the usefulness of Bitcoin as a transaction tool increases 

even moderately.  

Some potential elements have been advanced to explain the declining volatility and the 

improvement in the predictability power and the Bitcoin use in transactions. First, sidechains allow a 

reduction in the volatility of cryptocurrencies, with large extent Bitcoin. One of the most specific 

characteristics of cryptocurrency market is. the juxtaposition of the certainty of supply and the 

uncertainty of demand.  The supply of these cryptocurrencies, like the Bitcoin, is programmed to grow 

along a pre-determined path. Conversely, the demand of such cryptocurrencies is volatile and subject 

to shocks.  A shock to money demand combined with fixed money supply makes the purchasing 

power of cryptocurrencies based on the blockchain technology highly volatile. An inelastic supply 

with a volatile demand reinforces the instability of cryptocurrencies blockchain based (Sanchez, 

2016). Moreover, the predetermined pace in a blockchain of tokens creation promotes speculation. The 

exchange-rate of Bitcoin relies strongly on the volume of transactions in bitcoins which is some way 

an expression of the demand (Hueber, 2018). First, the introduction of a sidechain pegged to a parent 

blockchain (like the Bitcoin blockchain) can stabilize the volume of transaction and into de facto the 

volatility of the internal value of the Bitcoin. Furthermore, introducing a demurrage mechanism into 

the sidechain can contribute significantly to a decrease of the volatility of the cryptocurrency of the 

parent chain. The implementation of a demurrage device on the main chain improves the buy / sell 

relationships within the network of the sidechain. (Hueber, 2019). Second, sidechains reduce 

inflationary pressures. In addition to its propensity for stability, the sidechain is not subject to 

inflationary pressures unlike what happens on the Bitcoin system. Third, sidechains significantly 

shorten the time required to certify e-money transactions.  Fourth, one of major advantages of 

sidechain is to attain a certain level of decentralisation. The latter improves the network security, since 

it is not easier to carry out a hacker attack on a decentralized solution. The fact that the causality from 

Bitcoin mining to Bitcoin energy consumption collapses implies that sidechain liquid network lead to 

a less energy intensive and in turn less polluting Bitcoin system. But the moderately vanishing 



20 
 

causality means also that the concentration of miners is still follow available electrical supply. Overall, 

Bitcoin mining remains to be centralized in locations with high electrical supply. It must be added at 

this stage that a sidechain can process a large number of transactions without affecting the 

decentralization of the parent chain. Far less energy-consuming than the parent chain, a sidechain de 

facto reduces transaction costs. Last but not least, the Value-at-Risk approach to risk management is 

conducted, providing improved usefulness of Bitcoin in expanded stocks portfolio with the 

introduction of sidechain, in terms of diversification opportunities and downside risk reductions. 

The sidechain‟s technology is constantly evolving but such a technology still pursues the same 

objectives of safety, stability, speed of circulation without compromising the parent chain. 

 

 
References 

 

Back, A.: Announcing sidechain elements: Open source code and developer sidechains for advancing 

bitcoin (2015), Blockstream blog post, Available at: 

https://blockstream.com/2015/06/08/714/ 

 

Bariviera, A.F., (2017) “The Inefficiency of Bitcoin Revisited: A Dynamic Approach.” Economics 

Letters 161, 1-4. 

 

Bendiksen, C., Gibbons, S. and Eugene, L., (2018) “The Bitcoin Mining Network”, Available at: 

  https://coinshares.co.uk/research/bitcoin-mining-network-november-2018. 

 

Bevand, M., (2017) “Electricity consumption of Bitcoin: a market-based and technical analysis”, in 

mrb‟s blog, Available at: http://blog.zorinaq.com/bitcoin-electricity-consumption/ 

 

Böhme, R., Christin, N., Edelman, B. G. and Moore, T., (2015) „Bitcoin: Economics, Technology, and 

Governance.‟ Journal of Economic Perspectives 29 (2).  

 

Bouoiyour, J., Selmi, R.  and Tiwari, A-K., (2015) “Is Bitcoin business income or speculative foolery? 

New ideas through an improved frequency domain analysis.” Annals of Financial Economics 10(1), 1-

23. DOI: 10.1142/S2010495215500025 

 

 

Bouoiyour, J., Selmi, R., Wohar, M., (2018) “Measuring the response of gold prices to uncertainty:  

An analysis beyond the mean.” Economic Modelling 75(C), 105-116. 

 

Bouoiyour, J., Selmi, R., (2019) “Should Bitcoin be used to help devastated economies? Evidence 

from Greece.”  Economics Bulletin 39(1), 513-520. 

 

Breitung, J., and Candelon, B., (2006) “Testing for short and long-run causality: a frequency domain 

approach.”  Journal of Econometrics 132, 363-378.  

 

Buchholz, M, Delaney, J, Warren, J, and Parker, J, (2012) “Bits and Bets, Information, Price 

Volatility, and Demand for Bitcoin.” Economics 312. Available at: 

http://www.bitcointrading.com/pdf/bitsandbets.pdf  

 

Cajueiro, D. O., Tabak, B. M., (2005) “Testing for time-varying long-range dependence in volatility 

for emerging markets.” Physica A: Statistical Mechanics and its Applications 346(3), 577-588. 

 

https://blockstream.com/2015/06/08/714/
file:///C:\Users\COMPUTER\Desktop\Bendiksen,%20C.,%20Gibbons,%20S.%20and%20Eugene,%20L.,%20(2018)%20�The%20Bitcoin%20Mining%20Network�,%20Available%20at:%0d
file:///C:\Users\COMPUTER\Desktop\Bendiksen,%20C.,%20Gibbons,%20S.%20and%20Eugene,%20L.,%20(2018)%20�The%20Bitcoin%20Mining%20Network�,%20Available%20at:%0d
https://coinshares.co.uk/research/bitcoin-mining-network-november-2018
file:///C:\Users\COMPUTER\Desktop\Bevand,%20M.,%20(2017)
file:///C:\Users\COMPUTER\Desktop\Bevand,%20M.,%20(2017)
http://blog.zorinaq.com/bitcoin-electricity-consumption/
http://www.bitcointrading.com/pdf/bitsandbets.pdf


21 
 

Danthine, J.-P., (1977) “Martingale, market efficiency and commodity prices.” European Economic 

Review 10, 1–17. 

 

De Vries, A., (2018) “Bitcoin‟s Growing Energy Problem”, DOI: 

https://doi.org/10.1016/j.joule.2018.04.016 

 

Fama, E., (1970) “Efficient Capital Markets: A Review of Theory and Empirical Work.” Journal of 

Finance 25, 383–417. 

 

Geweke, J. (1982), “Measurement of linear dependence and feedback between multiple time series.” 

Journal of American Statistical Association 77, 304-324. 

 

Granger, C.W.J. (1969), “Investigation causal relations by econometric models and cross-spectral 

methods.” Econometrica 37, 424-438.  

 

He, S., and Wang, Y., (2017) “Revisiting the multifractality in stock returns and its modeling 

implications.” Physica A: Statistical Mechanics and its Applications 467, 11-20. 

Hueber, O., (2018) “The Blockchain and the sidechain innovations for the electronic commerce 

beyond the Bitcoin's framework”, International Journal of Transitions and Innovation Systems, Vol 6, 

Issue 1, 88–102  

 

Hueber, O., (2019) “Sidechain and Volatility of cryptocurrencies based on the block-chain 

technology” International Journal of Community Currency Research 23 Issue 2 (Summer 2019) 35-44  

 

Koutsoyiannis, A., (1983) “A short-run pricing model for a speculative asset, tetest with data from the 

gold bullion market.” Applied Economics 15, 563–581. 

 

Kwapień, J., Oświęcimka P., and Drożdż, S., (2005) “Components of multifractality in high-frequency 

stock returns.” Physica A 355, 466–474. 

 

Lütkepohl, H. (2006), “Structural vector autoregressive analysis for cointegrated variables.” AStA  

Advances in Statistical Analysis, 90, 75-88. 

Maheu, J. M., McCurdy, T. H., (2004). “News Arrival, Jump Dynamics, and Volatility Components 

for Individual Stock Returns.” The Journal of Finance 59 (2), 755-793. 

Merkle R.C., (1987) “A digital signature based on a conventional encryption function,” in Advances in 

Cryptology - CRYPTO ‟87, A Conference on the Theory and Applications of Cryptographic 

Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings, 369– 378.  

 Mora, C.,  Rollins, R.L.,  Taladay, K., Kantar, M.B.,  Chock, M.K.,  Shimada, M. and  Franklin, E.C., 

(2018). “Bitcoin emissions alone could push global warming above 2°C.” Nature Climate Change  8,  

931–933. 

Möser, M. Böhme, R., and Breuker D., (2013) “An inquiry into money laundering tools in the Bitcoin 

ecosystem.” 2013 APWG eCrime Researchers Summit.‟ Available at : 

https://ieeexplore.ieee.org/document/6805780 

 

Nelson, D.B., (1991) “Conditional heteroskedasticity in asset returns: a new approach.” Econometrica 

59. 

https://www.cell.com/joule/fulltext/S2542-4351(18)30177-6
https://doi.org/10.1016/j.joule.2018.04.016
https://www.nature.com/articles/s41558-018-0321-8#auth-1
https://www.nature.com/articles/s41558-018-0321-8#auth-2
https://www.nature.com/articles/s41558-018-0321-8#auth-3
https://www.nature.com/articles/s41558-018-0321-8#auth-4
https://www.nature.com/articles/s41558-018-0321-8#auth-5
https://www.nature.com/articles/s41558-018-0321-8#auth-6
https://www.nature.com/articles/s41558-018-0321-8#auth-7
https://www.nature.com/nclimate
https://ieeexplore.ieee.org/document/6805780


22 
 

Oświęcimka, P., Kwapień, J., Drożdż, S., (2005) “Multifractality in the stock market: price increments 

versus waiting times.” Physica A 347, 626–638. 

 

 

Reboredo, J.C., (2013) “Is gold a safe haven or a hedge for the US dollar? Implications for risk 

management.” Journal of Banking and Finance 37, 2665-2676 

 

Rizvi, S. A. R., Dewandaru, G., Bacha, O. I., Masih, M., (2014) “An analysis of stock market  

efficiency: Developed vs Islamic stock markets using MF-DFA.”  Physica A: Statistical  Mechanics 

and its Applications 407, 86-99. 

 

Rizvi, S. A. R., Arshad, S., (2017) “Analysis of the efficiency–integration nexus of Japanese  stock 

market.” Physica A: Statistical Mechanics and its Applications 470, 296-308. 

 

 

Sanches D., (2016) “On the inherent instability of private money”, Review of Economic Dynamics, 

Vol 20, 198-214 

 

Selmi, R., Bouoiyour, J., Mensi, W., Shawkat, H., (2018) “Is Bitcoin a hedge, a safe haven or a 

diversifier for oil price movements? A comparison with gold.” Energy Economics 74 (C), 787-801. 

 

Sensoy, A., (2013) “Generalized Hurst exponent approach to efficiency in MENA markets.” Physica 

A: Statistical Mechanics and its Applications 392 (20), 5019-5026. 

 

 

Vasek, M., and Moore, T., (2016) „There‟s No Free Lunch, Even Using Bitcoin: Tracking the 

Popularity and Profits of Virtual Currency Scams.‟ 19th International Conference on Financial 

Cryptography and Data Security (FC), San Juan, PR, January 26–30. Available at: 

https://fc15.ifca.ai/preproceedings/paper_75.pdf 

 

Wang, Q., Zhu, Y., Yang, L., Mul, R. A., (2017) “Coupling detrended fluctuation analysis of  Asian 

stock markets.”  Physica A: Statistical Mechanics and its Applications 471, 337-350. 

 

Yermack, D. (2013) “Is Bitcoin a real currency? An economic appraisal.” NBER working paper n° 

19747. 

 

Zakoian, J.M., (1994) “Threshold Heteroskedastic Models.” Journal of Economic Dynamics and 

Control 18, 931-955. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://fc15.ifca.ai/preproceedings/paper_75.pdf


23 
 

(i) 

(ii) 

(iii) 
(iv) (v) 

(vi) 

 

 

 

 

 

 

 
Appendix A. The working principle behind the Sidechain 

 

  

The solution chosen to transfer assets from the parent chain (i.e. the Bitcoin's blockchain) to the 

sidechain lies in providing proofs of possession in the transferring transactions themselves. When 

moving assets from one blockchain (i.e. the parent chain) to another (i.e. the sidechain), a transaction 

on the first blockchain is beforehand created for locking the assets. The protocol is the following: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) An amount of as-yet unspent Bitcoins is locked.  The locked Bitcoins holder publishes its 

public key and proves its property by signing with its private key. The locked Bitcoins are 

sent to a specially formed address designed so that the coins are now out of control of 

their holder and out of the control of anybody else either.     

(ii) A message containing a proof that a fix number of Bitcoins are locked with the public key 

of its holder is sent to the Sidechain. A cross-chain transfer protocol determines how 

assets can be sent from the parent chain to the sidechain and vice versa. 
(iii) Peg-in process: The sidechain creates the exact same number of tokens (cryptocurrencies 

or others) than the locked bitcoins and gives to the locked bitcoins holder the control of 

them. For every bitcoin pegged into the sidechain one X-BTC is unlocked or created. 

(iv) The X-BTC holders can use them to settle transactions in the community of the Sidechain 

network.  

Locked 

Bitcoins 
X – BTC  

Parent 

Chain 
Sidechain 
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(v) Peg-out process: The transfer back on to the Bitcoin chain requires the Locked Bitcoin 

holder on the parent chain to go through a Federation member of the network. 

(vi) The locked bitcoins on the parent chain can be unlocked only if a federation member 

proves they‟re no longer being used elsewhere in the sidechain network. The parent chain 

simply accepts a Simple Payment Verification (SPV) proof that X-BTC were locked on 

the sidechain in order to unlock coins on the parent chain. 

 

 
 

Appendix B. The operating principle of tokens creation in a Sidechain  

 

Suppose the existence of a sidechain issuing its own private monetary units (let's name the S-BTC). 

Suppose now that this sidechain is pegged to the Bitcoin's Blockchain (Parent chain). Any holder of X 

S-BTC (input) can create an output of X+Y S-BTC which is validate as long as the sum of the input is 

equal of the total amount of the output. 

The output is equal to the sum of output 1 + output 2  

output 1 = X + Y 

output 2 = - Y 

Output 1 + output 2 = X = input 

Of course, Y is positive, and the output has to be smaller than the input (Y<X) 

By translating the token creation mechanism in the sidechain into accounting perspective, such 

mechanism can be described by the following: 

 

 

Sidechain    
Assets (inputs) Liabilities (outputs)  

S-BTC  X S-BTC   

S-BTC  

X +Y 

-Y 

 

The output 2 is similar to a financial claim held by the holder of the input. Such a holder must never 

spend the output 2 (-Y). Anyone in the sidechain (i.e. the community network of S-BTC users) can 

create an asset and quantities created are validated when sending (if sum outputs = sum inputs). The 

created assets (Y) and their associated amounts can be confidential or not.  

 

 

 

 
Appendix C. The operating principle of the validation of a single transaction  

 
 
Suppose Alice and Bob, two members of a sidechain. Alice owns 20 S-BTC and Bobs owns 5 movie 

tickets. Alice doesn't know how many movie tickets Bobs has and conversely, Bob has no idea of the 

richness of Alice in S-BTC. Alice wants to buy 2 movie tickets to Bob at the price of 3 S-BTC for 1 

ticket. Bob agrees with such an amount and such a price. This single transaction is validated as follow: 

Sum of inputs = 20 S-BTC + 5 L - movie tickets 

Sum of outputs = output 1 (Alice) + output 2 (Bob)  

                            = (14 S-BTC + 2 Movie Ticket) + (6 S-BTC + 3 movie Ticket)  

 

Sidechain   
Assets (inputs) Liabilities (outputs)  

Alice S-BTC 

 

 20 

  

Alice S-BTC   

 

14 + 6  

(6 = 2 movie tickets) 
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Bob S-BTC  

(5 movie Tickets) 

 

 

15  

Bob S-BTC  

 

6 + 9 

(9 = 3 movie tickets)  

 

Total assets 35  Total 

Liabilities 

35 

 

 

 


