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Abstract

Although several in vitro and ex vivo evidence support the existence of lactate exchange

between astrocytes and neurons, a direct demonstration in vivo is still lacking. In the present

study, a lentiviral vector carrying a short hairpin RNA (shRNA) was used to downregulate

the expression of the monocarboxylate transporter type 2 (MCT2) in neurons of the rat

somatosensory cortex (called S1BF) by ~ 25%. After one hour of whisker stimulation,

HRMAS 1H-NMR spectroscopy analysis of S1BF perchloric acid extracts showed that while

an increase in lactate content is observed in both uninjected and shRNA-control injected

extracts, such an effect was abrogated in shMCT2 injected rats. A 13C-incorporation analy-

sis following [1-13C]glucose infusion during the stimulation confirmed that the elevated lac-

tate observed during activation originates from newly synthesized [3-13C]lactate, with blood-

derived [1-13C]glucose being the precursor. Moreover, the analysis of the 13C-labeling of

glutamate in position C3 and C4 indicates that upon activation, there is an increase in TCA

cycle velocity for control rats while a decrease is observed for MCT2 knockdown animals.

Using in vivo localized 1H-NMR spectroscopy, an increase in lactate levels is observed in

the S1BF area upon whisker stimulation for shRNA-control injected rats but not for MCT2

knockdown animals. Finally, while a robust BOLD fMRI response was evidenced in control

rats, it was absent in MCT2 knockdown rats. These data not only demonstrate that glucose-

derived lactate is locally produced following neuronal activation but also suggest that its use

by neurons via MCT2 is probably essential to maintain synaptic activity within the barrel

cortex.
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Introduction

As early as the end of the 19th century, a link between cerebral activity and blood flow modi-

fications has been established [1–3]. Nearly one century later, with the emergence of neuroimag-

ing techniques such as PET or fMRI, an uncoupling phenomenon between glucose and oxygen

consumption during brain activation was revealed, suggesting a non-oxidative glucose consump-

tion during neuronal activity [4,5]. A putative explanation for such an uncoupling came in 1994,

with the astrocyte-to-neuron lactate shuttle (ANLS) hypothesis [6]. The ANLS proposed a meta-

bolic cooperation between astrocytes and neurons; astrocytes providing glycolytic lactate as an

energetic substrate to the more oxidative neurons during brain activation, the release of the neuro-

transmitter glutamate being the signal for this coupling. Indeed, astrocytes are ideally located

between blood vessels, which bring oxygen and glucose to the brain parenchyma, and neurons.

Moreover, astrocyte endfeet are in very close proximity with the endothelial cells of brain capillar-

ies. Indeed, brain microvessels are almost entirely covered by astrocyte endfeet in the rat hippo-

campus [7], suggesting it might constitute a prominent blood-borne glucose uptake site.

The role of astrocytic lactate as an energetic substrate for neurons has been debated during

the last twenty years during which numerous in vitro experiments were conducted in support

of the concept (for a review, see [8,9]). In addition, two in vivo experiments have highlighted

the importance of glutamate transporters in this astrocyte-neuron metabolic coupling [10,11].

Both studies were conducted in the somatosensory area S1BF, also called the barrel cortex,

which can be stimulated by mechanical activation of the whiskers. In the present study, we

chose to use also the well-defined whisker-to-barrel pathway [12], which offers unique oppor-

tunities for studying metabolism during neuronal activation.
13C-nuclear magnetic resonance (NMR) spectroscopy is a powerful technique to investigate

neuronal and astrocytic metabolism. Design of 13C-NMR studies with 13C-enriched substrates

is very similar to classical 14C-radiolabeling experiments but 13C-precursors are rather infused

in substrate amounts, and allow to follow the fate of the 13C-substrate downstream its metabo-

lism, while 14C-precursors are administered in tracer amounts, and, even if frequently used to

measure brain activation [13], are trapped after the first glycolysis step. In addition to be non-

radiating, 13C-NMR presents other important advantages compared to 14C, since the detection

of 13C in the different carbon positions of a specific metabolite does not require further mole-

cule degradation [14]. Moreover, analysis by 13C-NMR of homonuclear spin-coupling patterns

(shape of the peaks present on the spectrum) allows to determine if two or more 13C-atoms

are present in the same metabolite molecule. 13C-NMR was previously used in vitro to demon-

strate that lactate was preferentially consumed by neurons compared to glucose when both

substrates were present in the medium [15,16], and ex vivo experiments have shown that when

[3-13C]lactate was infused into rats, this 13C-labeled substrate entered the brain and was selec-

tively consumed by neurons [17,18]. However, in vivo evidence that lactate metabolized by

neurons comes from astrocytes has still not been established.

Lactate shuttling requires the expression of specific lactate transporters, called monocarbox-

ylate transporters (MCTs). MCTs are proton-linked membrane carriers involved in the trans-

port of monocarboxylates such as lactate, pyruvate, and ketone bodies. They belong to a large

transporter family composed of 14 members based on sequence homologies. MCTs were

found in various tissues including the brain in which 3 isoforms, MCT1, MCT2 and MCT4

have been described. Each of these isoforms exhibits a distinct regional and cellular distribu-

tion in the rodent brain [19]. At the cellular level, MCT1 is expressed by endothelial cells,

ependymocytes, oligodendrocytes and astrocytes. MCT4 expression appears to be specific for

astrocytes. In contrast, the predominant neuronal monocarboxylate transporter was found to

be MCT2 [20]. Interestingly, part of MCT2 immunoreactivity is located at postsynaptic sites,
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suggesting a particular link between monocarboxylate utilization and synaptic transmission.

In addition to variation in expression during development and upon nutritional modifications,

new data indicated that MCT expression in both neurons and astrocytes is regulated at the

translational or transcriptional level by various signals, which are also implicated in synaptic

plasticity (e.g. BDNF or NO; [21–24]). Moreover, it was shown in a learning and memory task

involving the hippocampus that the expression of all three brain MCTs is critical for the acqui-

sition of this paradigm, suggesting that neuron-glia metabolic interactions involving MCTs

are critical for synaptic plasticity [25].

The aim of this study was to determine if the neuronal lactate transporter MCT2 is required

for proper substrate use by neurons during brain activation. We therefore quantified the brain

lactate content by 1H-NMR spectroscopy and analyzed the fate of [1-13C]glucose by 13C-NMR

spectroscopy in control, shRNA-control injected rats (called UNIV rats) and MCT2 knock-

down rats (called MCT2 rats), at rest or during whisker stimulation. Moreover, we examined

the BOLD fMRI response of the somatosensory cortex associated with whisker stimulation.

Materials and methods

Animals and infusion techniques

The experimental protocols used in this study were approved by appropriate institutional

review committee (Comité pour l’expérimentation animale Bordeaux), meet the guidelines of

the responsible governmental agency and were performed by the person having its own animal

experiment accreditation (authorization n˚5012090-A). No animal utilized for this work

became ill or died prior to the experimental endpoint.

Animals: Female Wistar rats (200 g, purchased from Janvier Labs, Le Genest Saint Isle,

France) were housed in a room with controlled temperature (21–23˚C) and a 12/12h normal

light/dark cycle. Three groups of animals were studied: control rats (Control rats), rats that

previously received a local injection into the somatosensory cortex of a lentiviral vector encod-

ing a shRNA directed against MCT2 (MCT2 rats) or a non targeting sequence (UNIV rats).

Plasmids and viral vectors

Lentiviral vectors containing the sequence coding for the green fluorescent protein (GFP) as

well as either a shRNA directed against MCT2 or a control sequence (shUNIV) have been

produced. To generate lentiviral vectors expressing shMCT2 and a control shRNA, oligonucle-

otides containing 17 nucleotides from the H1 promoter, the sense-strand, a loop, the anti-

sense strand for rat and mouse shMCT2 and a universal control sequence (no target in rodent

genomes) were synthesized. shMCT2: CTAGTTTCCAAAAATAGGATTAATAGCCAACACTAT
GACAGGAAGTAGTGTTGGCTATTAATCCTAGGGGATCTGTGGTCTCATACAGAAC, shUNIV:

CTAGTTTCCAAAAAGTATCGATCACGAGACTAGTGACAGGAAGCTAGTCTCGTGATCGATACG
GGGACTGTGGTCTCATACAGAAC. These oligonucleotides and the primer H1-3F: CACCGAA
CGCTGACGTCATCAACCCGwere used to perform a PCR reaction on the pBC-H1 plasmid

[26]. The PCR product was cloned in the pENTR/D-TOPO plasmid (Invitrogen, Saint Aubin,

France). The H1-shRNA cassette was then transferred with the LR clonase recombination sys-

tem (Invitrogen, Saint Aubin, France) in the SIN-cPPT-PGK-GFP-WPRE-LTR-TRE-gateway

vector (SIN-CWP-GFP-TRE-gateway) [26].

Stereotaxic injections

Lentiviral vectors (diluted in phosphate-buffered saline (PBS), 1% BSA to a final concentration

of 100 ng p24/μL) were stereotaxically injected bilaterally in the somatosensory cortex. Wistar
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rats were anaesthetized with a mixture of ketamine (75 mg/kg) and xylazine (10 mg/kg). The

temperature was maintained at 37˚C during surgery with a heating pad (CMA 450 Tempera-

ture Controller from CMA). The cornea was protected with an ophthalmic lubricant. The

head was placed in a stereotaxic frame and holes were drilled (at low speed to reduce the heat).

Suspensions of lentiviral vectors were injected into the barrel cortex (S1BF area), using a 34-

gauge blunt-tip needle linked to a Hamilton syringe by a polyethylene catheter. The stereotaxic

coordinates for injection in the S1BF were, from bregma: anteroposterior (AP) 0 mm; lateral

(L) 6 mm; and ventral (V) 2 mm from the dura, with tooth bar set at 0 mm. Rats received a

total volume of 2 μL per injection site, administered at a rate of 0.2 μL/min. At the end of the

injection, the needle was left in place for 5 min before being slowly removed. Both hemispheres

received the lentiviral vector injection. The skin was sutured and rats were allowed to recover

into a small animal recovery chamber (Harvard Apparatus) before being transferred to their

cage.

Infusion protocol

Experiments were performed in awake animals six weeks after lentiviral vector injection. Ani-

mals were slightly held on a Plexiglas support during the stimulation. Before infusion experi-

ments, each animal was accustomed to the experimental set up (at least 3 times, 1h) to avoid

any stress. Once rats demonstrated that they lie quietly, they were prepared for the infusion

experiment. Right whiskers were mechanically stimulated at a rate of 5 Hz during 1h [13]. To

stimulate the maximum of whiskers, they were cut to an equivalent length: 2.5 cm. Infusions

were performed in the tail vein during one hour (to reach the isotopic steady-state), during the

whisker stimulation. Rats were infused with a solution containing [1-13C glucose] (750mM,

Cambridge isotope, 99% enrichment) + lactate (sodium salt, 534mM). [1-13C]glucose will

labeled different amino acids and metabolites through glycolysis and the TCA cycle [15,27].

Since one mole of [1-13C]glucose gives one mole of labeled [3-13C]pyruvate and one mole of

unlabeled pyruvate, there is an isotopic dilution of 50% at the end of glycolysis. From [3-13C]

pyruvate, [3-13C]lactate can be generated by the lactate dehydrogenase (LDH)-catalyzed reac-

tion. Downstream glycolysis, [3-13C]pyruvate enters the TCA cycle through two pathways: via

pyruvate dehydrogenase (PDH) or via the pyruvate carboxylase (PC) route, present only in

astrocytes [28]. Through the PDH pathway, [3-13C]pyruvate will be converted to [2-13C]ace-

tyl-CoA. It will then enter the TCA cycle to label carbon position 4 of citrate, α-ketoglutarate

and glutamate ([4-13C]citrate, α-[4-13C]ketoglutarate and [4-13C]glutamate, from which

[4-13C]glutamine and [2-13C]GABA will be obtained). Then, due to the symmetry of fumarate,

the 13C will equilibrate between the carbon positions 2 and 3 of this molecule. Therefore, dur-

ing the next TCA cycle turn, the 13C will be found to the same extent in carbon position 2 or 3

of α-ketoglutarate and glutamate (and thereafter glutamine). Through the PC pathway (only

in astrocytes), [3-13C]pyruvate will follow a different fate and will be converted into [3-13C]

oxaloacetate. During the next TCA cycle turn, the 13C will be located in carbon position 2 of

α-ketoglutarate and glutamate (and thereafter glutamine). This enzymatic compartmentation

between neurons and astrocytes will thus lead to a different pattern in 13C-labeling, glutamine

carbon 2 being more labeled due to the astrocytic PC activity whereas glutamate, present in

much higher quantity in neurons, will be equally labeled in carbon positions 2 and 3.

Intravenous infusions were carrying out using a syringe pump that allows a flux such as glu-

cose and lactate concentrations in the blood remain constant (the infusate flow was monitored

to obtain a time-decreasing exponential from 15 mL/h to 1.23 mL/h during the first 25 min

after which the rate was kept unchanged). At the end of the experiment, a sample of blood was

removed; rats were rapidly euthanized by cerebral-focused microwaves (5 KW, 1s, Sacron8000,
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Sairem), the only way to immediately stop all enzymatic activities and to avoid post-mortem

artefacts such as anaerobic lactate production, as already demonstrated [13,29].

Before removing the brain, a hole was drilled at the bregma position, such as a mark was

made on the brain, which was then removed and placed in a rat brain matrix that allows pre-

cise and reproducible dissection. A 3-mm slice was then cut from bregma and S1BF areas

(right-non activated and left-activated) were removed, dipped in liquid nitrogen and kept at

-80˚C until NMR analyses using a High Resolution at the Magic Angle Spinning (HR-MAS)

probe. Both activated and non-activated S1BF brain samples were analyzed in a rotor by

HR-MAS NMR spectroscopy on a Bruker Advance 500MHz after perchloric acid extracts

(50 μl). Ethylene glycol was added and used as an external reference (1 M, peak at 63 ppm,

2 μl). HR-MAS allows performing spectra with high spectral resolution not only directly on

biopsies but also on small perchloric acid extract volumes (50 μL).

Immunohistochemistry

Three weeks after the lentiviral injection, rats were injected intraperitoneally with a lethal dose of

pentobarbital (150g/ml; 1mL/kg, Sigma-Aldrich, Buchs, Switzerland) and then perfused with a

solution of 4% paraformaldehyde (Sigma-Aldrich, Buchs, Switzerland) dissolved in 1x PBS at pH

7.4. Brains were dissected, postfixed overnight at 4˚C, cryoprotected 24 h in 30% sucrose solution

(Sigma-Aldrich, Buchs, Switzerland) and rapidly frozen. Twenty-micrometer thick coronal sec-

tions prepared with a microtome-cryostat (Leica MC 3050S) were stored in cryoprotectant (30%

ethylene glycol and 35% glycerine in 1x PBS) at -20˚C. For immunostaining, sections were washed

three times in 1x PBS and blocking of non-specific binding sites was achieved by incubating in 1x

PBS containing 5% bovine serum albumin and 0.1% Triton X-100 during 1 h. Immunostainings

were carried out overnight at 4˚C in PBS containing 5% bovine serum albumin, 0.1% Triton X-

100 with either a polyclonal anti-MCT2 (1:500; [30]) or a monoclonal mouse anti-microtubule

associated protein (MAP2) antibody (1:200; M4403, Sigma-Aldrich, Buchs, Switzerland). After

washing three times with PBS, sections were incubated in a PBS solution with 5% bovine serum

albumin and 0.1% Triton X-100 containing a goat Cy3-conjugated anti-rabbit antibody (1:250;

#111-165-144, Jackson Immunoresearch, Baltimore, MD, USA) or a donkey Cy5-conjugated

anti-mouse antibody (1:400; #715-175-150, Jackson Immunoresearch, Baltimore, MD, USA).

After washing twice in PBS, sections were mounted with Vectashield mounting medium (Vector

Laboratories, Burlingame, CA, USA). Preparations were then maintained at 4˚C until observation

with a Zeiss LSM 710 Quasar Confocal Microscope (Zeiss, Feldbach, Switzerland).

Immunofluorescence associated with individual neurons of the somatosensory cortex was

quantified by an experimenter blind to the condition of each image using the ImageJ program.

The initial quantification was confirmed by a second experimenter blind to the condition of

each image. In brief, three sections for each condition were used and selected based on their

high number of infected (GFP+) neurons. Three images per section were selected to cover the

cortical thickness and three neurons on each image were used for quantification for a total of

27 neurons that were distributed randomly in the different cortical layers. The surface of each

neuron was manually delineated based on GFP fluorescence or MAP2 immunofluorescence

and the intensity of fluorescence as mean of gray value was obtained for each immunofluo-

rescent signal. Background signal was subtracted for each value and then the mean for each

immunolabeling was calculated. The value for the MCT2 immunolabeling obtained in the

non-infected neurons of the shUNIV condition was considered as 100% and the percentage

was calculated for the other conditions. Similarly, the value for the MAP2 immunolabeling

obtained in the infected neurons of the shUNIV condition was considered as 100% and the

percentage was calculated for the shMCT2 condition.
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Brain perchloric acid extracts

A volume of 1 mL of 0.9 M perchloric acid was added to the frozen S1BF biopsies (around 30

mg) and further sonicated (at 4˚C). The mixture was then centrifuged at 5000 g for 15 min

(4˚C). The brain extract was neutralized with KOH to pH = 7.2, centrifuged again to eliminate

potassium perchlorate salts. Supernatant was lyophilized, the final powder was dissolved in

100 μL D2O and bivalent cations were eliminated using Chelex 100 resin beads.

Ex vivo NMR spectroscopy

Experiments were conducted on a Bruker DPX500 spectrometer equipped with a HRMAS

probe.
1H-NMR spectroscopy. Spectra were acquired at 4˚C and the 90˚ flip angle was measured

for each sample. Used parameters were: 8 s relaxation delay, 5000 Hz sweep width and 32 K

memory size, water suppression (homonuclear presaturation). The carbon-13 specific enrich-

ment (13C-SE) of carbon position 3 for lactate (13C-SE lactate C3) was calculated based on the

satellite peak areas resulting from the heteronuclear spin-coupling patterns on spectra.
13C-NMR spectroscopy. Proton-decoupled 13C-NMR spectra were acquired with the fol-

lowing parameters: 60˚ flip angle, 20 s relaxation delay, 25063 Hz sweep width and 64 K mem-

ory size. Measurements were performed under bi-level broad-band gated proton decoupling

and D2O lock at 4˚C. Perchloric acid extract spectra were normalized thanks to ethylene glycol

and protein contents. After acquisition of each independent sample, perchloric acid extracts of

the same group were pooled and lyophilized again. Powder was finally dissolved in 50 μL

D2O, pH was adjusted to 6 and another 13C-NMR spectrum was acquired (same parameters).

This procedure allows a better separation and visualisation of the different carbons between

Glu and Gln. Protein content was determined according to the procedure of Lowry et al. [31]

using bovine serum albumin as standard.

Proton-observed carbon-editing (POCE) sequence. This sequence was used to deter-

mine the 13C-SE of Glu C4 and Gln C4 using the (13C-1H) heteronuclear multiquanta correla-

tion [32,33]. Briefly, two spectra are acquired: the first scan corresponds to a standard spin-echo

experiment without any 13C excitation and a second scan involves a 13C-inversion pulse to get

coherence transfer between coupled 13C and 1H nuclei. Subtraction of two alternate scans

leads to the editing of 1H spins coupled to 13C spins (scalar coupling constant JCH = 127 Hz).

13C-decoupling was applied during the acquisition to collapse the 1H-13C coupling under a

single 1H resonance. Flip angles for rectangular pulses were carefully calibrated on both radio-

frequency channels before each experiment. The relaxation delay was 8s for a complete longitu-

dinal relaxation. The 13C-SE was calculated as the ratio of the area of a given resonance on the

edited 13C-1H spectrum to its area on the standard spin-echo spectrum. The reproducibility

and accuracy of the method were previously assessed using several mixtures of 13C-labeled

amino acids and lactate with known fractional enrichments and both were better than 5%.

In vivo MRI and NMR spectroscopy

Experiments were conducted on a 7T Bruker BioSpec system (70/20, Ettlingen, Germany)

equipped with a 12-cm horizontal bore, a gradient system capable of 660 mT/m maximum

strength and 110 μs rise time. A surface coil (10 mm inner diameter, Bruker) was used for exci-

tation and signal reception.

Animals (4 UNIV and 4 MCT2 rats) were slightly anaesthetized using chloral hydrate (8%,

0.5 ml/100 g body weight). Whisker activation was performed directly into the magnet using

an air-pulse system. For this purpose, right whiskers were taped such as a sail was made and

this sail was blown at 5 Hz during the acquisition time. In order to place correctly the voxel in
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the S1BF area, a T2-weighted sequence was performed (RARE sequence): 16 slices, 1 mm thick,

FOV 5x5 cm. A voxel was then located in the S1BF area (2 x 2.5 x 3 mm) and in vivo spectros-

copy was performed either at rest or during whisker activation using a PRESS sequence (TE 20

ms, TR 2500 ms, 256 scans, FWHM 14±1 Hz). The lactate peak at 1.32 ppm was quantified

using TOPSPIN (Bruker) after phase and baseline corrections.

Finally, functional imaging was performed on 4 control and 4 MCT2 rats. Whisker stimula-

tion was activated (5 Hz, directly into the magnet using an air-pulse system) at half time of the

acquisition period. The BOLD response was measured in three slices of 0.7 mm thickness

using a single short gradient echo, echo planar imaging sequence (TR = 500ms, TE = 16.096

ms, field of view 25x25 mm, matrix size 96x96 and bandwidth of 33333 Hz). Images were

reconstructed and analyzed using FUN TOOL fMRI processing (Bruker software). Quantifica-

tion was performed by counting the number of activated pixels in the left versus right barrel

cortex according to Adamczak et al. [34].

Statistical analysis

Data are given as mean ± SEM values. They were analyzed with an unpaired t-test with Welch’s

correction for immunostaining quantifications. NMR data (3 groups; control, UNIV and

MCT2 rats) were analyzed by an ordinary one-way ANOVA (multiple comparisons) followed

by a Bonferroni’s correction for post hoc analysis. The level of significance was set at p< 0.05.

Results

Downregulation of MCT2 expression in neurons of the rat

somatosensory cortex using a lentiviral vector

As can be seen in Fig 1A, infected cells and fibers are visible as revealed by GFP fluorescence in

a portion of the cortex corresponding to the somatosensory cortex. Although superficial layers

(layer I-II) appear less labeled, other cortical layers (III-VI) exhibit a strong GFP fluorescence

(Fig 1B). At higher magnification, it can be noticed that infected cells appear to be essentially

neurons, with numerous cell bodies and processes expressing GFP (Fig 1C).

Prior to perform immunolabeling on sections of infected rats, the specificity of the original

MCT2 antibody [30] has been confirmed by pre-adsorption of the primary antibody with the

peptide antigen and immunolabeling of cortical sections (S1 Fig) as well as of primary cultures

of mouse cortical neurons (S2 Fig) or immunoblot on protein extracts from primary cultures

of mouse cortical neurons (S3 Fig). Then, after immunolabeling of sections from injected rats,

the MCT2 immunofluorescence was quantified in neurons infected with either the shMCT2

or the shUNIV lentiviral vectors as well as in non-infected neurons in the same sections. No

apparent difference in MCT2 immunofluorescence could be observed between non-infected

neurons from different animals or between non-infected neurons and neurons infected with

the shUNIV vector. In contrast, neurons of the somatosensory cortex infected with the

shMCT2 vector exhibited a significant reduction (-26%) of MCT2 expression compared to

neurons infected with the shUNIV vector (Fig 1D). Moreover, no significant difference in

MAP2 immunofluorescence could be detected between neurons infected with the shMCT2

vector and the shUNIV vector (Fig 1E).

Comparison of 1H-NMR spectra between activated and resting areas

After one hour of right whiskers’ stimulation with concomitant 13C-labeled substrate infusion,

S1BF areas (right and left) were dissected from microwave-treated brains. HRMAS 1H-NMR

spectra of S1BF perchloric acid extracts are presented in 2. Protein content and ethylene glycol
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peak (external reference) were used to normalize spectra. Three groups of rats were studied:

control rats (blue, rest S1BF; green, activated S1BF), rats injected with the shMCT2 lentiviral

vector, called MCT2 rats (purple, rest S1BF; turquoise, activated S1BF) and rats injected with

the shUNIV lentiviral vector, called UNIV rats (red, rest S1BF; pink, activated S1BF). The

Fig 1. Characterization of the neuronal MCT2 knockdown in the rat somatosensory cortex following the injection of a lentiviral

vector to selectively express a shRNA against MCT2. (A, B and C) Fluorescence signal from the expressed Green Fluorescent Protein

(GFP) on a coronal section of a rat injected with a lentiviral vector expressing GFP as a marker of infected cells. (A) represents a mosaic of

pictures taken at a magnification of 20X with the tilescan function of the confocal microscope. (B) represents a zoom of the area on the mosaic

delineated with a white frame (C) represents a picture taken at a magnification of 40X with the confocal microscope. (D) Quantification of the

MCT2 immunofluorescence in neurons of the rat somatosensory cortex infected with either a shRNA against MCT2 (shMCT2) or a control

shRNA (shUNIV), or non-infected from the same respective sections. The MCT2 immunofluorescence average value for non-infected neurons

in sections injected with the shUNIV lentiviral vector was set at 100%. (E) Quantification of the MAP2 immunofluorescence in neurons of the rat

somatosensory cortex infected with either a shRNA against MCT2 (shMCT2) or a control shRNA (shUNIV). Data represent mean ± SEM of a

total of 27 neurons from three sections for each condition and were statistically analyzed with a Student t-test with Welch’s correction. *p < 0.05

vs. shUNIV infected.

https://doi.org/10.1371/journal.pone.0174990.g001
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doublet at 1.32 ppm represents the resonance of the three protons of the methyl group of lac-

tate. By quantifying this doublet, we can directly compare the lactate content in the different

conditions and groups. In each individual animal of the group, we were able to measure an

increase in lactate content during brain activation but only for the control (n = 14) and UNIV

rats (n = 8). In the MCT2 rats (n = 8), no difference was found between resting and activated

states. The ratios of lactate contents between activated and resting states were 2.26 ± 0.25,

0.93 ± 0.09 and 1.44 ± 0.11 in control, MCT2 and UNIV rats, respectively (Fig 2B).

13C-incorporation into brain metabolites in activated and resting areas

During whisker stimulation, rats were infused with 13C-labeled glucose. The incorporation of
13C from glucose into lactate was quantified in the S1BF area of control rats, MCT2 rats and

UNIV rats, and compared between resting and activated states. Results are presented in Fig 3A

and show a 27% and 24% increase in the lactate C3 specific enrichment (13C-SE lactate C3)

during brain activation in control and UNIV rats, respectively. No difference in 13C-SE lactate

C3 between resting and activated states was detected in MCT2 rats. A linear regression was

performed between the increase in lactate content and the increase in 13C-SE lactate C3 during

brain activation using each individual rat value. Fig 3B shows a correlation between these two

parameters for control and UNIV rats (r2 = 0.80 and 0.89, respectively) but not for MCT2 rats.
13C-SE of lactate C3, glutamate C4 and glutamine C4 are presented in Table 1. No statistical

difference was found between control and UNIV rats. In MCT2 rats, 13C-SE Glu C4 was lower

both at rest and during whisker stimulation compared to control and UNIV rats.

Since carbon position 4 of glutamate (and thus of glutamine) is labeled during the first TCA

cycle turn whereas carbon 2 and 3 are labeled during the second turn, comparison of the incor-

poration of 13C in Glu (Gln) C4 to the one in C3 is an indicator of the TCA cycle turnover

rate. Moreover, the largest pool of glutamate being in neurons, the signal corresponding to glu-

tamate peaks will reflect more the neuronal TCA cycle, whereas the glutamine peaks will repre-

sent more the astrocytic TCA cycle (glutamine synthetase is present only in astrocytes). Fig 4

represents the part of the 13C-NMR spectra of the S1BF area where Glu and Gln C4 and C3

peaks are located. In control rats, there is a slight increase in 13C-incorporation in Glu C3 com-

pared to Glu C4 (height of the peak represented by the line with double arrowheads) during

brain activation (Fig 4A and 4B). On the contrary, a decrease is observed in MCT2 rats (Fig 4C

and 4D). Incorporation of 13C in glutamine is also reduced in MCT2 rats.

Finally, we can compare carbon 2 and 3 of glutamate and glutamine. A ratio lower or close

to one is normally observed for glutamate, which was measured in the three groups of rats

(Table 2). For glutamine, the C2/C3 ratio value is usually higher than 1, reflecting the pyruvate

carboxylase activity present only in astrocytes. Gln C2/C3 ratios were between 1.2 and 1.3 in

control and UNIV rats, respectively (no difference between resting and activated states)

whereas this ratio was lower than 1 in MCT2 rats.

In vivo experiments in the barrel cortex: 1H-NMR spectroscopy and

BOLD fMRI

In vivo localized 1H-NMR spectroscopy was performed in the S1BF area (voxel size 2x2.5x3

mm) of UNIV and MCT2 rats (Fig 5). An increase in lactate was observed during brain activa-

tion in UNIV rats but not in MCT2 rats, confirming the ex vivo results. Ratios of lactate (acti-

vated/rest) were 1.56 ± 0.40 (n = 4) and 0.89 ± 0.16 (n = 4), respectively.

Finally, BOLD fMRI was performed on stimulated animals (Fig 6). In control rats, the right

whisker stimulation led to a BOLD signal in the left barrel cortex. Surprisingly, this signal was

no more visible in MCT2 rats.
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Discussion

Lactate accumulation in the barrel cortex following whisker stimulation

arises from metabolism of blood-borne glucose

In control rats, we observed an increase in lactate content in the left S1BF area (barrel cortex)

following right whisker stimulation. The lactate content was measured ex vivo by high

Fig 2. A: Ex vivo 1H-NMR spectra of the S1BF areas at rest (blue, purple and red) or activated (green, turquoise and pink). Three

groups were studied: control rats (control rats, blue and green, n = 12), rats that previously received a local injection into the

somatosensory cortex of a lentiviral vector encoding a shRNA directed against MCT2 (MCT2 rats, purple, n = 9 and turquoise,

n = 11) or a non targeting sequence (UNIV rats, red and pink, n = 7). B: Ratio of lactate contents between activated and resting

states for the three groups. Lactate was quantified from 1H-NMR spectra. *** p = 0.0004, * p = 0.045 and ** p = 0.006. NAA, N-

acetyl-L-aspartate.

https://doi.org/10.1371/journal.pone.0174990.g002
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resolution NMR spectroscopy after brain microwave fixation. This technique was shown to be

the most suitable to avoid any post mortem metabolism, and thus suppress any anaerobic

Fig 3. A: 13C-Specific enrichments of lactate C3 in the S1BF areas at rest or activated of control, MCT2 and

UNIV rats (n = 12 10 and 7, respectively). Values represent the % of carbone-13 that was incorporated into

the carbon position 3 of lactate from [1-13C]glucose infused in the tail vein during the one-hour right whisker

stimulation. 13C-Specific enrichments of lactate C3 was quantified from the doublet observed on the 1H-NMR

spectra. **: p = 0.003, *: p = 0.016. B: Linear regression between increase in lactate content during brain

activation (ratio of lactate content between activated and rest states) and evolution in 13C-SE Lact C3 (ratio of
13C-SE Lact between activated and rest states, %). Each plot represent on individual rat (blue dot, control

rats, r2 = 0.795; red squares, MCT2 rats, r2 = 0.001 and green triangle, UNIV rats, r2 = 0.892).

https://doi.org/10.1371/journal.pone.0174990.g003
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lactate production during the time needed to remove the brain from the skull. Indeed, it stops

reactions within the brain in less than 1s and allows to get an instant "picture" of the metabolite

content at the precise time the focused microwaves are applied [13]. Such an increase in cortical

lactate confirms previous observations made using NMR spectroscopy both in humans during

a visual task [35–37], and ex vivo in rats [13]. Moreover, it is consistent with the idea that lactate

production is positively correlated with cerebral activity [38] as it was shown using different

anaesthetics (pentobarbital, α-chloralose and morphine) with distinct sedative potencies and

thus different brain electrocortical activities [39]. As such, an increase in lactate content can be

due either to an increase in lactate synthesis or to a decrease in lactate consumption during

whisker activation. To distinguish between these two hypotheses, the use of 13C-NMR spectros-

copy is of particular interest. Compared to microdialysis or 1H-NMR spectroscopy studies,

Table 1. Specific enrichment values (%) of lactate C3, glutamate C4 and glutamine C4 in the S1BF (rest or activated).

% Control rats MCT2 rats UNIV rats

rest activated rest activated rest activated

Lac C3 10.51 ± 0.27 13.31 ± 0.85 10.68 ± 0.77 10.58 ± 0.53*# 10.68 ± 0.39 13.00 ± 0.72

Glu C4 21.12 ± 0.56 20.40 ± 0.55 17.04 ± 0.85+˚ 16.94 ± 0.86*# 20.60 ± 0.98 21.63 ± 0.72

Gln C4 14.71 ± 0.45 13.14 ± 0.56 14.25 ± 0.97 13.60 ± 0.76 15.53 ± 1.04 16.22 ± 1.52

Three groups were studied: control rats (Lac n = 12, Glu n = 7, Gln n = 7), rats that previously received a local injection into the somatosensory cortex of a

lentiviral vector encoding a shRNA directed against MCT2 (MCT2 rats, Lac n = 9–11, Glu n = 9–10, Gln n = 10–11) or a non targeting sequence (UNIV rats,

Lac n = 7, Glu n = 7, Gln n = 6).

*: statistically different from the control activated S1BF.
#: statistically different from UNIV activated S1BF.
+: statistically different from the control rest S1BF.

˚: statistically different from UNIV rest S1BF.

https://doi.org/10.1371/journal.pone.0174990.t001

Fig 4. Ex vivo 13C-NMR spectra (25–36 ppm) of the pooled S1BF areas at rest (A and C) or activated (B and D) of 8 control rats (A and B) and 8

MCT2 rats (C and D). Spectra were normalized thanks to the ethylene glycol peak (63ppm) and protein contents. Arrows represent the high of Glu C4

peak.

https://doi.org/10.1371/journal.pone.0174990.g004
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which allow only lactate quantification, 13C-NMR spectroscopy allows to follow a 13C-labeled

precursor and thus track its fate. While [1-13C]glucose was infused in control rats during whis-

ker stimulation, we observed an increase in the specific enrichment of [3-13C]lactate (13C-SE

lactate C3). This means that the increase in total lactate, measured by 1H-NMR spectroscopy, is

linked to the increase in 13C-incorporation into lactate. Therefore, this lactate represents newly

synthesized lactate, blood-borne [1-13C]glucose being the precursor. This conclusion is sup-

ported by the correlation observed between variation in lactate content (1H-NMR data) and

variation in 13C-SE lactate C3 in control rats (Fig 3B). Higher the lactate content increases,

higher is the 13C-SE lactate C3. This correlation was further confirmed in UNIV rats (with a

smaller inter-individual variability). However, even if we measured an increase in lactate con-

tent between rest and activated states in UNIV rats, this increase was less compared to control

rats. This was mainly due to a higher lactate content in the barrel cortex of the UNIV rats at

rest, since the lactate level in the activated barrel cortex of the UNIV rats was similar to the one

measured in control rats (see Fig 2A). A possible explanation may lie in the experimental condi-

tions. Compared to control and MCT2 rats, UNIV rats were less quiet on the Plexiglas support

during the [1-13C]glucose infusion. This state might have contributed to elevate resting lactate

levels. Nevertheless, increases in 13C-SE lactate C3 between rest and activated states were similar

in control and UNIV rats, indicating a similar 13C-lactate production from 13C-glucose.

Blunted lactate response in MCT2 rats

MCT2 belongs to a small group of membrane carriers involved in the transport of lactate,

pyruvate and ketone bodies. MCT2 is the main monocarboxylate transporter isoform present

on neurons [20,30,40]. In MCT2 rats, no rise in lactate content was observed during whisker

stimulation. This result can have two distinct explanations. First, lactate could be produced by

neurons. The downregulation of MCT2 could suppress lactate export and as a consequence its

neuronal synthesis, the LDH enzyme working at equilibrium. Lactate accumulation within the

neuron could lead to an inhibition of glycolysis via some feedback mechanisms or simply by

intracellular acidification and thus cause a reduction in neuronal lactate production per se.

Nevertheless, considering the recent in vivo observation of a lactate gradient from astrocytes to

neurons using two-photon microscopy and a FRET lactate sensor [41], it seems unlikely that

neurons are the source of lactate. Therefore, we should consider a second possibility, i.e. that

lactate is coming from astrocytes. Indeed, it has been demonstrated that astrocytic glycolysis is

activated by the uptake of the neurotransmitter glutamate [6,42,43]. However, if one considers

that lactate is coming from the astrocytic compartment and is produced as a consequence of

whisker stimulation, with the downregulation of MCT2, neurons would rather be prevented to

use it. In such case, one could have predicted a lactate accumulation in the tissue, which was

not the case. An alternative explanation could be that the signal that stimulates astrocytic

Table 2. Relative enrichment values of glutamate C2/C3 and glutamine C2/C3 C4 in the S1BF (rest or activated).

Control rats MCT2 rats UNIV rats

rest activated rest activated rest activated

Glu C2/C3 0.96 ± 0.04 0.99 ± 0.05 0.83 ± 0.12 0.86 ± 0.08 0.97 ± 0.04 0.97 ± 0.13

Gln C2/C3 1.28 ± 0.07* 1.24 ± 0.07* 0.87 ± 0.12# 0.78 ± 0.13# 1.20 ± 0.18* 1.25 ± 0.16*

Three groups were studied: control rats (n = 12), rats that previously received a local injection into the somatosensory cortex of a lentiviral vector encoding a

shRNA directed against MCT2 (MCT2 rats, n = 8) or a non targeting sequence (UNIV rats, n = 8).

*: statistically different from Glu C2/C3.
#: statistically different from control and UNIV rats.

https://doi.org/10.1371/journal.pone.0174990.t002
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glycolysis, i.e. glutamate, is lacking, meaning that synaptic activity is strongly reduced in the

S1BF of MCT2 rats. In accordance with this possibility it was recently shown in rat brain slices

that the inhibition of MCTs by 4-CIN significantly decreased the amplitude of EPSCs [44].

The authors concluded that astrocyte-neuron lactate shuttling to presynaptic and postsynaptic

elements is necessary for the integrity of excitatory synaptic transmission. In addition, the

essential role of MCT2 in long-term memory formation, and thus most likely on synaptic

Fig 5. In vivo 1H-NMR spectra of the S1BF areas at rest (A and C) or activated (B and D) of UNIV rats (A and B, n = 4) and MCT2 rats (C and D,

n = 4). Spectra shown represent one typical experiment and were normalized thanks to the NAA peak (2.01 ppm).

https://doi.org/10.1371/journal.pone.0174990.g005
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activity, was also demonstrated using an antisense oligodeoxynucleotide to knockdown the

neuronal lactate transporter [25].

Fig 6. BOLD-fMRI of the S1BF areas of control rats (A, n = 4) and MCT2 rats (B, n = 4) during right whisker activation. Images

shown represent one typical experiment. Quantifications of the 4 experiments are presented in the tables. The red square represents the

location of the voxel (present on 3 slices) in which the in vivo spectroscopy was performed and the number of activated pixel was counted

in both red (activated S1BF) and blue (rest S1BF) voxels.

https://doi.org/10.1371/journal.pone.0174990.g006
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Reduction of neuronal TCA cycle rate in MCT2 rats is coherent with

reduced neuronal activity

When [1-13C]glucose is infused in rats, the carbon 13 will be incorporated during the first

TCA cycle turn on carbon position 4 of glutamate. Carbon position 3 of glutamate will be

labeled only during the next TCA cycle turn [15,45]. Therefore, the ratio of 13C-incorporation

into Glu C3 relative to the one into Glu C4 reflects the neuronal TCA cycle rate, since the large

glutamate pool is located in neurons [46,47]. In parallel, the ratio of 13C-incorporation into

Gln C3 relative to the one into Gln C4 reflects the astrocytic TCA cycle rate, since glutamine is

synthesized only in astrocytes [28]. Fig 4 is a higher magnification view of the 13C-NMR spec-

tra area where the Glu C4, Gln C4, Glu C3 and Gln C3 peaks are located. To better visualize

the changes, the height of the Glu C4 peak has been represented by a line with two arrowheads

next to the Glu C3 peak on the spectra. While in control rats the Glu C3 peak height increased

relative to the Glu C4 peak with whisker stimulation, this effect was not observed in MCT2

rats (rather the contrary, it decreased with whisker activation). Moreover, even at rest, the

height of the Glu C3 peak is lower relative to the Glu C4 peak, indicating a slower basal neu-

ronal TCA cycle rate in MCT2 rats compared to control rats. A link between neuronal activity

and TCA cycle rate was already established in previous studies, using pentobarbital, α-chlo-

ralose or morphine to reach different brain electrocortical activities. Sibson et al. found a

correlation between VTCA and neuronal activation; the more the anaesthetic lowered brain

electrocortical activity, the more VTCA decreased [48]. Using the same protocol, a decrease in

the ratio Glu C3/C4 was measured from morphine to pentobarbital [49]. Thus, the observed

decrease in the Glu C3 peak height relative to the Glu C4 peak in MCT2 rats therefore strongly

supports the idea that synaptic activity is reduced in the barrel cortex of these animals.

Reduced glutamate recycling by astrocytes in MCT2 rats is consistent

with reduced synaptic activity

In Fig 4, we can also clearly observe a reduction of 13C-incorporation into glutamine in the

MCT2 rats (Gln C4 and C3 peaks in spectra C and D, compared to the corresponding ones in

spectra A and B). The knockdown of the neuronal lactate transporter has therefore not only an

impact on neuronal metabolism but also on the astrocytic one. Since [4-13C]Gln is coming

from the consumption of [1-13C]glucose by astrocytes, the decrease in 13C incorporation into

Gln C4 indicates a reduction in glucose metabolism in MCT2 rat astrocytes. Estimation of the

PC activity corroborates this result. Indeed, quantification of Gln C2/C3 ratio is a suitable

approach to evaluate this specific astrocytic anaplerotic enzyme activity; ratio higher than one

indicating 13C-incorporation through the PC activity (this pathway leads to direct 13C-incorpo-

ration into glutamine carbon position 2 [27]). On the contrary, since no PC activity is present

in neurons, the Glu C2/C3 ratio is always lower than 1 [50]. Table 2 shows Glu C2/C3 and Gln

C2/C3 values. In control (and UNIV) rats, Gln C2/C3 ratios were higher than 1, demonstrating,

as expected, the astrocytic PC activity, which was not detected in the neuronal compartment

(Glu C2/C3< 1). However, in MCT2 rats, Gln C2/C3 ratio was smaller than 1, indicating that

the PC activity was no more detected in the barrel cortex of these animals. This result strength-

ens our hypothesis that neuronal activity is strongly reduced in the S1BF area of the MCT2 rats.

Indeed, if the neurotransmitter glutamate is no more released into the synaptic cleft, the signal

for astrocytes to increase their glycolysis is suppressed, and, as a consequence, the glutamate-

glutamine cycle will be drastically reduced, since replenishment of neuronal glutamate by astro-

cytic glutamine is no more needed. This will directly impact on the activity of the anaplerotic

astrocytic PC, as observed in our study. A strong decrease in both glutamate-glutamine cycle

and glutamine synthesis rates was already observed when brain activity was reduced [39].
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Neuronal lactate uptake via MCT2 and its utilization might be necessary

to maintain synaptic transmission: Preliminary in vivo evidence

In vivo NMR spectroscopy was also conducted in UNIV and MCT2 rats. Compared to ex vivo
1H-NMR, in vivo localized 1H-NMR spectral resolution was much lower and the lactate peak

was hindered by the lipid signal, which makes difficult the quantification of the lactate signal at

1.32 ppm. However, despite these difficulties, these in vivo results confirmed the ex vivo ones

obtained with the same paradigm. An increase in lactate content was obtained with brain activa-

tion, which was no more observed in MCT2 rats. This increase was less (ratio = 1.56) compared to

the one measured on ex vivo spectra (2.26), which could be mainly due to the fact that for in vivo
NMR animals were slightly anaesthetized. However, such results not only support the idea that lac-

tate is produced locally upon activation, but it also suggest that neuronal lactate uptake via MCT2

might be necessary to sustain synaptic activity. Lactate is not only taken up by neurons to be used

as an additional energy substrate, it can also act via lactate-sensitive G-protein coupled receptors.

However, when lactate binds to this receptor, it reduces neuronal excitability [51]. In our case, we

observed a decrease in neuronal activity when lactate levels were reduced following MCT2 knock-

down. Thus, it seems unlikely that this is the mechanism that explains our findings. However,

independently of its effect on the receptor, the fact that lactate levels are reduced (no matter which

cell type produces it) might contribute to the reduction in synaptic activity. Indeed, it was shown

that lactate (via its metabolism) potentiates NMDA-mediated currents [52]. To further gain evi-

dence that MCT2 is essential for cerebral activation, we performed BOLD fMRI both on control

and MCT2 rats. We observed that the BOLD response in the left S1BF was absent in MCT2 rats

compared to control rats. Therefore, the absence of lactate increase during brain activation in

MCT2 rats is most likely linked to a reduction of synaptic activity within the barrel cortex.

Technical considerations and perspectives

In order to progress in our understanding of metabolic interactions between neurons and

astrocytes, further technical developments will be required, e.g. to improve spectral resolution,

time resolution and peak quantification, with the use of adabatic pulses to produce a more uni-

form excitation profile and of LCModel to quantify the peaks with a better accuracy for exam-

ple. Moreover, in this study we chose a lentiviral approach, which led to a 26% reduction in

MCT2 expression at the protein level. This reduction was sufficient to suppress the brain lac-

tate increase in the barrel cortex during whisker stimulation, to modify 13C-SE lactate C3

and glutamate C4 as well as the ratios of different carbons in glutamate and glutamine. A 40%

decrease in protein content was described previously to be sufficient to observe a clear pheno-

type in the case of other target proteins, suggesting that it is not necessary to achieve promi-

nent suppression of protein expression to be able to obtain significant alterations in functional

and/or metabolic responses [53,54]. However, it would be desirable to improve the efficiency

of the viral vector approach in order to increase the reliability and extent of the effects ob-

served. In this regard, the development of other viral vectors, derived from the AAV family,

has led to a better efficiency to deliver and express for example an shRNA with distinct cell

type specificities [55,56]. Using such novel tools to either better reduced neuronal MCT2

expression, but also target the astrocytic lactate transporters (MCT1 and 4), should constitute

the next step in order to shed light on the role of lactate transporters in the metabolic coopera-

tion between neurons and astrocytes during brain activation.

Notwithstanding, our present data confirm that lactate is synthesized most likely by astro-

cytes in the brain from blood-borne glucose during cerebral activity. Moreover, and quite

unexpectedly, they also strongly support the idea that neuronal lactate use through its trans-

port via MCT2 is necessary to maintain synaptic transmission.
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Supporting information

S1 Fig. Specificity of MCT2 immunolabeling in the rodent cortex. Strong MCT2 immuno-

fluorescence (in red) associated with the neuropil as well as numerous neuronal cell bodies in

the mouse cortex (left panel). Important reduction of the immunofluorescence signal in the

mouse cortex when the primary antibody had been incubated with the peptide antigen prior

to immunolabeling (right panel).

(TIF)

S2 Fig. Specificity of MCT2 immunolabeling in primary cultures of rodent cortical neu-

rons. Strong MCT2 immunofluorescence visible in both cell bodies and neuronal processes in

the entire population of mouse cortical neurons in culture (left upper and lower panels, at 20x

and 40x magnification, respectively). After incubation of the primary antibody with the pep-

tide antigen, important reduction of the immunofluorescence signal upon immunolabeling of

a similar preparation (right upper and lower panels, at 20x and 40x magnification, respec-

tively).

(TIF)

S3 Fig. Specificity of MCT2 antibody by immunoblotting on protein extracts from primary

cultures of mouse cortical neurons. Western blot showing the unique band at 40 kDa recog-

nized by the MCT2 antibody (left panel) in three distinct protein extracts from primary cul-

tures of mouse cortical neurons. After adsorption of the primary antibody with the peptide

antigen, immunoblot showing the absence of the 40 kDa signal (right panel).

(TIF)

S1 File. Materials and Methods and references of supporting figures.

(DOCX)

S1 Data. Raw data.

(DOCX)
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