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An Axially Variant Kernel Imaging Model Applied to

Ultrasound Image Reconstruction
Mihai I. Florea , Student Member, IEEE, Adrian Basarab , Member, IEEE,

Denis Kouamé, Member, IEEE, and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—Existing ultrasound deconvolution approaches unre-
alistically assume, primarily for computational reasons, that the
convolution model relies on a spatially invariant kernel and cir-
culant boundary conditions. We discard both restrictions and in-
troduce an image formation model applicable to ultrasound imag-
ing and deconvolution based on an axially varying kernel, which
accounts for arbitrary boundary conditions. Our model has the
same computational complexity as the one employing spatially
invariant convolution and has negligible memory requirements.
To accommodate the state-of-the-art deconvolution approaches
when applied to a variety of inverse problem formulations, we also
provide an equally efficient adjoint expression for our model. Sim-
ulation results confirm the tractability of our model for the decon-
volution of large images. Moreover, in terms of accuracy metrics,
the quality of reconstruction using our model is superior to that
obtained using spatially invariant convolution.

Index Terms—Axially varying, deconvolution, forward model,
kernel, matrix-free, point-spread function, ultrasound.

I. INTRODUCTION

U
LTRASOUND imaging is a medical imaging modality
widely adopted due to its efficiency, low cost, and safety.

These advantages come at the expense of image quality. Conse-
quently, the accurate estimation of the tissue reflectivity function
(TRF) from ultrasound images is a subject of active research.
Generally, the existing approaches assume that the formation of
ultrasound images follows a two-dimensional (2-D) convolution
model between the TRF and the system kernel. The convolution
model is further constrained for computational reasons to have
a spatially invariant kernel and circulant boundary conditions
(see, e.g., [1]–[6]).

Pulse-echo emission of focused waves still remains the most
widely used acquisition scheme in ultrasound imaging. It con-
sists of sequentially transmitting narrow-focused beams. For
each transmission centered at a lateral position, the raw data are
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used to beamform one radio frequency (RF) signal. Given the
repeatability of the process in the lateral direction, the kernels do
not vary laterally. However, despite dynamic focusing in recep-
tion and time gain compensation, the kernels become wider as
we move away from the focal depth, thus, degrading the spatial
resolution and motivating the proposed kernel variation model.

Previous works accounted for this variation by assuming ker-
nel invariance over local regions and performing deconvolution
blockwise (e.g., [7]). Very recently, ultrasound imaging convo-
lution models with continuously varying kernels were proposed
in [8] and [9]. However, the model presented in [8] makes the
overly restrictive assumption that the spatially varying kernel
is obtained from a constant reference kernel modulated by the
exponential of a fixed discrete generator scaled by the varying
kernel center image coordinates. Therefore, it does not take into
account the depth-dependent spatial-resolution degradation ex-
plained previously. On the other hand, the deconvolution method
proposed in [9] has an iteration complexity proportional to the
cube of the number of pixels in the image, limiting its applica-
bility to very small images.

The contributions of this letter are as follows.
1) We propose a novel axially variant kernel ultrasound im-

age formation model (see Section III).
2) Our model is linear and may be implemented as a ma-

trix. However, the matrix form does not scale because its
complexity is proportional to the square of the number
of pixels in the image. Therefore, we provide an efficient
matrix-free implementation of axially varying convolu-
tion that entails the same computational cost as spatially
invariant convolution (see Section III-B).

3) The deconvolution problem is ill-posed and many decon-
volution models can only be solved approximately using
proximal-splitting methods (see [10] and [11] and refer-
ences therein) that compute the gradient of a data-fidelity
term at every iteration. The data-fidelity gradient expres-
sion includes calls to both the model operator and its ad-
joint. We express this adjoint operator in a form of equal
complexity to that of the forward model operator (see
Section IV).

4) We confirm using simulation results that deconvolution
with our model is tractable even for large images and
produces results superior to those obtained by using the
spatially invariant model (see Section V).

II. NOTATION

In this letter, images (ultrasound images and TRFs) are vec-
torized in column-major order but referenced in 2-D form. For



Fig. 1. (a) Convolving test image a with a Gaussian kernel k. The inner
rectangle represents valid convolution, whereas the outer one marks full con-
volution. (b) Applying the full-width window operator, followed by a full-
width zero-padding operator on test image a. Here, black and white corre-
spond to values of 1 and 0, respectively. Kernel k is displayed after min–max
normalization.

instance, image v ∈ R
m v n v corresponds to an mv × nv 2-D

image and has the pixel value at coordinates (i, j) given by
vm v (j−1)+i . However, for clarity of exposition, we denote it as
a 2-D object v ∈ R

m v ×n v , with the pixel value at location (i, j)
given by vi,j . Bold marks this artificial indexing. Similarly, lin-
ear operators are matrices but referred to as 4-D tensors, e.g.,
O : R

m v ×n v → R
mw ×nw denotes O ∈ R

m v n v ×mw nw .
In the sequel, we define several classes of linear operators

that constitute the mathematical building blocks of our pro-
posed model and its analysis. Note that these are more general
than normal linear operators because their dimensions not only
depend on those of their parameters but also on the dimensions
of their arguments.

A. Convolution Operators

For all mk , nk ≥ 1, all kernels k ∈ R
m k ×nk, and all ma ≥

mk , na ≥ nk , we define the linear operators C1(k) and C2(k)
as

C1(k)a
def
= k ∗1 a, C2(k)a

def
= k ∗2 a

for all a ∈ R
m a ×na, where operations ∗1 and ∗2 denote (dis-

crete) valid convolution and full convolution, respectively,
defined as

(k ∗1 a)i,j
def
=

m k
∑

p=1

nk
∑

q=1

kp,qai−p+m k ,j−q+nk

i ∈ {1, . . .,ma − mk + 1}, j ∈ {1, . . ., na − nk + 1}

(k ∗2 a)i,j
def
=

p̄ i
∑

p=p i

q̄j
∑

q=qj

kp,qai−p+1,j−q+1

i ∈ {1, . . .,ma + nk − 1}, j ∈ {1, . . ., na + nk − 1}
pi = max{1, i − ma + 1}, p̄i = min{i,mk}
qj = max{1, j − na + 1}, q̄j = min{j, nk}.

The difference between the two forms of convolution is exem-
plified in Fig. 1(a). Valid convolution is thereby the subset of
full convolution where every output pixel is expressed using the
entire kernel k.

B. Auxiliary Operators

For conciseness, we also introduce the following auxiliary
operators. None involve any computation in practice.

Let the rotation operator R(k) be given by

(R(k))i,j
def
= km k −i+1,nk −j+1

i ∈ {1, . . .,mk}, j ∈ {1, . . ., nk}.
To further simplify the notation, we denote the exception in-

dex set I(a, b, c)
def
= {1, . . ., c}\{a, . . ., b} for all 1 ≤ a ≤ b ≤

c. The full-width window and zero-padding operators are de-
fined as

(Ws(i1 , i2)a)i,j
def
= ai+i1 ,j , i ∈ {0, . . ., i2 − i1}

(Zs(i1 , i2)a)i,j
def
=

{

ai−i1 ,j , i ∈ {i1 , . . ., i2}
0, i ∈ I(i1 , i2 ,ms)

where j ∈ {1, . . ., ns} and index s ∈ {t, p} stands for image
size quantities mt , mp , nt , and np . Their effect on a test image
is shown in Fig. 1(b).

III. AXIALLY VARIANT KERNEL BASED ULTRASOUND

IMAGING MODEL

We propose the following image formation model:

y = HPx + n (1)

where x,y,n ∈ R
m t ×n t denote the TRF to be recovered, the

observed RF image, and the independent identically distributed
additive white Gaussian noise (AWGN), respectively.

A. Padding

Operator P : R
m t ×n t → R

m p ×np pads the TRF with a
boundary of width nr and height mr , yielding an image of
size mp = mt + 2mr times np = nt + 2nr . Padding in our ul-
trasound imaging model allows us to reconstruct a TRF of the
same size as the observed RF image. To this end, we must sim-
ulate the effects that the surrounding tissues have on the imaged
tissues. Padding is an estimation of the surrounding tissues using
information from the imaged TRF. This estimation only affects
the border of the reconstructed TRF. If this border information
is not required, the reconstructed TRF can simply be cropped
accordingly. The addition of padding to our model brings the
advantage of accommodating both options.

For computational reasons, P is assumed linear and separa-
ble along the dimensions of the image. Separability translates
to P = P m P n . Here, P m pads every column of the image
independently by applying the 1-D padding (linear) operator
P(mt ,mr ). Consequently, when nt = 1 and nr = 0, operators
P and P(mt ,mr ) are equivalent. The row component P n treats
every row as a column vector, applies P(nt , nr ) to it, and turns
the result back into a row.

Padding, either in 1-D or 2-D, can be performed without ex-
plicitly deriving an operator matrix. However, the matrix form
facilitates the formulation of the corresponding adjoint opera-
tor. Common matrix forms of operator P(mt , nt) are shown in
Fig. 2 for mt = 10 and mr = 3. These examples demonstrate
that the matrix form of P(mt ,mr ) can be easily generated pro-
grammatically and, due to its sparsity, can be stored in memory



Fig. 2. Common matrix forms of 1-D padding operator P(10, 3). Black
denotes a value of 1 and white denotes 0.

even for very large values of mt and mr . These properties ex-
tend to the matrix form of the 2-D padding operator P by virtue
of the following result.

Theorem 1: Padding operator P can be obtained programat-
ically in the form of a sparse matrix as

P = P(nt , nr ) ⊗ P(mt ,mr )

where ⊗ denotes the Kronecker product.
Proof. See [12, Appendix A]. �

B. Axially Varying Convolution

Linear operator H: R
m p ×np → R

m t ×n t performs the axially
variant kernel convolution. We define it as the operation whereby
each row ih ∈ {1, . . .,mt} of the output image is obtained by
the valid convolution between the kernel pertaining to that row
k(ih) ∈ R

m k ×nk , where mk = 2mr + 1 and nk = 2nr + 1,
and the corresponding patch in the input (padded) TRF. The
auxiliary operators defined in Section II enable us to write H
as a sum of linear operators based on the observation that the
concatenation of the output rows has the same effect as the
summation of the rows appropriately padded with zeros. Ana-
lytically, this translates to

H =

m t
∑

ih =1

Z t(ih , ih)C1(k(ih))Wp(ih , ih + 2mr ). (2)

In matrix form, operator H would need to store mpnpmtnt

coefficients and its invocation would entail an equal number of
multiplications. Its complexity would, thus, be greater than the
square of the number of pixels in the image, limiting its appli-
cability to medium-sized images. Using the matrix-free expres-
sion in (2), operator H performs mknkmtnt multiplications
and has negligible memory requirements. Therefore, in ultra-
sound imaging, the matrix-free representation is not only vastly
superior to its matrix counterpart (because the kernel is much
smaller than the image), but also has the same computational
complexity as the spatially invariant convolution operation (ex-
cluding the unrealistic circulant boundary case).

Unlike the forward model which, by utilizing operators H
and P , can be computed exactly with great efficiency, many
deconvolution models can only be solved approximately using
proximal-splitting methods that optimize an objective contain-
ing a data-fidelity term φ(HPx − y). These methods employ
at every iteration the gradient of the data-fidelity term, given by

∇(φ(HPx − y)) = P T HT (∇φ)(HPx − y). (3)

Note that, under our AWGN assumption, φ is the square of the
ℓ2-norm but the results in this letter may be applied to other
additive noise models.

The gradient expression in (3) depends on H and P as well
as their adjoints. In the following, we derive computationally
efficient expressions for adjoint operators HT and P T .

IV. ADJOINT OF MODEL OPERATOR

By taking the adjoint in (2), we get

HT =

m t
∑

ih =1

(Wp(ih , ih + 2mr ))
T (C1(k(ih)))T (Z t(ih , ih))T .

To obtain a matrix-free representation of HT , we need the
corresponding matrix-free expressions for the adjoints of the
convolution and auxiliary operators. First, it trivially holds that
the window operator and the corresponding zero-padding oper-
ator are mutually adjoint expressed as

(Ws(i1 , i2))
T = Zs(i1 , i2). (4)

The adjoint of valid convolution can be linked to full convolution
as follows.

Theorem 2: The adjoint of valid convolution is full correla-
tion (convolution with the rotated kernel), namely

(C1(k))T = C2(R(k)).

Proof. See [12, Appendix B]. �

Theorem 2 and (4) yield a matrix-free expression for HT in
the form of

HT =

m t
∑

ih =1

Zp(ih , ih + 2mr )C2(R(k(ih)))W t(ih , ih).

(5)
Therefore, operators H and HT have equal computational com-
plexity. Moreover, they exhibit two levels of parallelism. The
convolution operators themselves are fully parallel and the com-
putations pertaining to each row ih can be performed concur-
rently. Thus, in matrix-free from, both operators benefit from
parallelization in the same way as their matrix counterparts.

The adjoint of the padding operator P T can be obtained ei-
ther directly through sparse matrix transposition or by applying
transposition in Theorem 1 as

P T = (P )T = (P(nt , nr ))
T ⊗ (P(mt ,mr ))

T . (6)

Finally, note that whereas the column-major order assumption
can be made without loss of generality for operator H , it is not
the case for the padding operator P . In particular, the row-major
vectorization assumption reverses the terms in the Kronecker
product.

V. EXPERIMENTAL RESULTS

We have tested our model on a simulated ultrasound image
deconvolution problem. The ground truth TRF, as shown in
Fig. 3(a), was computed by interpolating to a grid Gaussian
distributed random scatterers with standard deviations (SDs)
determined by a pixel intensity map (see the kidney phantom
from the Field II simulator [13], [14]). The map is a patch from
an optical scan of human kidney tissue. The TRF is mt = 2480
by nt = 480 pixels in size, corresponding to 94 mm × 95 mm.



Fig. 3. (a) Ground truth (in B-mode) of the TRF. (b) Demodulated kernels k(ih) for 20 depths at regularly spaced intervals of 2 mm. (c) Observed B-mode image
simulated following the proposed axially variant convolution model. (d) AI deconvolution result, IR in B-mode, obtained with a fixed kernel equal to k(mt /2)
(the center kernel of the AV model). (e) AV deconvolution result, VR in B-mode, using our model. All the images are displayed using a dynamic range of 40 dB.
White rectangles mark the patches used in computing the quality metrics.

More TRFs and their corresponding simulation results can be
found in [12].

For every row ih ∈ {1, . . .,mt}, we have defined the kernel
k(ih) in (2) as

k(ih)i,j = ρµz ,σz
(i)ρµx ,σx (ih )(j) cos (2πf0/fs(i − µz ))

where ρµ,σ (x) is a normalized Gaussian window, given by

ρµ,σ (x) = 1√
2πσ

exp
(

− (x−µ)2

2σ 2

)

, and parameters µz and µx are

the center coordinates of the kernel. Axial SD was set to σz = σ1

and lateral SD to σx(ih) =
√

((2ih)/mt − 1)2(σ2
2 − σ2

1 ) + σ2
1 ,

with σ1 = mr/3 and σ2 = nr/3. Here, f0 = 3 MHz and fs =
20 MHz are the ultrasound central and sampling frequencies,
respectively. The depth-dependent width variation of the ker-
nel simulates the lateral spatial-resolution degradation when
moving away from the focus point, located in this experiment
at the center of the image (47 mm from the probe). The en-
velopes of these kernels at regular intervals across the image
are shown in Fig. 3(b). We chose symmetric padding, as illus-
trated in Fig. 2, because it is more realistic than circular padding
and zero padding and, by using a larger number of pixels from
the TRF, more robust to noise than replicate padding. A small
amount of noise was added such that the signal-to-noise ratio is
40 dB. The ultrasound image produced from the TRF using our
forward model in (1) is shown in Fig. 3(c).

To estimate the TRF, we have considered an elastic net [15]
regularized least squares (based on the AWGN assumption)
deconvolution model

min
x

1

2
‖HPx − y‖2

2 + λ1‖x‖1 +
λ2

2
‖x‖2

2

with manually tuned parameters λ1 = 2e − 3 and λ2 = 1e − 4.
For deconvolution, we have employed the accelerated com-
posite gradient method (ACGM) [16], [17] on account of its
low resource usage, applicability, adaptability, and near-optimal
linear-convergence rate on elastic net regularized optimization
problems.

Every iteration of ACGM is dominated by the compu-
tationally intensive data-fidelity gradient function ∇f(x) =
P T HT (HPx − y). All other calculations performed by
ACGM are either negligible when compared to ∇f(x) or can
be reduced to subexpressions of ∇f(x).

Due to the efficient matrix-free expressions of H in (2) and
HT in (5) as well as the sparse matrix implementation of P and
P T (easily precomputed using Theorem 1 and (6), respectively),

TABLE I
ACCURACY METRICS COMPUTED FOR FIVE PATCHES IN THE RECONSTRUCTED

IMAGES IR AND VR

deconvolution with our model entails the same computational
cost as with a fixed-kernel model.

The result of axially invariant (AI) deconvolution, IR, is
shown in Fig. 3(d), and using our axially variant (AV) model,
VR, in Fig. 3(e), both after 150 iterations. The normalized root-
mean-square error (NRMSE) and the mean image structural
similarity (MSSIM) [18] accuracy metrics were computed for
five patches in IR and VR after Gaussian normalization and
envelope detection. The values are listed in Table I.

Our approach achieves almost perfect low-frequency recon-
struction across the TRF. The gain in reconstruction quality is
evident, especially in the upper and lower extremities, as can
be discerned both empirically from Fig. 3 as well as from the
accuracy metric discrepancy in the corresponding patches (see
Table I), particularly the NRMSE. Interestingly, even though the
two models differ only slightly at the center of the image, our
model performs better in that region as well.

VI. CONCLUSION

In this letter, we have proposed an axially varying convolution
forward model for ultrasound imaging. The physics of ultra-
sound image formation as well as our deconvolution simulation
results show the superiority of our model over the traditional
fixed-kernel model.

Our matrix-free formulae for the adjoints of the convolution
and auxiliary operators, necessary for the implementation of de-
convolution using proximal-splitting techniques, also constitute
a solid theoretical foundation for deconvolution methodologies
using more sophisticated models, particularly those where the
kernel also varies along the lateral direction. Furthermore, our
theoretical results and methodology are not restricted to ultra-
sound imaging only and may be extrapolated to other imaging
modalities and applications as well.
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