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A Unified Approach to Multisource Data Analyses
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Abstract. Classically, Data Warehouses (DWs) supports business analyses on data coming from the inside of 
an organization. Nevertheless, Lined Open Data (LOD) might sensibly complete these business analyses by 
providing complementary perspectives during a decision-making pro-cess. In this paper, we propose a 
conceptual modeling solution, named Unified Cube, which blends together multidimensional data from DWs 
and LOD datasets without materializing them in a stationary repository. We complete the conceptual modeling 
with an implementation frame-work which manages the relations between a Unified Cube and multiple data 
sources at both schema and instance levels. We also propose an analysis processing process which queries dif-

ferent sources in a transparent way to decision-makers. The practical value of our proposal is illustrated 
through real-world data and benchmarks.

Keywords: Data Warehouse, Linked Open Data, Conceptual Modeling, Multisource analyses, 
Experimental Assessments

1. Introduction

Well-informed and effective decision-making relies on appropriate data for business analyses. Data

are considered appropriate if they include enough information to provide an overall perspective to

decision-makers. To obtain as many appropriate data as possible, decision-makers must have access

to the company’s business data at any time. Since the 1990s, Business Intelligence (BI) has been
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providing methods, techniques and tools to collect, extract and analyze business data stored in a Data

Warehouse (DW) [9]. However, an overall perspective during decision-making requires not only busi-

ness data from inside a company but also other data from outside a company. In today’s constantly

evolving business context, one promising approach consists of blending web data with warehoused

data [32]. The concept of BI 2.0 is introduced to envision a new generation of BI enhanced by web-

based content [39].

Among various web-based content, Linked Open Data (LOD)1 provide a set of inter-connected

and machine-readable data to enhance business analyses on a web scale [45]. Since data are produced

and updated at a high speed nowadays, materializing all data (e.g., warehoused data and LOD) related

to analyses in one stationary repository can hardly be synchronized with changes in data sources. It is

necessary to unify data from various sources without integrating all data into a stationary repository.

To support up-to-date decision-making, business dashboards must be created in an on-demand manner.

Such dashboards should include all appropriate data required by decision-makers.

Case Study. In a government organization managing social housings, internal data are periodi-

cally extracted, transformed and loaded in a DW. As shown in figure 1(a), the DW describes number of

applications (i.e. Applications) according to two analysis axes: one about the geographical location of

social housings (i.e. Housing Ward and Housing District) and the other related to applicant’s profile

(i.e. Applicant Status). This DW only gives a partial view on the demand for social housings. To

support effective decision-making, additional information should be included in analyses. Therefore,

a decision-maker browses in a second dataset, named LOD1, to obtain complementary views on so-

cial housing allocation. Published by the UK Department for Communities and Local Government2,

LOD1 describes the accepted applications for social housing (i.e. acceptance) according to district

Figure 1: An extract of data in a DW and two LOD datasets

1http://linkeddata.org
2http://opendatacommunities.org/data/housingmarket/core/tenancies/econstatus



and status (cf. figure 1(b)). LOD1 follows a multidimensional structure expressed in RDF Data Cube

Vocabulary (QB)3 . The QB format only allows including one granularity in each analysis axis. The

decision-maker needs new analysis possibilities to aggregate data based on multiple granularities. To

discover more geographical granularities, the decision-maker looks into another dataset named LOD2.

This dataset is managed by the Office for National Statistics of the UK4; it associates several areas

(including districts) with one corresponding region (cf. figure 1(c)). Both LOD1 and LOD2 are real-

world LOD which can be accessed through querying endpoints56.

The above-mentioned warehoused data and LOD share some similar multidimensional features, as

they are organized according to analysis subjects and analysis axes. However, analyzing data scattered

in several sources is difficult without a unified data representation. During analyses, decision-makers

must search for useful information in several sources. The efficiency of such analyses is low, since

different sources may follow different schemas and contain different data instances. Facing these

issues, the decision-maker needs a business-oriented view unifying data from both the DW and the

LOD datasets. She/he makes the following requests regarding the view:

• An analysis subject should include all related numeric indicators from different sources, even

though these indicators cannot be aggregated according to the same analytical granularities. To

support real-time analyses, numeric indicators (e.g. Applications from the DW, Acceptances

from the LOD1 dataset) and their descriptive attributes (e.g. Housing Ward, Housing District

and Applicant Status from the DW, District and Status from the LOD1 dataset) at different

analytical granularities should be queried on-the-fly from sources;

• Analytical granularities related to the same analysis axis should be grouped together. For in-

stance, the Housing Ward and Housing District granularities from the DW, the District granu-

larity from the LOD1 dataset, the Area and Region granularities from the LOD2 dataset should

be merged into one analysis axis;

• Attributes describing the same analytical granularity should be grouped together. The correl-

ative relationships between instances of these attributes should be managed. For instance, the

attribute Housing District from the DW, the attribute District from the LOD1 dataset and the

attribute Area from the LOD2 dataset should be all included in one analytical granularity related

to districts. Correlative instances ”Birmingham” from the DW, ”Birmingham E08000025” from

the LOD1 dataset and ”Birmingham xsd:string” from the LOD2 dataset should be associated

together, since they both refer to the same district;

• Summarizable analytical granularities should be indicated for each numeric indicator. For in-

stance, only the measure Applications from the DW can be aggregated according the Ward

analytical granularity. The other measure Acceptances from the LOD1 dataset is only summa-

rizable starting from the district analytical granularity on the geographical analysis axis.

3http://www.w3.org/TR/vocab-data-cube
4https://www.ons.gov.uk/
5http://opendatacommunities.org/sparql
6http://statistics.data.gov.uk/sparql



Contribution. Our aim is to make full use of as much information as possible to support effective

and well-informed decisions. To this end, we propose a unified view of data from both DWs and

LOD datasets. At the schema level, the unified view should include in a single schema all information

about an analysis subject described by all available analysis axes as well as all granularities (coming

from multiple sources). At the instance level, the unified view should not materialize data that can

be directly queried from the source. Nevertheless, it should manage the correlation relations between

related attribute instances referring to the same real-world entity. With the help of the unified view, a

decision-maker can easily obtain an overall perspective of an analysis subject. In the previous example,

a unified view would enable decision-makers to analyze on-the-fly the number of applications and

acceptances according to applicant’s status and district as well as region (cf. figure 1(d)).

In this paper, we describe a generic modeling solution, named Unified Cube, which provides

a business-oriented view unifying both warehoused data and LOD. Section 2 presents different ap-

proaches to unifying data from DWs and LOD datasets. Section 3 describes the conceptual modeling

and graphical notation of Unified Cubes. Section 4 presents an implementation framework for Unified

Cubes. Section 5 shows how analyses are carried out on a Unified Cube in a user-friendly manner.

Section 6 illustrates the feasibility and the efficiency of our proposal through some experimental as-

sessments.

2. Related work

Disparate data silos from different sources make decision-making difficult and tedious [43]. To pro-

vide decision-makers with an overall perspective during business analyses, an effective data integration

strategy is needed. In accordance with our research context, we focus on work related to the integra-

tion of multidimensional data from DWs and LOD datasets. We classify existing researches into three

categories.

The first category is named ETL-based. With the arrival of LOD, the BI community intuitively

treated LOD as external data sources that should be integrated in a DW through ETL processes [15, 29,

36]. The obtained multidimensional DW is used as a centralized repository of LOD [38, 6]. Decision-

makers can use classical DW analysis tools to analyze LOD stored in such DWs. However, the existing

ETL techniques are inclined to populate a DW with LOD rather than updating existing LOD in a

DW. No effective technique is proposed to guarantee the freshness of warehoused LOD presented to

decision-makers during analyses. One promising avenue is to extend on-demand ETL processes [4]

to fit for the integration of LOD in a DW at right time during business analyses. Otherwise, current

ETL-based approaches are not suitable in today’s highly dynamic context where large amounts of data

are constantly published and updated; they collide with the distributed nature and the high volatility

of LOD [24, 17].

The second category is named semantic web modeling. Since multidimensional models have been

proven successful in supporting complex business analyses [35], the LOD community introduces new

modeling vocabularies to semantically describe the multidimensionality of LOD through RDF triples.

Among the proposed modeling vocabularies, the RDF Data Cube Vocabulary7(QB) is the current W3C

7http://www.w3.org/TR/vocab-data-cube



standard to publish multidimensional statistical data. The authors of [26] carry out multidimensional

analyses over QB datasets. It is worth noticing that a QB dimension is a non-hierarchical concept.

Due to this limit, the authors fail to support analyses involving multiple hierarchies within a dimen-

sion. To overcome this drawback, extensions of the QB vocabulary are needed to model a complete

multidimensional schema. In [17], the authors propose the QB4OLAP vocabulary which adds more

multidimensional characteristics to QB, like multiple analytical granularities within multiple aggrega-

tion paths and the specification of the aggregation functions associated with a measure. The authors

of [37] present a multidimensional data model by blending together QB, SKOS8 and RDFs 9 vocabu-

laries. They also show how multidimensional analysis operations are translated into SPARQL queries

based on the proposed data model. However, all semantic web modeling vocabularies are based on

RDF formats which are primarily intended for machine consumption [37] and thus cannot be easily

used by decision-makers. Even though the authors of [17, 37] provide conceptual models underlying

semantic web modeling vocabularies, a user-oriented graphical notation is still missing to facilitate

decision-makers’ tasks of exploring RDF-like data schemas. Moreover, the work [26, 37] deals only

with one LOD dataset. To handle data other than LOD, the work [17] uses mappings (i.e. R2RML) to

populate a QB4OLAP dataset with warehoused data. Yet, no information is provided about if any of

the above-mentioned work can integrate both warehoused data and LOD in one single dataset. With-

out solutions to these problems, current semantic web modeling approaches is not suitable for the

unification of heterogeneous data in one user-oriented schema.

The third category is named unified modeling. It aims at providing generic data modeling solutions

to (i) provide an overall representation of multisource data and (ii) manage relationships between mul-

tisource data. The authors of [1] envision a multidimensional model in which an internal database is

gradually extended by fusing with external data, especially with data from the Web. The authors of [2]

outline a new multidimensional model to support user-guided data discovery and acquisition of both

internal warehoused data and external Web data. The unified modeling is a promising solution which

allows blending data from multiple sources together. However, the work [1, 2] only describes gen-

eral principles and research orientations. The authors of [28] propose IGOLAP vocabulary allowing

representing multisource data according to a multidimensional structure. However, the compatibility

of the work [28] is limited to LOD datasets. To deal with warehoused data, the authors suggest (i)

transforming them into LOD formats through a mapping language proposed in [25] and (ii) loading

large amounts of transformed data into a IGOLAP dataset. Consequently, the work [28] faces the same

problems of the ETL-based work. Moreover, the feasibility of unifying multisource data in a IGO-

LAP dataset is only discussed without being experimentally assessed. It remains unknown how the

complete unification process is instantiated and how heterogeneous instances from different sources

are managed in a IGOLAP schema.

In this paper, we propose a generic multidimensional model which provides a unified view of both

warehoused data and relevant multidimensional LOD. We denote our solution as data unification to

differ from classical data integration solutions. Our data unification solution should break away from

full integration of data into a stationary repository. It should keep a unified view over internal data

(warehoused data) and external data (multidimensional LOD) without materializing all data. Based

8https://www.w3.org/TR/skos-reference/
9https://www.w3.org/TR/rdf-schema/



on the unified modeling, we propose a complete unification process including the implementation of

a unified view and the processing of on-the-fly analyses on multisource data through a unified view.

3. Conceptual modeling of Unified Cubes

Unifying internal warehoused data and external LOD is not a straight forward task [33]. On one

hand, DW and LOD communities do not share the same modeling paradigms. No existing data model

allows blending multisource data without materializing them in a stationary repository. On the other

hand, related data instances are scattered in different schemas. Existing modeling solutions without

materialization do not allow managing the relations between heterogeneous instances from different

sources. Facing these problems, we propose a new conceptual modeling solution, named Unified

Cube, which is generic enough to unify (i) business data which are stored in multidimensional DWs

from inside a company and (ii) multidimensional LOD which are stored in sources from outside a

company. The Unified Cube modeling extends the classical multidimensional modeling to provide

a single, comprehensive representation of multisource data. In the following section, we describe

the Unified Cube model through an abstract representation. This representation is oriented towards

designers who define a conceptual schema based on multisource data. A graphical notation of the

abstract representation is proposed to facilitate the exploration of a Unified Cube by decision-makers.

3.1. Analysis subject: fact

Classically, a fact models an analysis subject. The fact is composed of a set of numeric indicators

called measures. To support real-time analyses, the Unified Cube modeling extends the concept of

measure by allowing on-the-fly extraction of measure values.

Definition 3.1. A fact is characterized by a name and a set of measures. It is denoted as F =
{nF ;MF } where:

• nF is the fact’s name;

• M
F = {m1; . . . ;mp} is a finite set of numeric indicators called measures. Each measure me

(me ∈ M
F ) is a pair 〈nme ,Eme〉, where nme is the name of a measure and Eme is an extraction

formula defined through a query algebra (e.g., relational algebra and SPARQL algebra10). The

values of the measure me are denoted as val(me).

Remark. Extraction formulae enable on-the-fly querying of measures’ values during analyses.

The algebraic representation of extraction formula makes sure its compatibility with specific imple-

mentation environments of data source. Note that although the SPARQL algebra is not yet a W3C

standard, it has already been integrated within several RDF querying framework. Each algebraic

SPARQL expression is translated into one SPARQL query which is generic enough to work with all

types of LOD datasets. Table 1 shows the algebraic form of commonly used SPARQL queries.

10https://www.w3.org/2001/sw/DataAccess/rq23/rq24-algebra.html



Table 1: SPARQL queries and their algebraic representation.

Query 1
SELECT *

WHERE { ?s ?p ?o}

Algebraic representation

(BGP (TRIPLE ?s ?p ?o))

Query 2
SELECT ?s ?p

WHERE {?s ?p ?o}

Algebraic representation

(PROJECT(?s ?p) (BGP (TRIPLE ?s ?p ?o)))

Query 3
SELECT ?o1 ?o2

WHERE{?s ?p ?o1.

FILTER (?o1 < 5)

OPTIONAL {?s ?p2 ?o2 .

FILTER ( ?o2 > 10 ) }}

Algebraic representation

(PROJECT(?o1 ?o2) (FILTER (< ?o1 5)

(LEFTJOIN(BGP (TRIPLE ?s ?p ?o1)) (BGP

(TRIPLE ?s ?p2 ?o2)) (> ?o2 10))))

Query 4
SELECT ?s (COUNT(?o) as ?nb)

WHERE {?s ?p ?o}
GROUP BY ?s

HAVING (COUNT(?o) > 10)

Algebraic representation

(PROJECT(?s ?nb) (FILTER (> ?.0 10)

(EXTEND((?nb ?.0)) (GROUP (?s) ((?.0 (COUNT

?o))) (BGP (TRIPLE ?s ?p ?o))))))

Example. The fact named Social Housings contains two measures, namely mAcceptances and

mApplications. The measure mApplications has an extraction formula expressed in relational algebra,

such as: EmApplications = Fsum(SocialHousingDemand.Applications). The extraction formula of

the measure mAcceptances is defined upon SPARQL algebra, such as:



3.2. Analysis axis: dimension

The concept of dimension in a Unified Cube follows the classical definition. A dimension may include

a single or multiple analytical granularities. If several analytical granularities are defined, we can find

one or several aggregation paths (also known as hierarchies).

Definition 3.2. A dimension corresponds to a one-dimensional space regrouping the analytical gran-

ularities related to one analysis axis. A dimension is denoted as Di={n
Di ;LDi ;4Di}, where:

• nDi is the dimensions name;

• L
Di={l1; . . . ; lk} is a set of analytical granularities called levels;

• 4Di is a binary relation which associates a child level la (la ∈ L
Di) with a parent level lb

(lb ∈ L
Di), such as la 4Di lb.

Example. We identify a dimension named Geography which groups all analytical granularities re-

lated to social housing’s location. It includes three levels, such as L
Geography = {lGeo.Ward; lGeo.District;

lGeo.Region}. The binary relation 4Geography reveals the aggregation paths (i.e., hierarchies) such as

lGeo.Ward 4Geography lGeo.District 4
Geography lGeo.Region.

Our definition of dimension is generic enough to model a non-hierarchical dimension as well.

A non-hierarchical dimension (e.g. DQB) has only one level (e.g., L
QB = {l1}) including all the

attributes of the dimension.

Two hierarchies from different sources do not always share a common lowest analytical granular-

ity. Therefore, we remove the constraint of unique root level (i.e., ∃=1lp ∈ L
Di , ∀lq ∈ L

Di : lp 4Di

lq
11) in the definition of a dimension. Without this constraint, a dimension may start at any level. This

is an important property of a dimension regrouping levels from multiple sources, since measures from

one source may only be analyzed according to a subset of levels coming from the same source. We

define a sub-dimension as a part of dimension along which a measure can be summarized.

Definition 3.3. A sub-dimension of Di, denoted Di\ls = { nDi\ls ;LDi\ls ;4Di}, corresponds to the

part of the dimension Di starting with the level ls, where :

• nDi\ls is the name of the sub-dimension;

• L
Di\ls is the subset of levels, L

Di\ls ⊆ L
Di , ∀li ∈ L

Di\ls , ls 4
Di li;

• 4Di is the same binary relation of the one on the dimension Di.

Example. A sub-dimension of the geographical dimension is DGeography\lGeo.District
named Geography-

District with L
DGeography\lGeo.District ={lGeo.District; lGeo.Region}, which represents the subpart of the

dimension DGeography that the measure mAcceptances from the LOD1 dataset is linked to.

11
∃=1 represents the unique existential quantification meaning ”there exists only one”



3.3. Analytical granularity: level

Classically, a level indicates a distinct analytical granularity described by a set of attributes from

the same data source. In the context of Unified Cubes, the classical definition of level needs to be

extended to group together attributes from different sources. Specifically, a level should manage a

set of attributes by (i) indicating how attribute instances can be extracted from data sources and (ii)

representing correlation relationships between related attribute instances from different sources.

Definition 3.4. A level represents an analytical granularity of a dimension. A level is denoted as

ld = {nld ;Ald ;C
ld}, where:

• nld is the levels name;

• A
ld = {a1; . . . ; ae} is a finite set of attributes. Each attribute ax (ax ∈ A

ld) is a pair 〈nax ,Eax〉,
where nax is the name of the attribute and Eax is an extraction formula indicating how instances

of ax can be extracted from the corresponding source. The domain of an attribute is denoted as

dom(ax);

• C
ld : dom(ax) −→ dom(ay)(ax ∈ A

ld , ay ∈ A
ld \ ax) is a symmetric transitive correlative

mapping. It connects instances of the attribute ax with equivalent instances of the attribute ay,

i.e. for an attribute instance ix ∈ dom(ax), there exists at most one instance iy ∈ dom(ay), such

as C
ld(ix) = iy.

Example. The level lEconomic.Status on the dimension DApplicant contains a finite set of attributes

A
lEconomic.Status = {aStatus; aApplicant Status}. To associate each attribute with its instances in data

sources, two extraction formulae are defined within this level: EaApplicant Status =
πApplicant Status(SocialHousingDemand) is linked to the attribute aApplicant Status from the DW,

while the attribute aStatus has the following extraction formula:

The correlative mapping C
lEconomic.Status associates the instances of the attribute aStatus with its

equivalent instances of the attribute aApplicant Status, such as:

C
lEconomic.Status : {{Working} −→ {Full-time Job}; {Working part-time} −→ {Part-time job};

{Unemployed} −→ {Unemployed}}.



3.4. Unified Cube

In a Unified Cube, a fact and a dimension respectively include measures and levels from multiple

sources. Each measure can be aggregated according to the set of levels from the same source. For each

measure, decision-makers need to easily distinguish summarizable levels from non-summarizable lev-

els. To do so, we propose the level-measure mapping which is flexible enough to associate each

measure with a set of dimensions starting from any level.

Definition 3.5. A Unified Cube is a n-dimensional finite space describing a fact with some dimen-

sions. It is denoted as UC = {F ;D; LM}, where:

• F is a fact containing a set of measures;

• D={D1; . . . ;Dn} is a finite set of dimensions;

• ∀me ∈ M
F , LM: 2L

1

\lp×...Ln
\lq −→ me is a level-measure mapping which associates a sub-

set of summarizable analytical granularities (i.e., levels) with a measure me, such as ∀i ∈
[1..n],Li

\ls(ls ∈ L
i) corresponds to a subset of levels on the dimension Di(Di ∈ D) which

starts from the level ls.

We propose a graphical notation for Unified Cubes by extending the star schema notation proposed

in [21]. The modifications are as follows:

• A fact is represented by a rectangle. The fact name is situated within the rectangle on top;

• A measure is circled by a rectangle;

• A dimension is enclosed by a rectangle. The name is placed above a dimension;

• Each level is represented by a circle with all its descriptive attributes lying below;

• A binary relation is represented by an arrow from a child level to a parent level;

• A level-measure mapping is represented by a line between a measure and a dimension starting

from any level. In order to simplify the notation, the level-measure mapping is drawn between

a measure and its lowest summarizable levels within corresponding dimensions.

Example. The Unified Cube of our case study contains two dimensions D = {DApplicant, DGeography}.
The two measures of the fact named Social Housings are associated with their summarizable lev-

els, i.e., LM: { {LApplicant;LGeography
\lGeo.District

}−→ {mAcceptances}; {L
Applicant;LGeography} −→

{mApplications} }. The complete graphical notation of this Unified Cube is shown in figure 3.

Figure 3: Graphical notation of a Unified Cube



3.5. Main contributions of Unified Cube modeling

To the best of our knowledge, Unified Cube is the first model that allows unifying appropriate data

for decision-making from both DWs and LOD datasets without materializing all data in a stationary

repository. By including business-oriented concepts and a graphical notation, a Unified Cube can sup-

port analyses on multiple data sources in a user-friendly way without requiring specialized knowledge

on logical or physical data modeling. The Unified Cube modeling breaks through three obstacles in

the multidimensional modeling field: (i) warehoused data and LOD can be queried on-the-fly during

analyses through instance-finding mappings (i.e. extraction formulae of measures and attributes), (ii)

a measure can be linked to a dimension starting from any level through intra-aggregate mappings (i.e.

level-measure mapping LM), and (iii) attribute instances from one source are linked with equivalent

instances of attribute from another source through inter-instance mappings (i.e. correlative mappings

C
ld). The powerful Unified Cube modeling is further coupled with a user-friendly graphical nota-

tion, so that non-expert users can easily explore by themselves the overall schema of multisource data

during analyses.

4. Implementation of Unified Cubes

A conceptual Unified Cube provides a generic representation unifying data which are physically stored

in different sources. Once defined by a schema designer, a Unified Cube needs to be implemented

before being used to support analyses on multisource data. To do so, we provide a framework which

automates the implementation of Unified Cubes. Two modules are identified within the framework,

namely schema and instance. The schema module aims at managing the overall structure of a Unified

Cube (cf. section 4.1), while the instance module serves as an integrated repository of correlative

attribute instances from heterogeneous sources (cf. section 4.2).

4.1. Schema module

The schema module manages the multidimensional representation of a Unified Cube. It serves as an

interface between business-oriented concepts in a Unified Cube and referents in data sources. To do so,

we propose a metamodel which offers a uniform way to access different data sources through concepts

in a Unified Cube. In this section, we firstly describe the components of the metamodel. Then, we

propose an algorithm to automatically instantiate the metamodel.

In the metamodel, concepts such as fact, measure, dimension, level and attribute are modeled

through classes. Composition relationships are used to associate a containing class (e.g., fact) with

a contained class (e.g., measures). Binary relations between parent and child levels are represented

by a recursive association connected to the Level class. Level-measure mappings are managed by the

association between classes named Measure and Level. It is worth noticing that extraction formulae of

measures and attributes are translated into executable queries (i.e., queryM and queryA). A querying

endpoint is associated with each measure and each attribute, so that data instances can be extracted

on-the-fly during analyses. The class diagram of the metamodel is shown in figure 4.

We complete the proposed metamodel with an instantiation process (cf. algorithm 1). The goal is

to automatically instantiate classes and associations of the metamodel based on a conceptual Unified



Figure 4: Class diagram of the metamodel for Unified Cubes

Cube. First, the algorithm instantiates the dimension class and associates each dimension instance

(Dmeta
i ) with related attributes instances (ameta

x ) organized according to child (lmeta
e ) and parent

(lmeta
f ) level instances (cf. lines 1 - 16). Then, the algorithm creates a fact instance (Fmeta) and

links it with a set of measure instances (mmeta
g ) (cf. lines 17 - 22). At last, the algorithm instantiates

associations between a measure instance (mmeta
g ) and its summarizable level instances (Lr

\lh
× . . .×

Lt
\lk

) (cf. lines 23 - 26). The output of the instantiation process is an instantiated metamodel which

manages the overall structure of a Unified Cube.

Specifically, each Unified Cube dimension is used to instantiate a Dimension class (cf. lines 1

and 2). For each level on the Unified Cube dimension, a Level class is instantiated and associated

with the corresponding Dimension class (cf. lines 3 - 5). The extraction formula of an attribute in

the Unified Cube is transformed into an equivalent algebraic operation before being translated into an

executable query. An Attribute class is instantiated with a name, a query and a query endpoint. It is

then associated with the corresponding level (cf. lines 6 - 11). Binary relations within a dimension are

used to instantiate the association between a child level instance and a parent level instance (cf. lines

13 - 15). A Fact class is instantiated (cf. lines 17). An executable query is generated for each measure

based on the extraction formula. With the measure’s name, translated query as well as query endpoint,

a Measure class is instantiated and associated with the fact (cf. lines 18 - 22). The level-measure

mappings in the Unified Cube are used to instantiate the association between a measure instance and

a set of level instances (cf. lines 23 - 26). Note that the operations used in the algorithm can be found

in the metamodel in figure 4.

Example. We apply the algorithm to the Unified Cube of our case study (cf. figure 3). The instan-

tiated metamodel contains (i) one instance of Fact (ii) two instances of Measure, (iii) two instances of



Algorithm 1: Metamodel Instantiation

input : A Unified Cube = {F; D ; LM}
output: An instantiated metamodel

for each Di ∈ D do

Instantiate the Dimension class: Dmeta
i = newDimension(nDi);

for each ld ∈ LDi do

Instantiate the Level class: lmeta
d = newLevel(nld);

Dmeta
i .addLvl(lmeta

d );

for each ax ∈ Ald do

Translate the extraction formula Eax into a query Qax ;

Get the attribute’s query endpoint URLax ;

Instantiate the Attribute class: ameta
x = newAttribute(nax ;Qax ;URLax);

ameta
x .addLvl(lmeta

d ) ;

end

end

for each le 4
Di lf do

lmeta
e .addParentLvl(lmeta

f ), lmeta
f .addChildLvl(lmeta

e );

end

end

Instantiate the Fact class: Fmeta = newFact(nF ) ;

for each mg ∈ MF do

Translate the extraction formula Emg into a query Qmg ;

Get the measure’s query endpoint URLmg ;

Instantiate the Measure class: mmeta
g = newMeasure(nmg ;Qmg ;URLmg);

Fmeta.addMea(mmeta
g );

Find levels Lr
\lh
× . . .× Lt

\lk
associated with mg through level-measure mappings LM,

such as Lr
\lh
× . . .× Lt

\lk
⊆ L1 × . . .× Ln, LM: Lr

\lh
× . . .× Lt

\lk
−→ mg;

for each level lh ∈ Lr
\lh
× . . .× Lt

\lk
do

mmeta
g .addLvl(lmeta

h );

end

end

Dimension, (iv) four instances of Level with two associations implementing binary relations and seven

associations implementing level-measure mappings and (v) seven instances of Attribute.

In figure 5, a snapshot of the instantiated metamodel is presented in the form of an object diagram.

For the sake of readability, the snapshot only includes some components of the Unified Cube of the

case study. In the snapshot, the Geography dimension includes the level Geo.District. This level

contains three attributes from the DW and the two LOD datasets, namely District, Housing District

and Area. The measure named Acceptances of the fact named Social Housings is mapped to the

summarizable level Geo.District through level-measure mappings.



Figure 5: Snapshot of instantiated metamodel

4.2. Instance module

In a Unified Cube, equivalent attribute instances from different sources are associated together by cor-

relative mappings (cf. section 3.3). Due to different understandings of the same real-world concepts,

equivalent attribute instances may take heterogeneous forms in different data sources. It is necessary

to bridge the differences among multiple data sources at the instance level. To do so, we propose a

table of correspondences which manages correlative mappings between related attribute instances.

Definition 4.1. A table of correspondences links up pairs of correlative attribute instances by annotat-

ing each pair with a confidence score. Its schema is denoted as T = {id;nax ; iax ;nay ; iay ; scorexy},
where:

• id is an identifier;

• nax is the name of the attribute ax;

• iax is an instance of the attribute ax, iax ∈ dom(ax);

• nay is the name of the attribute ay situated within the same level as the attribute ax;



• iay is an instance of the attribute ay, iay ∈ dom(ay);

• scorexy is a normalized confidence score between iax and iay , scorexy ∈ [0, 1].

Populating a table of correspondences requires identifying correlative instances from different

sources. In some cases, correlative mappings are already semantically represented between sources.

For instance, it is common to find in a LOD dataset that the OWL property owl:sameAs is used to

associate an instance with an equivalent instance in another LOD dataset. A table of correspondences

is populated by directly following such existing correlative mappings.

In other cases, there exists no correlative mapping between two sources (e.g. between a DW and

a LOD dataset). We rely on techniques of instance matching to identify correlative instances between

two datasets. Instance matching belongs to the field of entity resolution [12, 5]. Existing entity res-

olution processes are designed for matching instances from sources of the same type. Classically,

problems of matching instances from sources of different types are handled in a simplistic way by

transforming heterogeneous sources into a common format and then following a matching process

designed for homogeneous sources. However, as more and more data are involved in matching nowa-

days, it is not efficient to carry out matching with a transformation stage. The matching should be

performed directly between different sources, regardless if the sources belong to the same type or not.

To do so, we propose a process based on techniques which are generic enough to enable direct

matching of instances from heterogeneous sources. As shown in figure 6, the process starts with

a stage which generates matching candidates directly from raw data. The second stage consists of

calculating the similarity between matching candidates. The final stage determines the best matches

between the two sets of instances.

Figure 6: Process of matching between two sets of instances from different sources

Specifically, during the first stage, we apply some processing techniques to prepare attribute in-

stances for the matching. First, we fix the matching cardinality to 1:1 (i.e. injective mapping), which

assumes one instance in a source can be matched with only one instance in the other source. Second,

we normalize descriptive information of instances by eliminating stylistic differences due to capi-

talization, punctuation, and non-Latin characters. Third, we propose several solutions to set up the

matching candidates in string form.

• A straightforward setup consists of concatenating all descriptive information into one long

string. We denote this setup as Concatenated. The opposite setup is to compare individually

descriptive information of the same kind [27]. We denote this setup as Separated.



• Some descriptive information may contain useless parts, e.g., name spaces such as the prefix

eg:12. We propose a setup named Optimized which removes useless parts to keep only informa-

tion related to matching [10]. The opposite setup is denoted Unprocessed, as it takes descriptive

information ”As-Is” without any modification.

Remark. In the case where each instance is described by one unique string, the matching is carried

out directly with the unique description of an instance without concatenation.

During the second stage, we rely on string similarity measures to calculate a confidence score

between 0 and 1 for each pair of matching candidates. String similarity measures are widely used

as syntax-based matching technique in the field of entity resolution [19], for instance, record linkage

between warehoused data [7] and instance matching between LOD [9]. We identify sixteen widely-

used string similarity measures in the scientific literature. We carry out some experimental assessments

to find out the most efficient string similarity measures. Based on the results, we identify three string

similarity measures, namely N Grams Distance [40], Levenshtein [44], and Smith Waterman [30],

which are generic and efficient enough to fit for various matching tasks. Details about our experimental

assessments will be presented in section 6.

Remark. Matching based on string similarity measures is often reinforced by some auxiliary

techniques. One of the most widely used auxiliary techniques is semantic-based. It relies on formally

described semantics to perform deductive matching methods. However, in nowadays open, evolving

world, different sources usually adopt different methods to describe the semantics. Matching two

sources with well-defined semantics through semantic-based techniques is already hard enough, e.g.

ontology and instance matching tracks of Ontology Alignment Evaluation Initiative13, not to mention

difficulties in matching data from semantic-light sources, such as DWs. A DW’s semantics are not rich

enough, since they are defined during the design phase and not explicitly represented after implemen-

tation [18]. An intermediate ontology is generally used to provide additional semantics of warehoused

data [20]. Building an intermediate ontology usually requires the intervention of domain experts and

thus is hardly automated. Moreover, the slightest error in an intermediate ontology can introduce

hidden bias in matching. Therefore, semantic-based techniques using an intermediate ontology are

neither generic nor efficient enough to be applied to instance matching in a Unified Cube.

During the third stage, we determine the best matches by finding 1:1 matching between two sets

of instances. We apply the stable-marriage algorithm [22] to identify mutually accepted matching

between two datasets. The algorithm repeats the following steps until all instances in two datasets are

matched: let D1 and D2 be two datasets, (i) an unmatched instance in D1 establishes a mapping with

the most similar instance in D2 if no previous mapping is broken between them and (ii) an instance in

D2 accepts a mapping from D1 and breaks an existing mapping (if any) when the new mapping comes

from a more similar instance in D1. A set of best matches between two data sources is produced.

Then, the best matches are used to populate the table of correspondences.

Example. In the Unified Cube of our case study, the level lGeo.District includes three attributes

from different sources. Correlative instances are identified in the following ways:

12eg:¡http://www.example.org/¿
13http://oaei.ontologymatching.org/



Figure 7: Identifying equivalent attribute instances within the level lGeo.District

• the attributes named District and Area come from the LOD1 and LOD2 datasets respectively.

In the LOD1 dataset, each district is linked to an equivalent district in the LOD2 dataset through

the OWL property owl:sameAs (cf. figure 7). By referring to the links between LOD datasets,

243 pairs of districts from the LOD1 dataset and the LOD2 dataset are associated together with

a perfect confidence score (i.e. score = 1);

• Housing District’s instances from the DW share similar description with instances of Area from

the LOD1 dataset. Yet, there is no existing correlative mapping between the DW and the LOD1

dataset. We apply our proposed instance matching process to identify correlative instances of

the attributes Housing District and Area.

A snapshot of the obtained table of correspondences is shown in figure 8.

Figure 8: A snapshot of the table of correspondences

The advantage of our implementation framework is twofold. On one hand, instances are not ma-

terialized and can be queried on-the-fly. In this way, the data freshness is guaranteed during analyses.

On the other hand, data from different sources can be analyzed in a unified way owing to the table

of correspondences. The cost of maintaining a table of correspondences is quite low, as attribute

instances only represent 1% to 6% of a multidimensional dataset’s size [42].



5. Analysis processing of Unified Cubes

Our proposed implementation framework enables interactions between a Unified Cube and multiple

data sources at both schema and instance levels. Based on the framework, we propose an analysis

processing process enabling decision-making on multiple sources in a user-friendly way.

Processing analyses on multiple sources has been studied by classical mediator approaches. As

shown in figure 9(a), in the mediator-based approach, a query posed over a global schema (i.e. Qglobal)

is transformed into local queries (i.e. Qlocal) by a mediator. A wrapper translates a local query into

an executable query in one source. Query results are transformed into a common form (e.g., relational

data) to generate partial results of analysis. All partial results are then combined together to form a

final analysis result [3].

Figure 9: Mediator-based approach versus analysis processing process for Unified Cube

Comparing to classical mediator-based approaches, our proposed analysis processing process is

saved from the intermediate steps in wrappers: executable queries are directly generated based on a

global query posed over a Unified Cube, while a final analysis result is directly built from extracted

multisource data. Specifically, at the beginning of an analysis, a decision-maker explores a Unified

Cube and expresses a global query by choosing a set of attributes and measures related to the analysis.

The analysis processing process automatically generates executable queries in multiple sources by us-

ing the extraction formulae stored in the implementation framework. After the execution of queries,

data from several query results are automatically blended together by referring to the correlative re-

lations provided by the implementation framework. At the end of an analysis, the decision-maker

receives one unique analysis result including data from multiple sources.



In this section, we first describe how queries are automatically generated for an analysis (cf. sec-

tion 5.1). Then, we present how one analysis result is generated based on data extracted from different

sources (cf. section 5.2). At last, we illustrate the feasibility of our proposal through a prototype

analysis framework (cf. section 5.3).

5.1. Queries generation

With the help of a Unified Cube, a decision-maker can express an analysis need by choosing a set of

measures and attributes. To facilitate decision-makers tasks, we propose a process whose goal is to

extract data related to an analysis from multiple sources (cf. algorithm 2). This is done through the

generation of queries in each data source involved in an analysis.

First, among the chosen attributes, the algorithm finds a subset of attributes (AM) that are directly

related to chosen measures (M ) (cf. lines 1 - 23). Then, for each chosen measure (me), the algorithm

generates a query by combining its extraction formula and those of the related attributes (Ame) (cf.

lines 24 - 30). At last, if there are some chosen attributes (A \ AM) that are not directly related to

any chosen measure, their extraction formulae are added in the set of generated queries (cf. lines 31 -

35). The output of the algorithm is a set of queries extracting data related to an analysis from multiple

sources. The abstract notation of Unified Cubes and operations involved in the algorithm are described

in previous sections 3 and 4.1 respectively.

Specifically, in a Unified Cube, each measure is summarizable with regard to a set of levels. The

set of summarizable levels may differ from one measure to another, while not every measure can be

calculated according to every level (e.g. figure 3). If an analysis mistakenly involves a measure and

attributes within non-summarizable levels, the algorithm displays a warning message and breaks the

execution (cf. lines 7 - 8). Otherwise, the algorithm classifies measures and attributes by data source.

Specifically, for each measure me, the algorithm finds a list of attributes from the same sources (i.e.

Ame in line 4). Such attributes may (i) be an attribute ax chosen by decision-makers (cf. lines 10 and

11), (ii) correspond to an attribute within the same level of ax (i.e. ay at lines 14 and 15) and (iii)

come from the set of attributes within the highest level linked to me (i.e. ay bis at lines 17 and 18).

Extraction formulae of a measure and its attributes are then grouped together (cf. lines 24 - 26). As

some analyses involve multiple levels, grouping predicates have to be added in generated queries (cf.

line 27). During the execution, the algorithm picks out attributes linked to a chosen measure (i.e. AM

in lines 1 and 23). For the other attributes (i.e. A \ AM in line 32), the algorithm directly adds their

extraction formulae in the set of queries (i.e. Q ). Each query in the output result includes measures

and attributes from a single source.

To better explain how the algorithm works, we show some examples of analysis based on the

Unified Cube of our case study (cf. figure 3).

The first analysis includes a measure and an attribute from different sources. The algorithm firstly

finds the set of levels linked to the measure mAcceptences (cf. line 3, LmAcceptences =
LGeography

\lGeo.District
∪ LApplicant. Then it retrieves the chosen attribute’s level (cf. lines 6,

laHousing Ward). By comparing laHousing Ward with LmAcceptences , the algorithm finds that the chosen

measure is not linked to the level of the chosen attributes (cf. line 7, laHousing Ward /∈ LmAcceptences).

It displays a warning message and stops executing (cf. line 8). No query is generated for the first



Algorithm 2: Automatic Query Generation

input : A set of measures M ; a set of attributes A

output: A set of generated queries Q = {q1; . . . qn }

Create an empty set of attributes AM,AM = ∅;

for each me ∈ M do

Get all levels linked to me: Lme = me.getLvlsM();
Create an empty list of attributes Ame ,Ame = ∅ ;

for each ax ∈ A do

Get the level of ax: lax = ax.getLvl();
if lax /∈ Lme then

Impossible analysis, break the execution and display a warning message;

else

if ax.getURLA() = mx.getURLM() then

Add the attribute ax in the list Ame ;

else

Get the set of attributes on the level lax : Alax = lax .getAtts();

if ∃ay ∈ Alax such as ay.getURLA() = me.getURLM() then

Add the attribute ay in the list Ame ;

else

Find an attribute ayBis, such as ayBis.getLvl() ∈ lax .getChildLvls() ∧
∄az ∈ ayBis.getLvl().getParentLvl().getAtts(), az.getURLA() =
me.getURLM() ;

Add the attribute ayBis in the list Ame ;

end

end

end

end

AM ←− AM
⋃

Ame ;

Get the query of the measure me: qme = me.getQueryM();
for each ap ∈ Ame do

Add ap.getQueryA() in qme ;

Add ap in the grouping predicates in qme ;

end

Add qme in Q;

if A \ AM 6= ∅ then

for each ax ∈ A \ AM do

Add ak.getQueryA() in Q

end

end

end



Table 2: Analysis needs with corresponding measures and attributes

Analysis need DW LOD1 LOD2 Comment

1. number of accepted appli-

cations by housing ward.
aHousing Ward mAcceptences n/a impossible

2. number of accepted appli-

cations by economic status.
n/a mAcceptences,

aStatus

n/a direct

querying

3. number of accepted appli-

cations by applicant’s status.
aApplicant Status mAcceptences n/a multisource

4. number of accepted appli-

cations by applicant’s region.
n/a mAcceptences aRegion multisource,

adaptation

5. number of submitted and

accepted applications by ap-

plicant’s status and housing

district, region.

mApplications

aApplicant Status

aHousing District

mAcceptences aRegion

direct

querying,

multisource,

adaptation

analysis. Through the first example, we can see our proposed algorithm is reliable enough to detect

analysis needs that are not supported.

The second analysis corresponds to a classical involving only one data source. In this case,

measures and attributes can be directly queried from the source. Specifically, after verifying that

mAcceptences and aStatus come from the same source, the algorithm combines their extraction formu-

lae together (cf. lines 10 and 11). The generated query in appendix A shows a Unified Cube also

supports analyses involving one single data source.

The third analysis calculates a measure according to an attribute from a different source. The algo-

rithm first retrieves all attributes within the same level of aApplicant Status (cf. line 13, Al
aApplicant Statue

)

= {aApplicant Status, aStatus}). An attribute aStatus is found in the same source of measure mAcceptences

(cf. line 14, aStatus ∈ Al
aApplicant Statue

, aStatus.getURLA()= mAcceptences.getURLM()). The extrac-

tion formulae of mAcceptences and aStatus are combined together in the same way of the second anal-

ysis (cf. line 15). The algorithm finds the relative complement of Al
aApplicant Statue

in chosen attribute

set A is not empty (cf. line 31, A\Al
aApplicant Statue

={aStatus}). The extraction formula of aStatus is

added in the set of generated queries (cf. line 33). Appendix B shows the two generated queries of the

third analysis.

The fourth analysis involves two different sources. No attribute within the level of aRegion be-

longs to the source of mAcceptances (cf. lines 13 and 14, ∄ay ∈ laRegion .getAtts(), ay.getURLA() 6=
mAcceptances.getULLM()). Adaptations are needed to generate executable queries for each source.

To do so, the algorithm finds aDistrict which belongs to a lower level of laRegion and the high-

est level available in the source of mAcceptances (cf. line 17, laDistrict ∈ laRegion .getChildLvls()



∧∀az ∈ laDistrict .getParentLvl().getAtts(), az .getURLA() 6= mAcceptances.getURLM()). The first

query is generated by combining together the extraction formulae of aDistrict and mAcceptances (cf.

line 18), while the second query is generated by directly using the extraction formula of aRegion. Both

queries are present in appendix C.

The fifth analysis unifies measures and attributes from three different sources. The extraction

formulae of mApplications, aApplicant Status and aHousingDistrict are directly combined together to

generate the first query, since they come from the same DW (cf. lines 10 and 11). Then, the algorithm

finds attributes aStatus and aDistrict from the LOD1 dataset (cf. lines 13, 14 and 17). The second

query is generated by referring to the extraction formulae of mAcceptances, aStatus and aDistrict (cf.

lines 15 and 18). The third query refers directly to the extraction formula of aRegion (cf. lines 31 - 34).

The last analysis covers all previously discussed scenarios: from a single source to multiple sources

with and without adaptation. Three generated queries are shown in appendix D.

5.2. Analysis result generation

After the execution of generated queries, several query results are returned from different sources. It

is difficult for decision-makers to obtain an overall perspective from different query results containing

data of different types. It is necessary to provide one unified result including all data related to the

analysis. To do so, we propose a generic modeling solution of query result and analysis result which

can be considered as a set of attribute instances possibly linked to a set of measure values.

Definition 5.1. A result is denoted as Ri = {V
Ri ; IRi ; fRi}, where:

• VRi = ∅ ∨ {val(m1), . . . , val(mf )} is an empty set or a set of measure values;

• IRi = {IDi , . . . , IDp} is a non-empty set of attribute instances organized according to dimen-

sions. ∀IDx ∈ IRi , IDx refers to the attribute instances on the dimension Dx;

• fRi : VRi −→ IRi is a function associating each n-tuple of measure values {vm1 , . . . , vmf }
to one n-tuple of attribute instances {ia1 , . . . , iae }, where ∀vmx ∈ {vm1 , . . . , vmf }, vmx is a

value of the measure mx (i.e. vmx ∈ val(mx) ) and ∀iay ∈ {ia1 , . . . , iae}, iay is an instance

of the attribute ay (i.e. iay ∈ dom(ay)). In particular, when a result contains only attribute

instances without any measure value (i.e. VRi = ∅), fRi is an empty function.

Figure 10: An example of query result



Example. Figure 10 shows the number of accepted applications for social housing by district and

economic status (i.e. the result of the second generated query in appendix D).

Based on the generic modeling of result, we propose a process whose goal is to generate an overall

result at the end of an analysis (cf. algorithm 3). This is done by blending together data from one or

several query results. When one single query result is obtained (|R| = 1), it is considered as the

final analysis result (cf. lines 1 and 2). When several query results are produced, they are combined

together by reference to the related instances (T = {T1, ..., Tk}) stored in the table of correspondences

(cf. lines 3 - 22). In the following, we provide more details about how multiple query results are fused

together to form one analysis result at the output of the algorithm.

Algorithm 3: Automatic generation of Analysis Result

input : A set of chosen attributes A ; a set of query results returned from sources R = {R1, . . . ,

Rn}.
output: A single analysis result RAnalysis

if |R|=1 then

RAnalysis = R ;

else

Find a query result Rx, such as Rx ∈ R ∧ VRx 6= ∅;

Create a temporary result Rtemp, set Rtemp ←− Rx;

Get the set of tuples T = {T1, . . . , Tk} in the table of correspondences;

for each result Ri ∈ R ∧Ri 6= Rx do

for each set of attribute instance IDx on the dimension Dx in result Ri, IDx ⊆ IRi do

Find the set of attribute instances I
Dx

bis on the same dimension Dx in IRtemp ;

for each pair of instances iap and iaq , such as iap ∈ IDx ∧iaq ∈ I
Dx

bis

∧∃id ∈ N, ∃score ∈ R, there exists a tuple in the table of correspondances, such

as {id, ap.getNameA(), iap , aq.getNameA(), iaq , score} ∈ T do

Associate iap with iaq in Rtemp;

if VRi 6= ∅ then

Create fRtemp between VRi ∪ VRtemp and IDx ∪ I
Dx

bis ;

else

Create fRtemp between VRtemp and IDx ∪ I
Dx

bis ;

end

end

end

end

Aggregate Rtemp according to the chosen attributes A ;

RAnalysis ←− Rtemp;

end

Specifically, the algorithm first creates a temporary result Rtemp based on one query result con-

taining some measure values (cf. lines 4 and 5). Then, each n-tuple of attribute instances in Rtemp is



associated with a related n-tuple in query result Ri. This is done by referring to tuples in the table of

correspondences (cf. lines 6 - 11). Meanwhile, if Ri includes some measures, related measure values

from Rtemp and Ri are grouped together and linked to the corresponding attribute instances in Rtemp

(cf. lines 12 and 13). If no measure is involved in Ri, only measure values from Rtemp are associated

with related attribute instances (cf. line 15). At last, a single analysis result is generated by aggregating

the measures in Rtemp according to the attributes specified by a decision-maker (cf. lines 20 and 21).

Note that the abstract notation in algorithm 3 follows the conceptual Unified Cube modeling presented

in sections 3, while the operations correspond to those in the metamodel described in section 4.1.

Example. To explain the execution of the algorithm 3, we illustrate how the analysis result is gen-

erated for the most complex analysis (the fifth analysis) in table 2. Remember that three queries were

generated for this analysis: the first query R1 aggregates the sum of mApplications by aHousing District

and aApplicant Status from the DW; the second query R2 aggregates the sum of mAcceptances by

aDistrict and aStatus from the LOD1 dataset; the third query R3 associates each district (i.e. aArea)

with its region (i.e. aRegion) from the LOD2 dataset without any measure.

After the execution of all generated queries, the algorithm 3 receives three results from different

sources. It first creates a temporary result Rtemp based on the query result R1 from the DW (cf.

figure 11(1)). Then, attribute instances from Rtemp are grouped with those from R2 (cf. figure 11(2)).

During this step, attribute instances involved in correlative mappings are grouped together by referring

to the table of correspondences (cf. lines 6 - 11 in algorithm 3). Next, measure values from Rtemp are

associated with related ones from R2 (cf. figure 11(3)).

Figure 11: Combining query results from the DW and the LOD1 dataset

Query result R3 does not contain any measure. It provides a complementary level of the geograph-

ical dimension in Rtemp. To merge R3 with Rtemp, the algorithm refers to the table of correspondences



to associate instances of aDistrict with those of aArea. The instances of aRegion are merged into new

Rtemp along with corresponding areas (cf. figure 12).

Figure 12: Combining Rtemp with query result from the LOD2 dataset

The final analysis result is generated by aggregating measures according to attributes chosen by a

decision-maker. In our example, the attributes aApplicant Status, aHousing District and aRegion consists

of the chosen attributes of the analysis (cf. table 2), the algorithm automatically generates a query

aggregating the temporary result according to aApplicant Status, aHousing District and aRegion (cf. lines

19 and 20 in algorithm 3). The final analysis result is shown in figure 13.

Figure 13: Analysis result about number of submitted and accepted applications by applicant’s status

and housing district, region

The advantages of our proposed decision-support process are twofold. First, our proposed decision-

support process always provides up-to-date data to decision-makers. Warehoused data and LOD are

queried on-the-fly during analyses without materializing them in a stationary repository. Second,

our proposed decision-support process facilitates decision-makers analysis tasks. An analysis result



based on data from various sources is automatically created in an on-demand manner. In this way,

the distribution of data throughout multiple sources, the different schemas of various sources, and

the complex querying languages with specific syntax are all hidden from end users by our proposed

decision-support process.

5.3. Multisource analysis framework

To enable analyses on multiple sources in a user-friendly manner, we develop a multisource analysis

framework which present only business-oriented concepts to decision-makers during analyses. The

overall architecture of the multisource analysis framework is shown in figure 14.

Figure 14: Architecture of the multisource analysis framework

Specifically, a Unified Cube is implemented at both the schema and the instance levels by schema

manager and instance manager respectively. The schema manager deals with concepts related to

the unified view of multiple data sources. It is made up of (i) a metamodel implemented in the Or-

acle DBMS and (ii) a Java program instantiating the metamodel. The instance manager deals with

correlative attribute instances from different sources. The Oracle DBMS hosts a relational table of

correspondences in the instance manager. A Java program implements our instance matching process

and populates the relational table of correspondences. Note that a Unified Cube can be built upon any

source which provides a querying endpoint (e.g., an internal DW fully controlled by an organization,

an external DW hosted by a business partner, an online LOD dataset, . . . ). Moreover, it is possible to

populate the table of correspondences on-the-fly and keep it in memory without materialization. How-

ever, to reduce analysis runtime, we choose to populate the table of correspondences prior to querying

and materialize it in a relational DBMS.

The analysis processing methods are implemented through two Java programs. They allow (i)

generating queries to extract data from multiple sources and (ii) integrating extracted data into one

analysis result. Both Java programs are included in the analysis processing manager. Note that queries

discussed in section 5.1 (cf. appendixes) and analysis results presented in section 5.2 are automatically

generated by the analysis processing manager of our multisource analysis framework.

We develop a graphical interface by extending the ones of our previously proposed analysis tools

[35, 34]. The interface aims at facilitating interactions between a decision-maker and the multisource



analysis framework. As shown in figure 15, a decision-maker can express an analysis need by choosing

measures and attributes within related levels through the graphical notation of Unified Cubes (cf. upper

part of the graphical interface). At the end of an analysis, a decision-maker can visualize an analysis

result in tabular and graphic forms (cf. lower part of the graphical interface).

Figure 15: Graphical interface of the multisource analysis framework

Our proposed analysis framework supports a user-friendly decision-making process in our analysis

framework. As shown in figure 14, a decision-maker starts an analysis by exploring a Unified Cube

in graphical notation through an interface (cf. arrow 1). She/he clicks on measures and attributes

related to her/his analysis needs. The interface sends the chosen measures and attributes to the schema

manager (cf. arrow 2). The latter looks up in the metamodel to find extraction formulae and query

endpoints of the chosen measures and attributes (cf. arrow 3). Next, the analysis processing manager

generates a set of queries and sends them to the corresponding query endpoints of different sources.

Each query includes measures and attributes from one source (cf. arrows 4). After queries execution,

the analysis processing manager receives data extracted from different sources (cf. arrows 5). It

then refers to the correlative relationships in the instance manager to associate equivalent attribute

instances together among extracted data (cf. arrow 6). One analysis result is generated by the analysis

processing manager based on the chosen measures and attributes (cf. arrow 7). At last, the interface

provides the decision-maker with a dashboard representing the analysis result in tabular and graphic

forms (cf. arrow 8). In this way, decision-makers only interact with some business-oriented concepts

during analyses. The analysis processing is completely hidden from decision-makers.



6. Experimental assessments

To enable analyses on data from multiple sources, one key step consists of unifying data extracted

from different sources together to form one unique analysis result. This unification is based on the

table of correspondences which is populated through an instance matching process (cf. figure 6).

By exclusively using string similarity measures, our proposed matching process is generic enough to

identify correlative instances without formally described data semantics. To study the feasibility and

efficiency of our proposed matching process, we carry out some experimental assessments.

In this section, we first describe the inputs of our experimental assessments composed of two data

collections and sixteen string similarity measures (cf. section 6.1). Second, we present the results of

our experimental assessments. We also discuss the influences of four matching setups and different

features of data collections on matching efficacy and efficiency (cf. section 6.2). Third, based on the

experimental results, we propose some generic guidelines for efficient use of string similarity measures

to match correlative instances in a Unified Cube (cf. section 6.3). At last, we validate our proposed

guidelines by using benchmarks of Ontology Alignment Evaluation Initiative14 (cf. section 6.4).

6.1. Input

During our experimental assessments, we use two collections of real-world data. Each collection

covers a specific domain and has distinctive features.

The first collection is named GeoData. It contains geographic data in the RDF format published by

the UK Department for Communities and Local Government (CLG)15. The CLG provides multidimen-

sional LOD datasets related to social housing, taxation of local governments, etc. Most CLG datasets

contain a geographic dimension composed of one level named District. The geographic dimension can

be completed by adding more levels such as County and Region published by the Office for National

Statistics (ONS)16. To do so, each District from the CLG dataset is associated with a corresponding

District from the ONS dataset through the property owl:sameAs. These correspondences are used

as baselines, i.e. a set of actual mappings between instances from two datasets. The objective is to

match 237 non-metropolitan districts from the CLG dataset with 280 non-metropolitan and metropoli-

tan districts from the ONS dataset. The percentage of mismatches is (280 − 237)/237 = 18.14%.

The CLG dataset includes 25 079 RDF triples, while the ONS dataset contains only 4256 RDF triplet.

Descriptive information about districts, such as name and type, is relatively short. The average string

length is 24.6 characters including data type descriptors and name spaces.

The second collection is named DBLP. It contains bibliographic data related to scientific publica-

tions provided by DBLP (e.g. conference papers, journal articles, etc.). Two different implementations

of the bibliographic data are managed by the European Network of Excellence ReSIST17 and the L3S

Research Center18. The baselines consist of a set of owl:sameAs properties which links each publi-

cation hosted by ReSIST to a corresponding publication hosted by L3S. We extract 1000 publications

14http://oaei.ontologymatching.org/
15http://opendatacommunities.org/
16http://statistics.data.gov.uk/
17http://dblp.rkbexplorer.com/sparql
18http://dblp.l3s.de/d2r/sparql.



from the ReSIST and the L3S datasets. Each extracted publication from ReSIST has one unique equiv-

alent publication extracted from L3S. We then introduce different percents of mismatches in extracted

data by adding in one dataset some publications which have no equivalent one in the other dataset. Six

scale factors of mismatches are proposed to include from 0% to 50% mismatches in both the ReSIST

and the L3S datasets. The objective is to correctly find the 1000 corresponding publications. The

ReSIST datasets include from 16983 to 25512 triples, while the L3S datasets contain from 23549 to

35344 triples. Descriptive information about publications, such as title and conference name, is com-

posed of long strings. The average string length is about 290 characters including data type descriptors

and name spaces.

A summary of the datasets used in our experimental assessments is provided in table 3.

Table 3: Details of the datasets used in our experimental assessments

Title
Datasets

Mismatch
Expected

Matching
Avg Length

Name Volume

GeoData
CLG 25079 triples

18.14% 237 pairs 24.6
ONS 4256 triples

DBLP0
ReSIST 16983 triples

0% 1000 pairs

290

L3S 23549 triples

DBLP10
ReSIST 18680 triples

10% 1000 pairs
L3S 25819 triples

DBLP20
ReSIST 20423 triples

20% 1000 pairs
L3S 28100 triples

DBLP30
ReSIST 22069 triples

30% 1000 pairs
L3S 30422 triples

DBLP40
ReSIST 23778 triples

40% 1000 pairs
L3S 32900 triples

DBLP50
ReSIST 25512 triples

50% 1000 pairs
L3S 35344 triples

We find out sixteen generic and widely-used string similarity measures in the scientific literature.

Based on the definition, we classify the similarity measures into six groups (cf. table 4).

6.2. Protocole, observations and discussions

6.2.1. Protocol

The objective of the experimental assessments is to find out if string similarity measures can be used

to match correlative attribute instances. And if so, how and when they should be used to maximize

their efficiency during the matching. To do so, we must answer the following questions.



Table 4: Sixteen string similarity measures according to six groups

Similarity

Measure
Description Group

1 Soundex It is based on phonetic encoding to match homophones Phonetic

2 N Grams It compares subsequences of N characters between strings Subsequence based

3 Levenshtein One of the most widely used string similarity measures

based on edit distance, i.e. copy, substitute, insert and

delete a character from one string to another

Edit Distance

4 Needleman

Wunch

A weighted variant of Levenshtein by adding a variable

cost to the gap, i.e. insert and delete

5 Smith

Waterman

A variant of Needleman Wunch which is originally devel-

oped to identify optimal matching between related DNA

and protein sequences

6 Smith Water-

man Gotoh

An extension of Smith Waterman by adding a scoring sys-

tem of gap penalty to align small portion of genetic codes

7 Monge

Elkan

An extension of Smith Waterman by allowing a specific

gap penalty function between sequences

8 Jaro A linear sum assignment variant of edit distance originally

developed in the field of record linkage Jaro

9 JaroWinkler A variant of Jaro suited for short strings

10 Block

Distance

A similarity measure based on n-dimensional vector space

defined through the characters of input strings. The simi-

larity is calculated by summing the edge distances Characters based

11 Cosine

Similarity

Instead of summing the edge distances, this variant calcu-

lates the cosine value of the angle between input strings

12 Matching

Coefficient

A basic vector-based string similarity measures comparing

terms (or sets of characters) within strings. The position

of the terms is not taken into account

Term based

13 Dice

Similarity

Also known as F1 score, it is defined as twice the number

of common terms divided by the total number of terms

14 Overlap

Coefficient

It is defined as the size of common terms divided by the

size of the shortest input string

15 Jaccard It is defined as the size of the intersection divided by the

size of the union of terms within the input strings

16 Euclidean

Distance

The similarity is measured through the length of the line

segment between two vectors composed of string terms

• Do string similarity measures of the same group have similar efficiency when being applied to

the same data sources?

• Does each group of string similarity measures keeps the same efficiency when being applied to

different data sources?



• What are the influence factors on the efficiency of string similarity measures?

The matching candidates are formed according to four combinations of matching setups, namely

Concatenated&Unprocessed, Concatenated&Optimized, Separated&Unprocessed, and Separated&

Optimized (cf. section 4.2). The efficiency of each string similarity measure is evaluated through

the F-measure and the runtime. Specifically, we compare the result obtained by each string sim-

ilarity measure with baselines to calculate the precision and recall scores of the matching. The

precision is the ratio of the number of true positives to the retrieved mappings, while the recall

is the ratio of the number of true positives to the actual mappings expected. The F-measure is

calculated for each string similarity measure by combining the precision and the recall, such as:

F − measure = 2 × precision × recall ÷ (precision + recall). The runtime consists of the

CPU time (in seconds) recorded during the execution of each string similarity measure. A similarity

measure is efficient if it produces a high F-measure within a short time.

All similarity measures are implemented within an open source Java library19. Developed by

UK Sheffield University, this Java library is widely used by both software developers and matching

campaigns organized by Ontology Alignment Evaluation Initiative. The hardware configuration of the

multi-threads execution environment is as follows: CPU of two AMD Opteron 6262HE with 16 cores,

RAM of 128 GB and SAS 10K disk.

6.2.2. Observations and discussions

The first tests consist of comparing the F-measure of string similarity measures according to different

influence factors.

Influences of matching setups on F-measure Our first objective is to study if the F-measure of

a string similarity measure changes with different matching setups. More specifically, we intend to

study:

• if the best F-measure of each similarity measure varies according to different matching setups;

• if the threshold producing the best F-measure (so-called optimal threshold) for a given similarity

measure changes with matching setups;

• if the similarity measure producing the highest F-measure for a given dataset is the same ac-

cording to different matching setups;

• if the value of the highest F-measure obtained in a dataset changes with matching setups.

With these questions, we record the best F-measure and the corresponding optimal threshold of

each string similarity measure executed in geographical and bibliographic datasets (cf. table 3). We

notice that matching results of bibliographic datasets are similar to each other. For simplicity rea-

son and due to limited space, we present result obtained in the largest bibliographic datasets (i.e.

DBLP50). Figure 16 shows the top 5 similarity measures producing the highest F-measure respec-

tively in DBLP50 and GeoData datasets.

19https://sourceforge.net/projects/simmetrics/



Figure 16: Top 5 F-measures with the corresponding optimal thresholds according to matching setup



Observations From figure 16, we can see that the best F-measure of a similarity measure for

a given dataset varies according to different matching setups: (i) some similarity measures are in-

sensitive to different matching setups, e.g. the best F-measure of N Gram Distance varies only 1%

in both DBLP50 and GeoData datasets; (ii) some similarity measures are very sensitive to match-

ing setups in some datasets, e.g. compared to the Concatenated&Unprocessed matching setup, the

Separated&Optimized matching setup allows the best F-measure of the Smith Waterman measure to

increase by about 45%.

The optimal threshold of each similarity measure is influenced by matching setups. The changes

do not follow obvious rules. For instances, the Optimized matching setups increase the optimal thresh-

old of N Gram Distance by 60% compared to the Unprocessed matching setups, while the optimal

thresholds of Smith Waterman decrease when matching candidates get too long or too short (i.e. ac-

cording to the Concatenated&Unprocessed and the Separated&Optimized matching setups).

In both figures, the highest F-measure of all similarity measures does not vary much according

to different matching setups. For instance, in the DBLP50 dataset, the highest best F-measure (i.e.

0.99) is obtained by the N Gram Distance measure through the Separated&Optimized matching setup,

while the ”lowest” best F-measure (i.e. 0.986) is produced by Jaccard Similarity when the Concate-

nated&Unprocessed is used.

Conclusion Based on the previous observations, we can conclude the matching setup is not a

negligible factor during matching processes. The performance of some similarity measures depends

heavily on the involved matching setup. However, the matching setup does not consist of a determinant

factor for the matching in a dataset. By coupling an appropriate similarity measure with an optimal

threshold, all matching setups allow producing almost the same matching results for a given dataset.

Appropriate matching setups for each string similarity measure groups Our second objective

is to find out the most appropriate matching setup allowing maximizing the F-measure for string

similarity measures in each group. To do so, we study:

• if the string similarity measures within a group obtain similar F-measures when the same match-

ing setup is applied;

• what are the matching setups allowing the string similarity measures within a group to produce

the highest F-measure.

To answer these questions, we apply all similarity measures to all datasets according to different

matching setups. For each similarity measure, we record the best F-measure obtained with the optimal

threshold in each dataset. Since the same trend is found in all results and due to limited space, we only

present the results obtained in the largest dataset (i.e. DBLP50).

Observations At first glance, not all matching setups have the same impact on the F-measure of

all groups of similarity measures (cf. figure 17).

The Phonetic similarity measure (i.e. Soundex) produces an acceptable F-measure only when the

matching setup Separated&Optimized is applied. The Concatenated&Unprocessed matching setup is

the least suitable for Soundex (with a F-measure close to zero). The same situation happens in the

group of Jaro (i.e. Jaro and his extension Jaro Winkler): even though they produce an acceptable



Figure 17: Highest F-measure according to similarity measuresgroups and matching setups

F-measure in the case of the Concatenated&Unprocessed matching setup, The Separated and the Op-

timized matching setups increase significantly the F-measure of the similarity measures within Jaro

group.

Similarity measure based on subsequences of strings (i.e. N Grams Distance) is insensitive to

matching setups, the same goes for most Term-based similarity measures (i.e. Dice Similarity, Eu-

clidean Distance, Jaccard Similarity, Matching Coefficient and Overlap Coefficient) and Character-

based similarity measures (i.e. Block Distance and Cosine Similarity). They are also among the most

efficient similarity measures with an average F-measure around 0.98.

Three similarity measures based on Edit Distance (i.e. Levenshtein, Smith Waterman and Smith

Waterman Gotoh) go to extremes: to produce the highest F-measure, multiple attribute instances

should be matched in the form of (i) long strings produced by the Concatenated&Unprocessed match-

ing setup or (ii) short strings produced by the Separated&Optimized matching setup. The similarity

measures Monge Elkan and Needleman Wunch, however, are only suitable for the Separated&Optimized

matching setup. They obtain relatively low F-measures in the case of the Concatenated&Unprocessed

matching setup due to the following reasons:

• Comparing to the basic Levenshtein measure, Monge Elkan gives a relatively low cost to a

sequence of character insertions and character deletions. It tends to ”ignore” the differences

between shorter strings, which produces a lower F-measure in the case of the Concatenated&

Unprocessed matching setup;

• Comparing to the basic Levenshtein measure, Needleman Wunch penalizes more insertions and

deletions by affecting a higher cost. As a result, it is more appropriate to identify perfect



matches between strings. The highest F-measure is slightly lower in the case of the Concate-

nated&Unprocessed matching setup, since perfect matches are less likely to exist among long

strings after concatenation of unprocessed attribute instances.

Conclusion Based on the previous observations, we can conclude string similarity measures in the

same group produce almost the same F-measure when the same matching setup is used. There is at

least one matching setup that allows maximizing the F-measure of all similarity measures within each

group.

Influences of datasets on F-measure of string similarity measures Our third objective consists of

coupling a dataset with the most appropriate similarity measures. To do so, we study:

• if attribute instances’ length within a dataset has influences on similarity measures’ F-measure;

• if similarity measures’ F-measure varies with the proportion of mismatches within datasets.

To answer these questions, we apply all sixteen string similarity measures to all geographical and

bibliographic datasets. We record the highest F-measure of each similarity measure when the optimal

threshold and the most suitable matching setup are applied. Figure 18 shows the F-measure of each

similarity measure according to their group.

Figure 18: F-measure produced by each similarity measure in different datasets

We can see string similarity measures within the same group yield almost the same F-measures

in the same dataset when the optimal threshold and the most suitable matching setup are used. From

geographical GeoData dataset to bibliographic DBLP datasets, the average length of string becomes

longer (cf. table 3). The F-measure of string similarity measures changes accordingly: (i) similarity

measures within Characters based group (e.g. Block Distance) and the Term based group (e.g. Match-

ing Coefficient) are more suitable for matching longer strings (e.g. DBLP50) than short strings (e.g.



GeoData); (ii) similarity measures within the other groups cope well with both long and short strings.

The length of strings has the least influence on the Phonetic similarity measure Soundex, yet its highest

F-measure is not the highest among all similarity measures. The N Grams Distance similarity mea-

sure has a slight preference for shorter strings. But its overall F-measure, whose highest value is about

0.99, outperforms the other similarity measures.

We can also observe from DBLP0 to DBLP50 the highest F-measure of all similarity measures

does not change much, even through the proportion of mismatches increases. To better understand the

influences of mismatches on the F-measure of similarity measures, we calculate the standard deviation

of the highest F-measure produced by each similarity measures in the six DBLP datasets.

Figure 19: Standard deviation of each measures highest F-measure obtained from DBLP0 to DBLP50

datasets

From the figure 19, we can see (i) the overall standard deviation is quite low (no more than 0.03),

which signifies the proportion of mismatches has little influence on the F-measure of similarity mea-

sures; (ii) the similarity measures within the same group keep almost the same F-measure when being

applied to datasets with different proportions of mismatches. The similarity measures within the group

Jaro and the Soundex measure are more sensitive to mismatches than the others; (iii) the only excep-

tion is Euclidean Distance which has a higher standard deviation than the others within Term-based

group.

The last observation is in accordance with what the authors of [16] have noticed: Euclidean Dis-

tance is very sensitive to mismatches. It produces a perfect F-measure (i.e. F-measure=1) in DBLP0

dataset which is higher than the other similarity measures in the same group. But when mismatches

are introduced in the datasets, Euclidean Distance obtains a lower F-measure than the others. Never-

theless, mismatches still have little influence on this similarity measure, since its standard deviation is

no more than 0.02.

Conclusion Based on the previous observations, we can conclude all similarity measures manage

to produce almost the same F-measure no matter how many mismatches are involved in sources.



However, not all similarity measures are suitable for all datasets: some similarity measures work well

with datasets containing either long or short strings, while the others are suitable for datasets including

strings of all sizes.

Efficiency of String Similarity Measures The second tests consists of identifying the most efficient

similarity measures, i.e. similarity measures producing a high F-measure in a short time. Based on

the results of our previous tests, we can rank similarity measures according to their F-measures. To

do so, we first choose the top five similarity measures producing the highest F-measure according to

four matching setups when being applied to seven datasets (cf. table 5). Other similarity measures not

listed here are not studied in this section due to their low F-measure.

Table 5: Ranking of string similarity measures based on their occurrence among the top five ones

according to matching setups

Similarity Measures C&U S&U C&O S&O Total

1. N Grams Distance 7 7 7 7 28

2. Cosine Similarity 5 6 6 6 23

3. Block Distance 5 6 6 6 23

4. Matching Coefficient 5 6 6 2 19

5. Jaccard Similarity 0 5 6 6 17

6. Smith Waterman 4 2 2 2 10

7. Dice Similarity 4 1 0 4 9

8. Smith Waterman Gotoh 3 2 2 2 9

9. Levenshtein 3 2 0 2 7

10. Needleman Wunch 2 1 0 2 5

11. Monge Elkan 1 1 2 0 4

12. Jaro Winkler 0 0 2 0 2

Remark. C&U = Concatenated&Unprocessed, S&U = Separated&Unprocessed,

C&O = Concatenated&Optimized, S&O = Separated&Optimized

For each similarity measure in table 5, we record the runtime (CPU time in seconds) during the

execution in the corresponding dataset according to different matching setups. The runtime of a simi-

larity measure in GeoData dataset is the average runtime of five different executions (cf. figure 20(a)).

For bibliographic data, we notice even if data volume increases by 225% from DBLP0 to DBLP50,

the runtime of all similarity measures augments only from 5.2% to 16.9% with an average of 8% (ow-

ing to parallel computation). Due to the insignificant differences, we calculate the average runtime

obtained in all six DBLP datasets (cf. figure 20(b)).

Observations From figure 20, we can see that when different matching setups are used, the gain

in runtime for some similarity measures is important.



Figure 20: Average runtime of similarity measures in geographic and bibliographic datasets

Independently of similarity measures, the fastest matching setup is Separated&Optimized, which

produces the shortest matching candidates among all matching setups. The slowest matching setup is

Concatenated&Unprocessed which concatenates all unprocessed attribute instances in a long string.

The runtime of Smith Waterman Gotoh and Monge Elkan increases exponentially as the matching

candidates become longer (from Separated&Optimized to Concatenated&Unprocessed). Although

they are among the most effective measures, the efficiency of Smith Waterman Gotoh and Monge

Elkan is low due to the time-consuming execution.

The Jaro Winkler measure produces matching results in less than 2 seconds in the GeoData dataset.

However, since it favors short attribute instances sharing a common prefix, its efficiency in the DBLP

datasets is lower than the others due to its relatively low efficacy for longer strings.



The Character based and Term based similarity measures produce a high F-measure within rea-

sonable time in the DBLP datasets, such as Cosine Similarity, Block Distance, Matching Coefficient,

Jaccard Similarity and Dice Similarity. However, the F-measure of these measures decreases when

short strings are involved in matching, which limits their application range.

Levenshtein, N Grams Distance, and Smith Waterman are the most efficient similarity measures

with high F-measure/runtime ratios, i.e. they produce the highest F-measures in polynomial time

regardless of matching setups and datasets.

Conclusion Based on the previous observations, we can see different matching setups have influ-

ences not only on the F-measure but also the runtime. A similarity measure is only efficient when the

most appropriate matching setup is used, i.e. a matching setup allowing minimizing the runtime while

maximizing the F-measure of a similarity measure for a given dataset.

6.3. Guidelines

Based on the results of our experimental assessments, we describe some generic guidelines to make

full use of similarity measures. It aims at facilitating the choices of similarity measures according to

different criteria, namely matching setups, strings lengths and requirements on runtime. A heuristic

algorithm is proposed below.

First, Soundex, Jaro, Overlap Coefficient, and Euclidean Distance are only suited for specific

needs of matching [16, 11, 13], e.g. using Soundex to match homophones in English. In the context of

Unified Cubes, the quality of the correlative mappings based on these similarity measures cannot be

guaranteed due to their poor performance in matching instances from some generic sources. Therefore,

they are not considered in the guidelines.

Second, in the case where only the Concatenated&Unprocessed matching setup is applicable (e.g.

matching carried out by a non-expert user without specific knowledge of the sources), N Grams Dis-

tance, Levenshtein, Smith Waterman, and Smith Waterman Gotoh are the similarity measures allowing

to obtain a high F-measure. In the case where descriptive information of instances can be matched in

a Seperated and/or Optimized ways, the above-mentioned list of similarity measures can be comple-

mented by Monge Elkan, Needleman Wunch, and Jaro Winkler.

Third, in the case where attribute instances contain relatively short strings (about 200 characters

or less), N Grams Distance, Levenshtein, Smith Waterman, Smith Waterman Gotoh, Monge Elkan,

Needleman Wunch, and Jaro Winkler are possible choices of similarity measures which can produce a

high F-measure. In the case where attribute instances include long strings (more than 200 characters),

all 12 similarity measures listed in table 5 allow producing a high F-measure.

At last, if the matching should be carried out within a short runtime, good choices of similar-

ity measures would be N Grams Distance, Levenshtein, Smith Waterman, Cosine Similarity, Block

Distance, Matching Coefficient,Jaccard Similarity, Dice Similarity, and Needleman Wunch.

As shown in figure 21, three similarity measures meet all criteria: N Grams Distance, Levenshtein

and Smith Waterman. The high efficiency in various matching scenario makes them the most suitable

string similarity measures to establish correlative mappings in a Unified Cube.



Figure 21: Similarity measures classified according to selection criteria

6.4. Validation

To validate our proposed guidelines, we use the benchmark of the instance matching track in the On-

tology Alignment Evaluation Initiative campaigns 201620 and 201721. The benchmark is named False

Positive Trap. It includes two real-world datasets describing musical works in the catalogs coming

from two French cultural institutions: La Bibliothque Nationale de France (BnF) and La Philhar-

monie de Paris (PP). The objective is to find equivalent instances of the Music Work classes scattered

in two datasets of the benchmark. Each music work is associated with highly similar descriptions, such

as title, compositors, etc. The baselines are provided along the benchmark. The benchmark of 2016

includes less than 3000 triples with an average string length of 61 characters in both datasets, while

the benchmark of 2017 contains 6347 and 8622 triples with an average string length of 61 characters

in both datasets.

To illustrate the genericity of our proposed guideline, it is necessary to carry out some tests be-

tween warehoused data and LOD. To do so, we build a DW in third normal form for the BnF dataset

of both benchmarks. The PP dataset keeps its original RDF format.

Due to the large number of highly similar music works, we have to firstly write queries to extract

corresponding descriptions of music work, for instance title versus title, compositors versus compos-

itors, etc. Then, we use the Separated&Unprocessed matching setup to separately compare corre-

sponding descriptions. According to our proposed guidelines, all similarity measures are suitable for

the chosen matching setups. Moreover, the average string length of music work descriptions is rel-

20http://islab.di.unimi.it/content/im oaei/2016/
21http://islab.di.unimi.it/content/im oaei/2017/



atively short in the benchmarks. Consequently, the choices of string similarity measures are limited

to those which work well with short strings. At last, to avoid excessively long runtime, a timeout is

configured by the benchmark. Accordingly, the choices of similarity measures are restricted to those

with a short runtime.

It leaves us four choices of similarity measures which are possibly appropriate for the matching

in the benchmark: Jaro Winkler, Levenshtein, N Grams Distance, and Smith Waterman. We choose

the N Grams Distance similarity measure due to its outstanding performance in our previous experi-

mental assessments. The stable marriage algorithm is used to determine the correspondences among

instances. As no semantic-based technique is used to improve the matching result, we expect some low

similarity score between instances. Therefore, no threshold is defined for the matching. After the exe-

cution, we obtain some surprisingly good results. For the benchmark of 2016, we obtain a F-measure

of 1. For the benchmark of 2017, we obtain a F-measure of 0.95. Hence, we can safely conclude that

our matching process provides a feasible and efficient solution to generic instance matching problems.

7. Conclusion

Our aim is to make full use of as much information as possible to support effective and well-informed

decisions. To this end, we have defined a generic conceptual multidimensional model, named Uni-

fied Cube, which blends data from multiple sources together. A conceptual Unified Cube unifies

warehoused data and LOD in a business-oriented representation. The Unified Cube modeling breaks

through three obstacles in the multidimensional modeling field: (i) warehoused data and LOD can

be queried on-the-fly during analyses through extraction formulae of measures and attributes, (ii) a

measure can be linked to a dimension starting from any level through level-measure mapping and

(iii) attribute instances from one source are linked with equivalent instances of attribute from another

source through correlative mappings.

We have proposed an implementation framework which manages interactions between a Unified

Cube and multiple data sources at both the schema and the instance levels. Specifically, the framework

(i) include a metamodel and an instantiation algorithm to provide a uniform manner to access differ-

ent sources involved in a Unified Cube and (ii) contains a table of correspondences and an instance

matching process to bridge the differences among multiple data sources at the instances level.

Based on our proposed implementation framework, we have designed an analysis processing pro-

cess which enables analyses on multisource data in a user-friendly way. During analyses, decision-

makers only need to interact with some business-oriented concepts in a Unified Cube without worrying

about data sources. Our proposed analysis processing process automatically (i) generates queries to

extract data from sources and (ii) merge extracted data together to prepare a dashboard.

We have defined a process which completes a Unified Cube schema by matching correlative in-

stances from different sources. This process is applied to several real-world datasets to find the best

configurations allowing maximizing the efficiency. The results of our experimental assessments have

been integrated into some generic guidelines allowing identifying the most appropriate string sim-

ilarity measures according to matching setup, string length, and requirement on runtime. We have

validated the guidelines through benchmarks of a well-known matching evaluation campaign.



In the near future, we intend to study the efficiency of analyses on Unified Cubes built from large-

scale data. We plan to combine Unified Cube with on-demand ETL techniques [4] to materialize

up-to-date data according to decision-makers’ analysis needs at querying time. One long-term per-

spective consists of automatically synchronizing a Unified Cube with schema evolutions in the data

sources. It requires (i) identifying suitable techniques for automatic detection of source evolutions in

the context of Unified Cubes and (ii) designing a process which automatically updates a Unified Cube

according to source evolutions. With regards to the maintenance of the table of correspondences, sev-

eral update alternatives would be included in the process, such as periodically executing our proposed

matching process (cf. figure 5), triggering an update after each evolution detected in sources [23, 14],

or triggering an update in an on-demand manner to support right-time business analyses [41].
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[2] Abelló A, Romero O, Pedersen TB, Berlanga R, Nebot V, Aramburu MJ, Simitsis A. Using Semantic Web

Technologies for Exploratory OLAP: A Survey, IEEE Transactions on Knowledge and Data Engineering,

2015;27(2):571–588. ISSN:1041-4347.

[3] Abiteboul S, Manolescu I, Rigaux P, Rousset MC, Senellart P. Web data management, Cambridge Univer-

sity Press, 2011, ISBN:1-139-50505-X.

[4] Baldacci L, Golfarelli M, Graziani S, Rizzi S. QETL: An approach to on-demand ETL from non-owned

data sources, Data & Knowledge Engineering, 2017;112:17–37. URL https://doi.org/10.1016/j.

datak.2017.09.002.

[5] Bhattacharya I, Getoor L. Collective Entity Resolution in Relational Data, ACM Transactions on Knowl-

edge Discovery from Data, 2006;1(1):5–44, ISSN:15564681. doi:10.1145/1217299.1217304.

[6] Boussaid O, Darmont J, Bentayeb F, Loudcher S. Warehousing Complex Data from the Web,

International Journal of Web Engineering and Technology, 2008;4(4):408–433. ISSN:1476-1289.

doi:10.1504/IJWET.2008.019942.

[7] Brizan DG, Tansel AU. A Survey of Entity Resolution and Record Linkage Methodologies, Communica-

tions of the IIMA, 2006;6(3):5–15.

[8] Castano S, Ferrara A, Montanelli S, Varese G. Ontology and Instance Matching, in: Knowledge-

Driven Multimedia Information Extraction and Ontology Evolution, vol. 6050, Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2011 pp. 167–195. ISBN:978-3-642-20794-5 978-3-642-20795-2.

[9] Chaudhuri S, Dayal U, Narasayya V. An Overview of Business Intelligence Technology, Communications

of the ACM, 2011;54(8):88–98, ISSN:00010782. doi:10.1145/1978542.1978562.

[10] Cheatham M, Hitzler P. String Similarity Metrics for Ontology Alignment, in: The Semantic Web ISWC

2013, vol. 8219, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013 pp. 294–309. ISBN:978-3-642-

41337-7.

[11] Christian P. Soundex-can It Be Improved?, Computers in Genealogy, 1998;6:215–221. http://www.

essex.ac.uk/AMS/articles/Soundex.html.



[12] Christophides V, Efthymiou V, Stefanidis K. Entity Resolution in the Web of Data, Synthesis Lectures on

the Semantic Web: Theory and Technology, 2015;5(3):1–122, ISSN:2160-4711, 2160-472X. URL https:

//doi.org/10.2200/S00655ED1V01Y201507WBE013.

[13] Cohen W, Ravikumar P, Fienberg S. A Comparison of String Metrics for Matching Names and Records,

Kdd workshop on data cleaning and object consolidation, 3, 2003.

[14] Curino C, Moon HJ, Deutsch A, Zaniolo C. Automating the Database Schema Evolution Process, The

VLDB Journal, 2013;22(1):73–98, ISSN:1066-8888. doi:10.1007/s00778-012-0302-x.

[15] Deb Nath RP, Hose K, Pedersen TB. Towards a Programmable Semantic Extract-Transform-

Load Framework for Semantic Data Warehouses, ACM Press, 2015, ISBN:978-1-4503-3785-4.

doi:10.1145/2811222.2811229.

[16] Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E. Querying and Mining of Time Series Data: Ex-

perimental Comparison of Representations and Distance Measures, Proceedings of the VLDB Endowment,

2008;1(2):1542–1552, ISSN:2150-8097. doi:10.14778/1454159.1454226.
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