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REFINING THE LOWER BOUND ON THE POSITIVE
EIGENVALUES OF SADDLE POINT MATRICES WITH INSIGHTS

ON THE INTERACTIONS BETWEEN THE BLOCKS∗

DANIEL RUIZ† , ANNICK SARTENAER‡ , AND CHARLOTTE TANNIER‡

Abstract. Efficiently solving saddle point systems like Karush–Kuhn–Tucker (KKT) systems is
crucial for many algorithms in constrained nonlinear continuous optimization. Such systems can be
very ill conditioned, in particular when the (1,1) block has few very small eigenvalues (see Rusten and
Winther [SIAM J. Matrix Anal. Appl., 13 (1992), pp. 887–904]). However, it is commonly observed
that despite these small eigenvalues, some sort of interaction between this (1,1) block and the (1,2)
block actually occurs that may influence strongly the convergence of Krylov subspace methods like
Minres. In this paper, we highlight some aspects of this interaction. We illustrate in particular,
with some examples, how and in which circumstances the convergence of Minres might be affected
by these few very small eigenvalues in the (1,1) block. We further derive theoretically a tighter lower
bound on the positive eigenvalues of saddle point matrices of the KKT form.

Key words. saddle point systems, ill-conditioning, spectral analysis, minimum residual methods
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1. Introduction. We consider the (possibly large and sparse) saddle point linear
system

(1.1) Ax = b ≡
[

A B
BT 0

] [
u
v

]
=

[
f
g

]
,

where A ∈ R
n×n and B ∈ R

n×m, with n ≥ m. We assume that A is symmetric
and positive definite and that B has full column rank. These assumptions imply the
nonsingularity of A. Such kinds of systems typically arise in constrained nonlinear
optimization, as the result of first-order optimality conditions (see [7, section 16.1]),
where A is known as the Karush–Kuhn–Tucker (KKT) matrix. The assumption of
positive definiteness of A is met, in particular, when solving strictly convex quadratic
optimization problems (see [5] for less restrictive assumptions on A in a constrained
optimization context, as well as [1] for a nice survey about saddle point theory and
applications). On the application side, systems structured as (1.1) where A is natu-
rally symmetric and positive definite arise in CFD or in magnetostatics, for instance,
from the numerical solution of PDEs (see [2, section 5.5] and [9], respectively) or in
PDE-constrained optimal control (see [11] and the references therein).

A fundamental result from [10, Lemma 2.1] states that if {µi}ni=1 denote the eigen-
values of the symmetric positive definite matrix A and {σi}mi=1 denote the singular
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REFINING THE BOUNDS FROM RUSTEN AND WINTHER 713

values of the full rank constraint matrix B, then the eigenvalues of A are bounded
within I− ∪ I+, where

(1.2) I− =

[
µmin −

√
µ2
min + 4σ2

max

2
,
µmax −

√
µ2
max + 4σ2

min

2

]

and

(1.3) I+ =

[
µmin,

µmax +
√
µ2
max + 4σ2

max

2

]
.

As pointed out in [10], the bounds given in (1.2) and (1.3) are sharp, in the sense that
there are examples where they are obtained. However, these are worst cases that are
not often met in practice, and the purpose of this work is to investigate this in more
detail.

Assuming now that the matrix B in (1.1) has orthonormal columns, i.e., BTB =
Im, and that the matrix A has been scaled so as to ensure that its largest eigenvalue
µmax is close to one, (1.2) and (1.3) then yield the following intervals for the eigenvalues
of A (with µmax = 1):

(1.4) I− =

[
µmin −

√
µ2
min + 4

2
,
1−

√
5

2

]
and I+ =

[
µmin,

1 +
√
5

2

]
.

That is, by orthonormalizing the columns of B and scaling the matrix A, the negative
eigenvalues of A (in I−) are guaranteed to be well bounded and away from zero, and
the positive ones (in I+) are guaranteed to be well bounded too. This, however, does
not exclude the possibility for A to have very small positive eigenvalues if the smallest
eigenvalue of A, µmin, is very close to zero.

Let us illustrate this possibility on the 3× 3 matrix

(1.5) Acs =




µ 0 c
0 1 s
c s 0


 ,

where 0 < µ < 1 and c2 + s2 = 1. First, observe that if c2 = 0, then the eigenvalues
of Acs are {(1−

√
5)/2, µ, (1+

√
5)/2}, and its smallest positive eigenvalue is directly

given by the smallest positive eigenvalue in its (1,1) block (this illustrates the worst
cases mentioned above). Now, if we take c2 = 1, then the eigenvalues of Acs are

{(µ −
√
µ2 + 4)/2, 1, (µ +

√
µ2 + 4)/2} and thus well bounded and isolated away

from zero no matter how close µ is to zero. A simple analytical analysis, given in
Appendix A, also shows that the smallest positive eigenvalue of Acs is O

(
c2/(1 + c2)

)
,

and thus bounded away from zero, when µ ≪ c2 ≤ 1. This shows the role played by the
constraint block B = (c s)T (even orthonormalized) in relaying the bad conditioning
(if µ is close to zero) of the (1,1) block into the saddle point matrix Acs and highlights
the existence of some sort of interaction between the blocks inAcs. Note that c ∈ [0, 1],
whose size plays a fundamental role in this interaction, is nothing else than the cosine
of the principal angle between Im(B) and the invariant subspace associated to the
smallest eigenvalue µ of the (1,1) block A (see [4, section 6.4.3]).

The above example motivates the purpose of this paper, which is to present some
insights on the interaction between the blocks in saddle point systems of the form
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714 D. RUIZ, A. SARTENAER, AND C. TANNIER

(1.1) and to identify some circumstances in which the smallest eigenvalues contained
in the (1,1) block will, or will not, spoil the convergence of Krylov subspace methods
like Minres. It is indeed well known that, for a saddle point matrix A, the effective
condition number of its (1,1) block A on the null space of BT plays a central role.
Indeed, even if A is semipositive definite with several zero eigenvalues, the matrix A
can be well conditioned and easy to work with, as long as the null spaces of A and BT

are well separated. With respect to the above discussion, this corresponds to cosines
close to 1 between the range of B and the null space of A. These considerations will
lead us to refine the lower bound in (1.3) given in [10] on the positive eigenvalues of
saddle point matrices of the form (1.1).

The paper is organized as follows. Section 2 illustrates in two different ways, and
through the convergence of Minres, the influence of the cosines of the principal angles
between Im(B) and the invariant subspace associated to the smallest eigenvalues of
the (1,1) block A. In section 3, we present theoretical results refining the lower bound
µmin of the right interval in (1.4). We shall restrict our analysis to the case where the
(1,1) block largest eigenvalue is scaled to 1 and the constraint matrix has orthonormal
columns. These assumptions can be met in practice when preconditioning the saddle
point matrix A (see section 2.2). Before getting into the details of the theroretical
analysis itself, which are conducted throughout subsections 3.1–3.3, we suggest that
the reader gives first a quick look at subsection 3.4, in which the conclusions are raised
and a plot of the different important steps within the analysis is recalled, so as to
clearly have in mind the target and the reasoning as well. Finally, in section 4, we
conclude with our main result and some prospective remarks.

2. Interaction between the blocks in KKT matrices. In the introduction,
we have raised the possible influence of the cosines of the principal angles between
Im(B) and the invariant subspace associated to the smallest eigenvalues of the (1,1)
block A and shown that they can have a sizeable impact on the lower bound of the
positive interval in (1.4) for the spectrum of the KKT matrix A in (1.1). We now
present some illustrations of this effect through the convergence of Minres.

2.1. Illustration on a toy example. We first introduce a “hand-made” exam-
ple to illustrate how these cosines values can impact and eventually spoil the conver-
gence of Minres. To build the matrix A, we consider a diagonal matrix A of order
n = 500 with diagonal entries in ]0, 1] and such that

A =

[
A1 0
0 A2

]
,

with A1 ∈ R
5×5 being set as

A1 = diag(µ1, µ2, µ3, µ4, µ5)

= diag(10−8, 10−6, 10−4, 10−2, 10−1)

and A2 ∈ R
(n−5)×(n−5) being a diagonal matrix with uniform values from the interval

[a, b] = [0.101, 1] and randomly generated by the MATLAB code
diag(a + (b-a).*rand(n-5,1)).

The eigenvectors of A are therefore given by the canonical basis of Rn. The matrix
B ∈ R

n×m, where m = 200, is set to

B =

[
C 0

B1S B2

]
,
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REFINING THE BOUNDS FROM RUSTEN AND WINTHER 715

Table 2.1

Values of the cosines of the principal angles between Im(B) and Im(U1) for four configurations.

(a) (b) (c) (d)

cos θ1 0.3 0.3 10−4 0
cos θ2 0.3 10−3 10−3 0
cos θ3 0.3 0.3 10−2 0
cos θ4 0.3 0.3 10−1 0
cos θ5 0.3 0.3 0.3 0

where C = diag{cos θi}5i=1, S = diag{sin θi}5i=1, B1 ∈ R
(n−5)×5, B2 ∈ R

(n−5)×(m−5),
with Q = [B1 B2] ∈ R

(n−5)×m dense and satisfying QTQ = Im so as to ensure that

B has orthonormal columns. We also have, considering U1 =
[
I5 0

]T
the set of

eigenvectors corresponding to the first five eigenvalues of A,

BTU1 =

[
C
0

]
,

so that we explicitly get—and this is done on purpose in this particular example—a
one-to-one matching between eigenvectors versus principal vectors and eigenvalues
versus cosines of the principal angles between Im(B) and Im(U1). We consider four
different configurations (a), (b), (c), and (d) for

C = diag{cos θi}5i=1,

with values of the cosines of the principal angles between Im(B) and Im(U1) given in
Table 2.1. Figure 2.1 illustrates and compares the impact of the values of the cosines of
the principal angles between Im(B) and Im(U1) on the behavior of Minres applied
to this toy KKT matrix for the four cases. For reference, we indicate with the dashed
(red) curve on each graph the convergence profile of Minres when all the five cosines
are set to one, and in all cases the iterations are stopped when the scaled residual
‖rk‖/‖r0‖ in 2-norm is less than 10−10. For particular values of the cosines, the
phenomenon of plateau occurs and, as indicated by the preliminary comments made
in the introduction, we can observe that when the squares of the cosines of some
principal angles are equal to the corresponding eigenvalues (in this particular one-
to-one cosine-eigenvalue matching test example), the corresponding bad conditioning
of A is showing up. For instance, if we change the value of the second cosine cos θ2
from 0.3 to 10−3 (corresponding to the square root of the corresponding eigenvalue)
between situations (a) and (b), the speed of convergence of Minres is disrupted. One
such phenomenon of plateau in the convergence curve occurs in Figure 2.1, case (b).
Case (c) corresponds to a generalized case where each of the five values of the cosines
reveals the corresponding eigenvalue in A, leading to five phenomena of plateau in
Figure 2.1, case (c). What is interesting to observe in case (d) is that setting even the
five cosine values to zero, which corresponds to the case where the bound from Rusten
and Winther is sharp, does not change the behavior of Minresmuch compared to case
(c) (in which the squares of the cosines are already at the level of their corresponding
eigenvalue). At last, in case (a), the square of theses cosines is of the same order of
magnitude as that of the smallest eigenvalue in A2. We can see that the behavior of
Minres exhibits a linear rate of convergence and does not depart too much from the
reference case in which all theses cosines are actually set to one. This reference case
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716 D. RUIZ, A. SARTENAER, AND C. TANNIER

Fig. 2.1. Convergence profiles (2-norm of scaled residuals) for the four cosines configurations.

corresponds to the extreme opposite case where the invariant subspace associated to
the five smallest eigenvalues is actually orthogonal to Ker(BT ) and thus not active in
the degrees of freedom of the constraint set.

2.2. Varying the constraint matrix. The various observations previously
raised suggest that if all the cosines of the principal angles between Im(B) and the
invariant subspace associated to the smallest eigenvalues in the (1,1) block A are large
enough, the convergence of Minres preconditioned with the classical block diagonal
preconditioner

(2.1) P =

[
µmaxIn 0

0 1
µmax

BTB

]
,

which essentially scales the largest eigenvalue of A and orthonormalizes the constraint
matrix B, should be reasonably fast, independently of any consideration with respect
to the ill-conditioning in A.

To illustrate this point, we now consider a KKT matrix built in the following
way. We first generate in MATLAB a symmetric positive definite test matrix of
order n = 300, with a relatively well clustered spectrum showing 42 eigenvalues less
than γ = µmax

100 ≈ 3.8 10−2 but with extreme eigenvalues µmin = 1.7 10−7 and
µmax = 3.8. The condition number of this (1,1) block test matrix A is then 2.2 107.
The constraint matrix B ∈ R

300×150 is generated by means of the MATLAB function
sprandn (with a density of 0.05 and a condition number of 104). We then slightly

modify this constraint matrix B into B̃ so as to enforce the cosines of the principal
angles between Im(B̃) and Im(Uγ), the invariant subspace associated to the p = 42
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Table 2.2

Values of the ℓ = 22 cosines of the principal angles between Im(B) and Im(Uγ) below 0.362.

cos θi

4.98 10−3 6.88 10−3 8.21 10−3 1.23 10−2 1.72 10−2 2.39 10−2

3.03 10−2 4.00 10−2 4.32 10−2 4.62 10−2 5.51 10−2 6.05 10−2

7.20 10−2 7.83 10−2 8.86 10−2 1.46 10−1 1.49 10−1 1.69 10−1

2.02 10−1 2.83 10−1 3.22 10−1 3.33 10−1

Fig. 2.2. Convergence profiles of preconditioned Minres (with P). Case with constraint matrix

B in solid (blue) curve, and case with constraint matrix B̃ in dashed (red) curve.

eigenvalues smaller than γ ≈ 3.8 10−2, to be larger than a certain threshold, e.g.,

min{cos θ̃i}pi=1 ≥ 2

√
γ

α
≃ 0.362 ,

with α = 1.16 corresponding to the average of the eigenvalues of A above γ.
The details on how the constraint matrix B is modified into B̃ are given in [12,

section 6.2.2]. This results from some particular linear combination between B and

Uγ that essentially preserves the normal equations of B, so that BTB = B̃T B̃, and
ensures the above condition on the cosines.

In the case of this test example, amongst the p = 42 cosines, only the ℓ =
22 smallest ones are actually below the threshold 2

√
γ/α ≃ 0.362, and these are

displayed in increasing order in Table 2.2. In the modified constraint matrix B̃,
all these 22 cosines have been raised to the value 0.362 explicitly, leaving the other
principal angles unchanged. Figure 2.2 shows the convergence profiles of Minres

preconditioned with P in both cases (e.g., with either B or B̃). It is important to
note that the preconditioning matrix (2.1) is the same in both cases, since BTB =

B̃T B̃ and the (1,1) block is unchanged. In the case with large enough cosines, the
smallest eigenvalues in the (1,1) block A have almost no impact, and a simple implicit
orthonormalization of the constraints (with P) is enough to reach linear convergence
in Minres.
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718 D. RUIZ, A. SARTENAER, AND C. TANNIER

3. A refined eigenvalue bound for KKT matrices. In this section, we aim
at refining the lower bound µmin of the positive interval in (1.4) through a theoretical
analysis in terms of cosines of principal angles between the subspace spanned by
the constraint equations and the subspace spanned by the eigenvectors associated to
the smallest eigenvalues of the (1,1) block A. Doing so, we expect to clarify those
situations where this lower bound is guaranteed to be bounded away from zero.

Before going into the theoretical developments of the following subsections, we
first introduce some notation and the specific assumptions underlying the analysis.
In what follows, we consider a particular case of the KKT matrix,

(3.1) Ā =

[
A Q
QT 0

]
,

with A ∈ R
n×n, Q ∈ R

n×m satisfying QTQ = Im, and n ≥ m. This corresponds to
a constraint matrix B in (1.1) whose columns are orthonormal. We also assume that
some scaling has also been applied so that the largest eigenvalue of the symmetric
positive definite matrix A is equal to one (µmax = 1).

To analyze the spectrum of Ā in (3.1), we rewrite this matrix into two successively
similar matrices. We first consider the eigendecomposition of the (1,1) block

A = U∆UT ,

where the diagonal matrix ∆ ∈ R
n×n contains the eigenvalues {µi}ni=1 of A and the or-

thonormal matrix U ∈ R
n×n contains the associated orthonormal set of eigenvectors,

and observe that
[
A Q
QT 0

]
=

[
U∆UT Q
QT 0

]

=

[
U 0
0 I

] [
∆ UTQ

QTU 0

] [
UT 0
0 I

]
.(3.2)

We next split the spectrum of A in two parts, with ∆γ ∈ R
p×p the diagonal

matrix containing the p eigenvalues 0 < µmin = µ1 ≤ · · · ≤ µp strictly less than a

given positive number γ ∈ [µmin, 1], and with ∆̃γ ∈ R
(n−p)×(n−p) the diagonal matrix

containing all the other (n − p) eigenvalues γ ≤ µp+1 ≤ · · · ≤ µn = µmax = 1. The

matrix U = [Uγ , Ũγ ] ∈ R
n×n is orthogonal, where the columns of the rectangular

matrices Uγ ∈ R
n×p and Ũγ ∈ R

n×(n−p) are the orthonormal sets of eigenvectors

corresponding to ∆γ and ∆̃γ , respectively.
We now introduce the cosine-sine (CS) decomposition of matrix K ∈ R

m×n de-
fined as

(3.3) K = QTU = [QTUγ , Q
T Ũγ ] = [Kγ , K̃γ ],

where Q = B(BTB)−1/2 ∈ R
n×m satisfies QTQ = Im by definition, and U = [Uγ , Ũγ ]

is an orthogonal matrix made with those eigenvectors of A. The columns of KT are
orthonormal, implying that KγK

T
γ + K̃γK̃

T
γ = Im. If we next complete the matrix

KT by m − n orthonormal columns to provide an orthogonal matrix of Rn×n and if
we apply the CS decomposition as in [8, section 4], one can guarantee the existence

of orthogonal matrices Vγ ∈ R
p×p, Ṽγ ∈ R

(n−p) × (n−p), and W ∈ R
m×m such that

(3.4) V T
γ KT

γ W = C = diag(cos θ1, . . . , cos θr) ∈ R
p×m, r = min{p,m},
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REFINING THE BOUNDS FROM RUSTEN AND WINTHER 719

and

(3.5) Ṽ T
γ K̃T

γ W = S = diag(sin θ1, . . . , sin θq) ∈ R
(n−p)×m, q = min{n− p,m},

where CT C + STS = Im. The singular values cos θi and sin θi of K
T
γ and K̃T

γ , respec-
tively, are cosines and sines satisfying (without loss of generality)

1 ≥ cos θ1 ≥ · · · ≥ cos θr ≥ 0 and 0 ≤ sin θ1 ≤ · · · ≤ sin θq ≤ 1.

Among these values, min{r, q} correspond to the cosines and sines of the principal
angles between Im(B) and Im(Uγ), the other values being equal to either zero or
one, depending on the dimensions p,m, and n. The associated min{r, q} principal
vectors (see [4, section 6.4.3]) are defined by the min{r, q} first columns of matrix
QW and matrix UγVγ in Im(B) and Im(Uγ), respectively.

For simplicity, we shall restrict ourselves to the case where p < m and m < n−p,
so that r = p and q = m, and

(3.6) C =
[
C 0

]
∈ R

p×m and S =




S 0
0 Im−p

0 0


 ∈ R

(n−p)×m,

with C ∈ R
p×p and S ∈ R

p×p. Extracting Kγ and K̃γ from (3.4) and (3.5) also yields

Kγ = WCTV T
γ and K̃γ = WST Ṽ T

γ . Using these expressions and remembering that

QTU = K = [Kγ , K̃γ ] by (3.3), we rewrite the central matrix in (3.2) in terms of
cosines and sines as




∆γ 0 VγCWT

0 ∆̃γ ṼγSWT

WCTV T
γ WST Ṽ T

γ 0


 .

We next obtain



V T
γ 0 0

0 Ṽ T
γ 0

0 0 WT






∆γ 0 VγCWT

0 ∆̃γ ṼγSWT

WCTV T
γ WST Ṽ T

γ 0





Vγ 0 0

0 Ṽγ 0
0 0 W


 =



Mγ 0 C
0 M̃γ S
CT ST 0


 ,

where

(3.7) Mγ = V T
γ ∆γVγ and M̃γ = Ṽ T

γ ∆̃γ Ṽγ ,

which is also similar to Ā due to the fact that matrices Vγ , Ṽγ , and W are orthogonal.
Finally, using (3.6), we end up with the following similar matrix:




Mγ 0 C 0

M̃γ

S 0
0 0 I

0 0
C S 0 0 0 0
0 0 I 0 0 0



.(3.8)
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We are now ready to analyze the minimal positive eigenvalue of this matrix in
block form. In section 3.1, we first deduce some general spectral relations before
focusing, in section 3.2, on the positive eigenvalues of the matrix (3.1) that are smaller
than the value of γ/2. Finally, based on these spectral relations, we successively define
in section 3.3 two constrained optimization problems whose minimal value will lead
to a refined lower bound for the positive interval in (1.4). The norm considered in the
following is the 2-norm ‖ · ‖2, and we use in short the notation ‖ · ‖.

3.1. General spectral relations. Let λ ∈ R denote an eigenvalue of the matrix

given in (3.8), with the associated eigenvector
[
x1 x2 y1 y2

]T
in which x1 ∈ R

p,
x2 ∈ R

n−p, y1 ∈ R
p, and y2 ∈ R

m−p. We then have the following equalities:

(3.9) Mγx1 + Cy1 = λx1 and M̃γx2 +



Sy1
y2
0


 = λx2,

together with

(3.10) Cx1 +
[
S 0 0

]
x2 = λy1 and

[
0 I 0

]
x2 = λy2.

Let us introduce now the positive quantities ρ1 ∈ [µmin, µp] and ρ2 ∈ [µp+1, 1]
satisfying

(3.11) xT
1 Mγx1 = ρ1‖x1‖2 and xT

2 M̃γx2 = ρ2‖x2‖2.

Note that if both x1 6= 0 and x2 6= 0, then ρ1 and ρ2 are Rayleigh quotients and
satisfy ρ1 ∈ [µmin, µp] and ρ2 ∈ [µp+1, 1] by (3.7). Otherwise, if x1 = 0 or x2 = 0 or
both, it is always possible to find positive quantities ρ1 ∈ [µmin, µp] and ρ2 ∈ [µp+1, 1]
to satisfy (3.11).

The following lemma gives some spectral relations, which will be useful in the
next sections (for the proof, see Appendix B).

Lemma 3.1. Let λ ∈ R be an eigenvalue of the matrix (3.8) associated to the

eigenvector x =
[
x1 x2 y1 y2

]T
with x1 ∈ R

p, x2 ∈ R
n−p, y1 ∈ R

p, and y2
∈ R

m−p. Then x satisfies the following relations:

(3.12)

(3.13)

(3.14)

(3.15)

λ2‖x1‖2 = λρ1‖x1‖2 + xT
1 C

2x1 + xT
1

[
CS 0 0

]
x2,

λ2‖x2‖2 = λρ2‖x2‖2 + xT
1

[
CS 0 0

]
x2 + xT

2



S2 0 0
0 I 0
0 0 0


x2,

λ2‖y1‖2 = xT
1 C

2x1 + 2xT
1

[
CS 0 0

]
x2 + xT

2



S2 0 0
0 0 0
0 0 0


x2,

λ2‖y2‖2 = xT
2



0 0 0
0 I 0
0 0 0


x2,

where ρ1 ∈ [µmin, µp] and ρ2 ∈ [µp+1, 1] satisfy (3.11).

3.2. Specific relations for small positive eigenvalues. As we have seen
in (1.4), the lower bound of the interval associated to the positive eigenvalues of
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Ā given in (3.1) is not necessarily isolated away from zero (especially when µmin

is extremely small). In this section, we thus focus our analysis on the eigenvalues
of Ā smaller than the given threshold γ and we deduce, from Lemma 3.1, specific
relations associated to these eigenvalues. As we will see, small positive eigenvalues of
Ā require that the weights in the eigencomponents of the associated eigenvectors are
more important on the part relative to the small eigenvalues of A. In particular, for
the existence of a positive eigenvalue λ̄ less than γ/2, we will demonstrate that it is
mandatory to have ‖x̄1‖ > ‖x̄2‖ within the blocks of the corresponding eigenvector

x̄ =
[
x̄1 x̄2 ȳ1 ȳ2

]T
.

We therefore start our analysis by assuming that the eigenvalue problem defined
by the equalities in (3.9) and (3.10) has a positive eigenvalue λ̄ ≥ 0 such that λ̄ < γ/2,
and we shall then study, under this hypothesis, possible lower bound values for this
eigenvalue λ̄. We also make the assumption that the minimum cosine value in C is
strictly positive; otherwise, we already know, from the example in the introduction,
that the positive lower bound from Rusten and Winther can be sharp. The following
lemma summarizes the various necessary conditions that must be met due to the
existence of such an eigenvalue λ̄ < γ/2, together with strictly positive cosines (for
the proof, see Appendix C).

Lemma 3.2. Assume the matrix (3.8) has a positive eigenvalue λ̄ satisfying λ̄ <

γ/2, with γ ∈ [µmin, 1], and with the associated eigenvector x̄ =
[
x̄1 x̄2 ȳ1 ȳ2

]T
,

where x̄1 ∈ R
p, x̄2 ∈ R

n−p, ȳ1 ∈ R
p, and ȳ2 ∈ R

m−p. Let also C and S ∈ R
p×p

given by (3.6) satisfy cmin = mini=1:p{cos θi} > 0. Then it is necessary to have
‖x̄1‖ > ‖x̄2‖ > 0 and cmin < 1.

These necessary conditions allow us to divide the previous relations by either
‖x̄1‖ or ‖x̄2‖ and to derive some new relations based only on some specific scalar
quantities in prescribed intervals. These scalar quantities actually correspond to en-
ergy estimates, in the spirit of what is done by Rusten and Winter to derive their
well-known bounds on the eigenvalues of the KKT matrix. We first introduce these
specific energy estimates associated to the existing eigenvalue 0 < λ̄ < γ/2, together
with the assumption that cmin > 0 (for which ‖x̄1‖ > ‖x̄2‖ > 0, as guaranteed by
Lemma 3.2):

(3.16) ω̄ =
‖x̄1‖2
‖x̄2‖2

> 1,

(3.17) ρ̄1 =
x̄T
1 Mγ x̄1

‖x̄1‖2
∈ [µmin, µp] and ρ̄2 =

x̄T
2 M̃γ x̄2

‖x̄2‖2
∈ [µp+1, 1],

together with

(3.18) ᾱ =
x̄T
1 C

2x̄1

‖x̄1‖2
∈ [c2min, 1] and β̄ =

x̄T
2



S2 0 0
0 I 0
0 0 0


 x̄2

‖x̄2‖2
∈ [0, 1]

and

(3.19) τ̄ =
x̄T
1

[
CS 0 0

]
x̄2

‖x̄1‖2
.
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In the next theorem, we transform the relations derived in Lemma 3.1 and intro-
duce scalar relations based on the above quantities ω̄, ρ̄1, ρ̄2, ᾱ, β̄, and τ̄ . The key
point is actually to identify some particular inequalities, in order to derive a set of
nonlinear equations and inequations that we shall study in the next section to obtain
a lower bound on the given positive eigenvalue 0 < λ̄ < γ/2.

Theorem 3.3. Assume that the matrix in (3.8) has a positive eigenvalue λ̄ sat-
isfying λ̄ < γ/2, with γ ∈ [µmin, 1], and with the associated eigenvector

x̄ =
[
x̄1 x̄2 ȳ1 ȳ2

]T
,

with x̄1 ∈ R
p, x̄2 ∈ R

n−p, ȳ1 ∈ R
p, and ȳ2 ∈ R

m−p. Let ω̄, ρ̄1, ρ̄2, ᾱ, β̄, and τ̄ be
given by (3.16)–(3.19), respectively, and let cmin > 0. We then have

−λ̄2 + λ̄ρ̄1 + ᾱ+ τ̄ = 0,(3.20)

−λ̄2 + λ̄ρ̄2 + β̄ + τ̄ ω̄ = 0,(3.21)

τ̄ + ᾱ > 0,(3.22)

τ̄ ω̄ + β̄ < 0,(3.23)

τ̄2ω̄ ≤ ᾱβ̄.(3.24)

Proof. It is straightforward to derive (3.20) and (3.21) by dividing (3.12) and
(3.13) by ‖x̄1‖2 and ‖x̄2‖2, respectively (where x̄1 6= 0 and x̄2 6= 0 by Lemma 3.2).

We next prove (3.22). Adding (3.14) to (3.15) gives

0 ≤ λ̄2(‖ȳ1‖2 + ‖ȳ2‖2) = ᾱ‖x̄1‖2 + 2τ̄‖x̄1‖2 + β̄‖x̄2‖2,(3.25)

which again, with the quantities above, can be written as

(3.26) (ᾱ+ τ̄)‖x̄1‖2 + (τ̄ ω̄ + β̄)‖x̄2‖2 ≥ 0.

Observing also that (3.13) can be written as (τ̄ ω̄ + β̄)‖x̄2‖2 = λ̄(λ̄− ρ̄2)‖x̄2‖2, (3.26)
becomes

(ᾱ+ τ̄)‖x̄1‖2 + λ̄(λ̄− ρ̄2)‖x̄2‖2 ≥ 0,

or equivalently, after division by ‖x̄2‖2, (ᾱ + τ̄)ω̄ ≥ λ̄(ρ̄2 − λ̄). Now, since 0 < λ̄ <
γ/2 < ρ̄2 and ω̄ > 1, we can deduce that ᾱ+ τ̄ > 0, which proves (3.22).

We next prove (3.23) by contradiction. Assume that τ̄ ω̄ + β̄ ≥ 0; then from
equality (3.21) we can write that

λ̄2 − λ̄ρ̄2 = λ̄(λ̄− ρ̄2) ≥ 0,

which implies, since λ̄ > 0, that λ̄ ≥ ρ̄2 ≥ γ/2 and contradicts the assumption
λ̄ < γ/2.

We finally prove (3.24). Multiplying the left equality in (3.10) by x̄T
1 C gives

x̄T
1 C

2x̄1 + x̄T
1

[
CS 0 0

]
x̄2 = (ᾱ+ τ̄)‖x̄1‖2 = λ̄x̄T

1 Cȳ1.

Combining this last equality with (3.22) and the Cauchy–Schwarz inequality, we ob-
tain

(3.27) 0 < (ᾱ+ τ̄)‖x̄1‖2 = λ̄x̄T
1 Cȳ1 ≤ λ̄‖Cx̄1‖‖ȳ1‖ = λ̄

√
ᾱ‖x̄1‖‖ȳ1‖,
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where the last equality derives from the definition of ᾱ in (3.18). Squaring both sides
of (3.27), we also have that

(ᾱ+ τ̄)2‖x̄1‖2 ≤ λ̄2ᾱ‖ȳ1‖2 ≤ λ̄2ᾱ(‖ȳ1‖2 + ‖ȳ2‖2).
Combining this last inequality with (3.25) and dividing by ‖x̄2‖2 gives

(ᾱ+ τ̄)2ω̄ ≤ (ᾱ2 + 2ᾱτ̄)ω̄ + ᾱβ̄,

which, after simplification, yields the desired result (3.24).

3.3. Analyzing possible lower bounds. In the previous section, we have as-
sumed the existence of a positive eigenvalue λ̄ of Ā satisfying λ̄ < γ/2 and shown,
under the assumption that cmin > 0, that λ̄ and its associated eigenvector x̄ satisfy the
relations (3.20)–(3.24). In order to refine the positive lower bound in (1.4) as given
by Rusten and Winther [10], we proceed in two steps by introducing two optimization
problems successively, whose optimal solution will provide the desired refined positive
lower bound on the eigenvalue λ̄.

To build the feasible domain of the first of these two optimization problems,
we relax the relations (3.20)–(3.24) by relaxing the quantities λ̄, τ̄ , and ω̄ in these
relations, which now become the variables λ, τ , and ω verifying

ρ̄1 ≤ λ ≤ ρ̄2
2

and 1 ≤ ω ≤ ωmax,

where ωmax is an upper bound satisfying ωmax ≥ ω̄. The constraints of this opti-
mization problem, which we shall denote as P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax), are defined by the
following relations:

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.28e)

(3.28f)

(3.28g)

− λ2 + λρ̄1 + ᾱ+ τ = 0,

− λ2 + λρ̄2 + β̄ + τω = 0,

ρ̄1 ≤ λ ≤ ρ̄2
2
,

1 ≤ ω ≤ ωmax,

τ ≥ −ᾱ,

τω ≤ −β̄,

τ2ω ≤ ᾱβ̄





≡ F(P ).

We then minimize λ over the set (λ, τ, ω) satisfying these constraints; i.e., we consider
the following optimization problem:

(3.29) P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) = min
(λ,τ,ω)∈F(P )

λ.

Note that F(P ) is nonempty, since (λ̄, τ̄ , ω̄) ∈ F(P ), and that λ no longer represents
an eigenvalue of the matrix Ā in this problem. Instead, the optimal value λ0 of (3.29),
whose existence is guaranteed by the compactness of the feasible set F(P ) (see the
Weierstrass theorem in [6]), gives a lower bound on λ̄ (since (λ̄, τ̄ , ω̄) ∈ F(P )). To
assess the compactness of F(P ), observe that τ in (3.29) satisfies τ ≤ 0 by (3.28f),
since ω ≥ 1 and β̄ ∈ [0, 1] by (3.18).

We shall now study the global optimum of the optimization problem (3.29). In
that respect, we establish a first useful lower bound in the next lemma, whose proof
is rather quick and given in Appendix D.
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Lemma 3.4. Given the scalar values ᾱ > 0, β̄ ≥ 0, ω ≥ 1, and τ ≤ 0 satisfying
(3.28g), the system of equations (3.28a) and (3.28b) in λ has a unique positive solution
satisfying

(3.30) λ ≥ ωρ̄1 + ρ̄2 +
√
∆̄

2(ω + 1)
,

where ∆̄ = (ωρ̄1 + ρ̄2)
2 + 4(ω + 1)

(√
ᾱω −

√
β̄
)2
.

Our study of an optimal solution of the optimization problem (3.29) continues
with the identification of the constraints which are potentially active at optimality.

Theorem 3.5. Consider problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) defined in (3.29) where
ωmax ≥ ω̄ and ω̄, ρ̄1, ρ̄2, ᾱ, and β̄ are given by (3.16)–(3.18). Then the only constraints
in (3.29) possibly active at a global solution are

ω ≤ ωmax and τ2ω ≤ ᾱβ̄.

Proof. First, let us prove that the lower bound in constraint (3.28d) (ω = 1) is
not active. By Lemma 3.4 when ω = 1, we have that

λ ≥
ρ̄1 + ρ̄2 +

√
(ρ̄1 + ρ̄2)2 + 8(

√
ᾱ+

√
β̄)2

4
≥ (ρ̄1 + ρ̄2)

2
>

ρ̄2
2
,

since ρ̄1 > 0. This is incompatible with (3.28c).
In a second step, we prove that the constraint (3.28e) is not active. Assuming

that τ = −ᾱ, (3.28a) and (3.28b) then become

(3.31) −λ2 + λρ̄1 = 0 and − λ2 + λρ̄2 + β̄ − ᾱω = 0,

respectively. The first equation in (3.31) implies that either λ = 0 or λ = ρ̄1. Since
λ ≥ ρ̄1 > 0 by (3.28c), we have that its unique solution is λ = ρ̄1, and it follows that
the second equation in (3.31) becomes −(ρ̄1)

2 + ρ̄1ρ̄2 + β̄ − ᾱω = 0, or equivalently,

ᾱω = ρ̄1(ρ̄2 − ρ̄1) + β̄.(3.32)

Multiplying (3.32) by ᾱ, we obtain

ᾱ2ω = τ2ω = ᾱ(ρ̄1(ρ̄2 − ρ̄1) + β̄).

Since ᾱ > 0, ρ̄1 > 0, and ρ̄2− ρ̄1 > 0, we can deduce that τ2ω > ᾱβ̄, which contradicts
(3.28g).

We next prove that (3.28f) is not active by contradiction. Assuming that τω+β̄ =
0, (3.28b) becomes −λ2+λρ̄2 = 0, so that either λ = 0 or λ = ρ̄2, which is impossible
by (3.28c).

We finally prove that both bounds of (3.28c) are inactive at a global solution.
First, λ = ρ̄1 implies by (3.28a) that (3.28e) is active, which is impossible by the second
step of the proof. If λ = ρ̄2/2, then it is not a global solution, since (λ̄, τ̄ , ω̄) ∈ F(P )
and λ̄ < γ/2 ≤ ρ̄2/2 = λ provides a lower objective function value.

The last step in the study of the optimization problem (3.29) is to show that either
one or the other of the two constraints identified in Theorem 3.5 is actually active,
giving then fundamental information to raise a lower bound of the global optimal
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solution λ0, which we recall is itself a lower bound of the assumed existing positive
eigenvalue 0 < λ̄ < γ/2 of Ā.

Let us first assume that ω = ωmax (i.e., the inequality constraint (3.28d) is active)
at a global solution of problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax) given by (3.29). The lower bound
in Lemma 3.4, with ω = ωmax, gives us a first possible value for a lower bound on the
optimal solution of problem (3.29):

(3.33) λ0 ≥ 1

2

(
ωmaxρ̄1 + ρ̄2 +

√
∆̄

ωmax + 1

)
,

where ∆̄ = (ωmaxρ̄1 + ρ̄2)
2 +4(ωmax +1)

(√
ᾱωmax −

√
β̄
)2
. We can observe that this

lower bound actually depends essentially on the choice for the value of ωmax ≥ ω̄, the
other scalar values ρ̄1, ρ̄2, ᾱ, β̄ being fixed in the setting of problem (3.29). Defining
now the quantities

ρ̂ =
ωmaxρ̄1 + ρ̄2
ωmax + 1

and α̂ =


√

ᾱ

√
ωmax

ωmax + 1
−

√
β̄

ωmax + 1


 ,

we can rewrite (3.33) as

(3.34) λ0 ≥ 1

2

(
ρ̂+

√
ρ̂2 + 4α̂2

)
.

This lower bound thus holds in the case where ω = ωmax ≥ ω̄ at an optimal solution of
problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax). Note also, for further use, that since ωmax can a priori
be taken as large as we want, one has that

(3.35) lim
ωmax→∞

ρ̂ = ρ̄1 and lim
ωmax→∞

α̂ =
√
ᾱ.

We now study the case where ω < ωmax to raise a second possible lower bound
value. The minimum of these two bounds will finally enable us to give a refined lower
bound on the set of positive eigenvalues of Ā. If ω < ωmax at a global solution of
problem (3.29), the first thing to point out is that it is then necessary to have τ2ω =
ᾱβ̄, that is, the constraint (3.28g) must be active. To see that, let us consider the
most general first-order necessary optimality conditions that must hold at the optimal
solution of problem (3.29), given by the F. John theorem (see [6, Theorem 3.1]), which
states that there exist t, u, v, ζ ∈ R not all equal to zero, such that



1
0
0


 t−



−2λ+ ρ̄1

1
0


u−



−2λ+ ρ̄2

ω
τ


 v −




0
−2τω
−τ2


 ζ =



0
0
0


 ,(3.36)

with ζ ≥ 0 and the complementarity condition

(3.37) ζ(ᾱβ̄ − τ2ω) = 0.

Note first that τ 6= 0. Indeed, otherwise β̄ ≤ 0 by (3.28f), implying that β̄ = 0, since
β̄ ∈ [0, 1], which in turn would give, by (3.28b),

−λ2 + λρ̄2 = λ(ρ̄2 − λ) = 0,
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so that λ = 0 or λ = ρ̄2, in contradiction with (3.28c). We next have that ζ 6= 0,
since otherwise τv = 0 by the third equality in (3.36), and thus v = 0, which in turn
implies u = 0 by the second equality in (3.36), followed by t = 0 by the first equality
in (3.36). This is incompatible with the assumption that t, u, v, and ζ cannot be all
equal to zero. The complementarity condition (3.37) then ensures that the constraint
(3.28g) must be active, i.e., τ2ω = ᾱβ̄. Note that, since we know that τ < 0 (we have
seen before that τ ≤ 0, and just above that τ 6= 0 under the current assumption, e.g.,
ω < ωmax), we can then set

(3.38) τ = −
√

ᾱβ̄

ω
.

To continue our study of possible solutions when ω < ωmax, let us now denote
by τ0 and ω0 < ωmax the associated quantities to such a solution λ0 of problem
P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax). From (3.38), we then have τ0 = −

√
ᾱβ̄/ω0, and remembering

that β̄ 6= 0, we can set

δ0 =

√
ᾱω0

β̄
.

Observing that τ0 = −ᾱ/δ0 = −δ0β̄/ω0, we can then rewrite (3.28a) and (3.28b) as

(3.39) −λ2
0 + λ0ρ̄1 + ᾱ

(
1 +

τ0
ᾱ

)
= −λ2

0 + λ0ρ̄1 + ᾱ

(
1− 1

δ0

)
= 0

and

(3.40) −λ2
0 + λ0ρ̄2 + β̄

(
1 +

τ0ω0

β̄

)
= −λ2

0 + λ0ρ̄2 + β̄ (1− δ0) = 0.

We also have by (3.28e) (which is inactive at a solution) that τ0 = −ᾱ/δ0 > −ᾱ, so
that δ0 > 1.

In order to conclude our search for a refined positive lower bound in (1.4), we
next consider a second (and last) constrained optimization problem, also built in the
same spirit, i.e., with the aim to derive this time a lower bound on the above solution
λ0 of the optimization problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax), under the assumption that the
associated value ω0 is strictly less than ωmax. To this end, we relax the quantities λ0,
δ0, ᾱ, and β̄ and consider the optimization problem

P̃ (ρ̄1, ρ̄2) ≡ min
(λ,δ,α,β)∈F(P̃ )

λ,(3.41)

where the feasible set F(P̃ ) is now defined by

(3.42a)

(3.42b)

(3.42c)

(3.42d)

(3.42e)

(3.42f)

− λ2 + λρ̄1 + α

(
1− 1

δ

)
= 0,

− λ2 + λρ̄2 + β (1− δ) = 0,

ρ̄1 ≤ λ ≤ ρ̄2
2
,

1 ≤ δ ≤ δmax,

c2min ≤ α ≤ 1,

0 ≤ β ≤ 1





≡ F(P̃ ),
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with δmax an upper bound satisfying δmax ≥ δ0 > 1 and with cmin < 1 (from

the necessary condition raised in Lemma 3.2). Note that F(P̃ ) is nonempty, since

(λ0, δ0, ᾱ, β̄) ∈ F(P̃ ) by (3.39), (3.40), (3.28c) satisfied by λ0 and by (3.18). Again,

the compactness of the feasible set F(P̃ ) guarantees the existence of an optimal value

λinf for problem P̃ (ρ̄1, ρ̄2) with λinf ≤ λ0.

The next theorem identifies the constraints of P̃ (ρ̄1, ρ̄2) which are potentially
active at optimality.

Theorem 3.6. Consider problem P̃ (ρ̄1, ρ̄2) defined in (3.41), where δmax ≥ δ0
and ρ̄1 and ρ̄2 are given by (3.17). Then the constraints in (3.41) possibly active at a
global solution are

δ ≤ δmax, c2min ≤ α ≤ 1, and β ≤ 1.

Proof. Let us first show that the lower bound in (3.42d) (δ = 1) is not active at
optimality. Indeed, if δ = 1, we get by (3.42b) that −λ2 + λρ̄2 = λ (ρ̄2 − λ) = 0, so
that λ = 0 or λ = ρ̄2, in contradiction with (3.42c). Using the same argument, we
have that the lower bound in (3.42f) (β = 0) is not active.

It remains to prove that both bounds of (3.42c) are inactive at a global so-
lution. First, λ = ρ̄1 implies by (3.42a) that α(1 − 1

δ ) = 0, which is impossi-
ble, since α > 0 and δ 6= 1. If λ = ρ̄2

2 , then it is not a global solution, since
λ0 ≤ λ̄ < γ

2 < ρ̄2

2 = λ provides a lower objective function value and (λ0, δ0, ᾱ, β̄) ∈
F(P̃ ).

Similarly to the way we proceeded for problem (3.29), we first consider the case
where δ = δmax (i.e., the upper bound of (3.42d) is active) at a global solution of

problem P̃ (ρ̄1, ρ̄2). Equation (3.42a), together with δ = δmax, gives

−λ2 + λρ̄1 + α

(
1− 1

δmax

)
= 0,

whose roots are

λ1,2 =
1

2

(
ρ̄1 ±

√
ρ̄21 + 4α

(
1− 1

δmax

))
,

where ρ̄21 + 4α
(
1 − 1

δmax

)
> 0 as α > 0 and δmax ≥ δ0 > 1. Excluding the negative

root, one then gets

(3.43) λinf =
1

2

(
ρ̄1 +

√
ρ̄21 + 4α

(
1− 1

δmax

))
,

which raises a first lower bound for the solution λ0 of problem P (ρ̄1, ρ̄2, ᾱ, β̄, ωmax),
under the assumption that the associated value ω0 is strictly less than ωmax.

We next, and finally, consider the case where δ < δmax, and we shall see that it is
then necessary that both the lower bound in constraint (3.42e) and the upper bound
β = 1 in (3.42f) actually be active. To see that, we use Theorem 3.6 and again the
F. John theorem (see [6, Theorem 3.1]) to state that there exist t, u, v, ζ, η, ϕ ∈ R

not all equal to zero such that



1
0
0
0


 t−




−2λ+ ρ̄1
α
δ2

1− 1
δ

0


u−




−2λ+ ρ̄2
−β
0

1− δ


 v −




0
0
1
0


 ζ −




0
0
−1
0


 η +




0
0
0
−1


ϕ =




0
0
0
0


 ,

(3.44)
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with ζ ≥ 0, η ≥ 0, ϕ ≥ 0 and with the associated complementarity conditions

ζ(c2min − α) = 0,(3.45)

η(α− 1) = 0,(3.46)

ϕ(β − 1) = 0.(3.47)

If ϕ = 0, then v = 0 by the last equality in (3.44), since δ > 1, and consequently
u = 0 by the second equality in (3.44) and since α/δ2 6= 0. The first and third
equalities of (3.44) then imply t = 0 and ζ = η, respectively. Since t, u, v, ζ, η, ϕ
cannot all be equal to zero, then one must have ζ = η 6= 0, which implies, by the
complementarity conditions (3.45) and (3.46), that α = 1 = c2min, which is impossible
from the necessary condition raised in Lemma 3.2. Assume now that ϕ > 0. Then
β = 1 by (3.47), and the last equality in (3.44) yields (1 − δ)v = ϕ. This, together
with ϕ > 0 and δ > 1, implies that v < 0. The second equality in (3.44) then gives

− α

δ2
u+ v = 0,

implying that u < 0, since α > 0. By the third equality in (3.44), we get

−
(
1− 1

δ

)
u− ζ + η = 0,

that is, ζ − η > 0, since δ > 1. As (3.45) and (3.46) with c2min < 1 imply that either
ζ or η must be zero, the only possibility is to have η = 0 and ζ > 0 (since otherwise
ζ = 0 and η < 0, in contradiction with the sign condition η ≥ 0 on the multiplier η).
We thus have α = c2min by (3.45).

Rewriting P̃ (ρ̄1, ρ̄2) with β = 1 and α = c2min finally results in a nonlinear system
of two equations in (λ, δ),

(3.48)





−λ2 + λρ̄1 + c2min

(
1− 1

δ

)
= 0,

−λ2 + λρ̄2 + (1− δ) = 0,

in which we look for the unique solution such that ρ̄1 ≤ λ ≤ ρ̄2

2 and δ ≥ 1 and from
which we can deduce the second possible lower bound on the positive eigenvalues of
Ā as stated in the next theorem. The fact that this solution is indeed unique will be
seen in the course of the proof that follows.

Theorem 3.7. Consider the nonlinear system of equations defined in (3.48), where
ρ̄1 and ρ̄2 are given by (3.17). Then the unique positive solution satisfies

(3.49) λsol ≥
ρ̄1 +

4
5c

2
minρ̄2

1 + 4
5c

2
min

.

Proof. Multiplying the first equation in (3.48) by δ and the second by c2min and
summing, we have

−λ2(δ + c2min) + λ(ρ̄1δ + ρ̄2c
2
min) = 0.

This last equation has a single strictly positive solution that we can express as a
function of δ,

λ(δ) =
ρ̄1δ + ρ̄2c

2
min

δ + c2min

.
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Observing that its derivative

λ′(δ) =
ρ̄1(δ + c2min)− (ρ̄1δ + ρ̄2c

2
min)

(δ + c2min)
2

=
(ρ̄1 − ρ̄2)c

2
min

(δ + c2min)
2

< 0,

since ρ̄1 < ρ̄2, we have that λ(δ) is a strictly decreasing function. Also observe that, in
order to have a solution, the second equation in (3.48) requires that ρ̄22+4(1− δ) ≥ 0,
that is, the largest possible value for δ to get a solution is (ρ̄22 + 4)/4. We can thus
conclude, since ρ̄2 ≤ 1 by (3.17), that

λsol ≥ λ

(
ρ̄22 + 4

4

)
≥ λ(5/4) =

ρ̄1 +
4
5c

2
minρ̄2

1 + 4
5c

2
min

,

which ends the proof.

3.4. Collecting the various results. In the previous subsection, we have
raised several possible lower bounds for the set of positive eigenvalues of matrix Ā
in (3.1). Before gathering these various bounds to formulate our main result, let us
redraw the plot of the reasoning underlying the technical parts and developments
conducted so far.

The rationale was the following, starting from two ground basis assumptions. The
first one is that we consider the existence of some very small positive eigenvalue of
Ā in (3.1), 0 ≤ λ̄ < γ/2, for some given cut-off value γ ∈ [µmin, 1]. The second
one is that cmin > 0, with cmin being the minimum value for the cosines of the
principal angles between the subspace spanned by the constraint equations and the
subspace spanned by the eigenvectors of the (1,1) block matrix A associated to the
eigenvalues strictly less than γ. From these two assumptions, we could raise first in
Lemma 3.2 some important necessary conditions. Out of these, it was then possible
to introduce specific scalar quantities in prescribed intervals, given by (3.16)–(3.19),
respectively, and to show in Theorem 3.3 some equalities and inequalities that they
naturally verify. We then introduced the optimization problem defined in (3.29),
which resumes in finding the minimum value of λ within a compact constraint set
F(P ) of equalities and inequalities, defined by (3.28a)–(3.28g) and directly derived
from the relations raised in Theorem 3.3. The global minimum λ0 of this problem is
naturally a lower bound on the positive eigenvalue λ̄, since λ̄ belongs to F(P ). Now,
the structure of this optimization problem, due to the number of parameters involved,
does not allow us to easily derive some analytical formulation for a global solution λ0.
We therefore studied instead the possible active constraints at an optimal solution,
so as to be able to transform the problem by eliminating some dependent variables.
With careful study of the first-order necessary optimality conditions given by the
F. John theorem (see [6, Theorem 3.1]), and with some logic arguments based on
the complementarity conditions that are provided within these necessary conditions,
we could reduce the possible states to only two alternative cases (see Theorem 3.5
and the discussion that follows). The first of these two cases, which corresponds
to saturating the constraint ω = ωmax in (3.28d), provides a first possible lower
bound value (3.34) for the optimal solution λ0. The second and alternative case is to
saturate the inequality constraint (3.28g), and it was used to eliminate one variable
and to consider a second but simpler optimization problem, defined in (3.41), where

the compact feasible set of constraints F(P̃ ), defined by (3.42a)–(3.42f), contains
the solution λ0 currently considered. Therefore, a new global solution λinf of this
last optimization problem must verify λinf ≤ λ0, and it provides a second possible
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lower bound value. Similarly to the way we proceeded for problem (3.29), we again
identified, from the first-order necessary optimality conditions, two alternative feasible
cases at a solution, the first one raising the possible value (3.43) for λinf , and the second
one enabling us to finally reduce the problem to the algebraic set of two nonlinear
equations (3.48), whose positive solution can be bounded below by (3.49).

Gathering these three results together, we can now formulate our main result.

Theorem 3.8. Assume that the matrix Ā in (3.1) (in which QTQ = Im, µmin >
0, and µmax = 1) has an eigenvalue λ̄ satisfying 0 ≤ λ̄ < γ/2 (with γ ∈ [µmin, 1]), and
let C ∈ R

p×p given by (3.6) be such that cmin = mini=1:p{cos θi} > 0, together with
p < m and m < n− p. Then the eigenvalues of Ā are bounded within

(3.50)

[
µmin −

√
µ2
min + 4

2
,
1−

√
5

2

]
⋃

[
binf ,

1 +
√
5

2

]
,

where binf = min
(
γ
2 ,

µmin+
4

5
c2
min

γ

1+ 4

5
c2
min

)
.

Proof. As proved below, the lower bound binf for the set of positive eigenvalues
of Ā results from the minimum of the three bounds obtained in (3.34), (3.43), and
(3.49). From the rationale recalled just above, the minimum of these three values
actually provides a lower bound on any existing positive eigenvalue of matrix Ā that
would be less than γ/2. This main assumption implies first that the minimal value for
a lower bound that we are able to raise cannot be greater than γ/2. The second value
included in the definition of binf is simply derived by replacing ρ̄1 and ρ̄2 in (3.49) by
their minimal possible values µmin and γ, respectively.

Remember that the first two lower bounds in (3.34) and (3.43) have been obtained
when considering that ω = ωmax in (3.28d) and δ = δmax in (3.42d), respectively. As
both values of ωmax and δmax can a priori be taken as large as we want, we can
notice that the two lower bounds (3.34) and (3.43) have a limit when ωmax → ∞
and δmax → ∞, respectively, using (3.35) for the former. Taking into account that
ᾱ ≥ c2min for (3.34) and α ≥ c2min by (3.42e) for (3.43), both of these two limits can
actually be bounded below by the same value,

(3.51)
1

2

(
µmin +

√
µ2
min + 4c2min

)
.

At last, we can see that the value in (3.51) is strictly greater, for any choice of
0 < cmin ≤ 1 and µmin ≤ γ ≤ 1, than the second value raised in the definition of binf
above. Indeed, proving this inequality is equivalent to showing that

√
µ2
min + 4c2min >

5µmin + 8c2minγ − 4c2minµmin

5 + 4c2min

,

and squaring both sides and subtracting, it is finally also equivalent to 64c6min +
(160− 64γ2 + 64γµmin)c

4
min + (100 + 40µ2

min − 80γµmin)c
2
min > 0. This last inequality

is actually always true, since cmin > 0, and since (160 − 64γ2 + 64γµmin) ≥ 96 and
(100 + 40µ2

min − 80γµmin) ≥ 20 (because 0 < µmin ≤ γ ≤ 1). Consequently, for
sufficiently large values of ωmax and δmax, the three lower bounds given in (3.34),
(3.43), and (3.49) can all be bounded below by the single value

(3.52)
µmin + 4

5c
2
minγ

1 + 4
5c

2
min

.
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We can easily see that the lower bound (3.52) belongs to the interval ]µmin, γ[ as
a convex combination of µmin and γ, since µmin < γ and cmin > 0. In that respect,
the lower bound of the right interval in (1.4) is refined. We can also observe that,
when cmin → 0, we have that binf → µmin, which is consistent with the result given by
Rusten and Winther [10]. At last, the bound gets close to µmin only when c2min ≃ µmin.

4. Synthesis and perspectives. The analysis that has enabled us to draw the
conclusions in Theorem 3.8 is actually independent of the splitting of the spectrum of
the (1,1) block matrix A, which is defined by the choice of the cut-off value γ ∈ [µmin, 1]
(with the maximum eigenvalue of A being equal to 1 after appropriate initial scaling).
We can therefore vary the value of γ and consider the maximum of the values of
binf in (3.50) as a function of γ, to propose a maximal least value for the positive
eigenvalues of matrix Ā in (3.1). The only issue, when varying γ, is to take care that
the dimension p of the invariant subspace of A associated to all eigenvalues strictly less
than γ verifies p < min(m,n −m), so as to ensure that the decomposition proposed
in (3.6) remains valid. These last considerations lead to the conclusive result below.

Theorem 4.1. Consider the matrix Ā in (3.1), with QTQ = Im, µmin > 0, and
µmax = 1. Let 0 < µmin = µ1 ≤ µ2 ≤ · · · ≤ µn = µmax = 1 be the eigenvalues of the
symmetric and positive definite (1,1) block A ranged in increasing order. Denote by r
the minimum dimension min(m,n−m), and consider the decreasing sequence

c1 ≥ c2 ≥ · · · ≥ cp ≥ · · · ≥ cr ≥ 0,

where cp is the minimum cosine value of the principal angles between Im(Q) and
Im(Up), with Up being the matrix made with the p eigenvectors of A associated to the
p smallest eigenvalues {µ1, . . . , µp}. Then the minimum positive eigenvalue of Ā is
bounded below by

(4.1) max
1≤p≤r−1

min

(
µp+1

2
,
µmin + 4

5c
2
pµp+1

1 + 4
5c

2
p

)
.

The proof of this theorem is straightforward, as a consequence of Theorem 3.8.
We have just a few comments, however. We do not need to assume that the cosines
are isolated from 0, simply because the value of

µmin + 4
5c

2
pµp+1

1 + 4
5c

2
p

is equal to µmin whenever cp = 0, and the result from Rusten and Winther actually
shows that µmin is an absolute lower bound for the positive eigenvalues of matrix Ā
in (3.1). In the eventuality that µr/2 < µmin, the above theorem would then give a
bound lower than that of Rusten and Winther, but this is not really an issue. Indeed,
one can replace in (4.1) the value µp+1/2 by max(µmin, µp+1/2), to incorporate the
result from Rusten and Winther at any rate. Finally, note that the sequence of
minimum cosine values is necessarily decreasing, since the invariant subspaces Up are
embedded one into the other with increasing values of p.

The maximal least value in Theorem 4.1 results from a compromise between the
distribution of the eigenvalues of the (1,1) block A and the distribution of the sequence
of cosines as well. We illustrate this compromise on the small KKT system already
introduced in section 2.2. We scale the largest eigenvalue of A, and orthonormalize
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the constraint matrix B, which is essentially equivalent to applying the block diagonal
preconditioner (2.1) to the saddle point linear system (1.1).

Figure 4.1 shows the various elements to illustrate the compromise in Theorem 4.1.
The (targeted) real value of the minimum positive eigenvalue of Ā is indicated by the
horizontal solid (blue) line, and the value of µmin is indicated by the horizontal dashed
(black) line, respectively. The increasing curve with diamonds (in green) shows the
increasing sequence of eigenvalues µp, and the decreasing curve with circles (in pink)
shows the decreasing sequence of the cosines squared c2p for 1 ≤ p ≤ r − 1 (r = 150
in this example). The sequence of values involved in the bound (4.1), from which
results the above mentioned compromise, is displayed in the solid (red) curve for
1 ≤ p ≤ r− 1. The right plot corresponds to the case where some cosines were raised
above the value 0.362, as discussed in section 2.2, and where Minres would converge
in linear mode (see Figure 2.2), and the left one corresponds to the original case with
nonmodified cosines and with a more erratic convergence profile. We can observe that,
in both cases, the maximal least value (4.1) reached, indicated by a star on the solid
(red) curve, is slightly closer to the real value of the minimum positive eigenvalue of
Ā than is µmin.

Fig. 4.1. Illustration of the bound in (4.1).

The theoretical results we presented allow us to clarify those situations where
the spectral distribution of a saddle point matrix might effectively be affected by the
presence of very small eigenvalues in its (1,1) block. The compromise between the
distribution of the eigenvalues µp and the distribution of the sequence of cosines cp
that is involved is obviously problem dependent. Still, the knowledge of the value of
the very first cosine can already be very informative, since the sequence of cosines
is necessarily decreasing. Theorem 4.1 also indicates that there can be alternative
directions to improve the condition number of a saddle point linear system, which is
to either use a preconditioner that shifts the smallest eigenvalues of A to sufficiently
larger values or to modify the system so as to improve the distribution of the cosines
of the principal angles above. An idea could be, for instance, to augment the (1,1)
block of Ā in the spirit of what is done in [3]. At last, an erratic convergence profile
of Minres, after scaling of the (1,1) block and normalization (or near normalization)
of the constraints, with a preconditioner of the type just above, for instance, may
indicate a very rapidly decreasing sequence of cosines or a very small starting cosine
value c1.
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It could be worth investigating the extensions of this theoretical analysis to the
case of a semipositive definite (1,1) block A, using perturbation theory, for instance,
and to the more general case where this (1,1) block is unscaled and the constraint
equations are not necessarily orthonormalized as well. We still hope that this analysis
can be useful to give some deeper insights in various situations.

Appendix A. Analytical study of example (1.5). To analyze a little further
the case of the 3× 3 matrix Acs given in (1.5), consider its characteristic polynomial,

χ(λ) = λ3 − (1 + µ)λ2 − (1− µ)λ+ (c2 + s2µ),

which we rewrite as χ(λ) = λ3+Q(λ), where Q(λ) = −(1+µ)λ2−(1−µ)λ+(c2+s2µ).
Observing that χ(λ) ≥ Q(λ) for λ ≥ 0 and that χ(0) = Q(0) and χ′(0) = Q′(0) =
µ− 1 < 0, since µ < 1, the two positive eigenvalues of Acs are bounded below by the
positive root of Q(λ), that is,

λ+(Acs) ≥
(µ− 1) +

√
(1− µ)2 + 4(1 + µ)(c2 + s2µ)

2(1 + µ)

=
1

2

(√
1 + 4

c2 + s2µ2

(1 + µ)2
− 1− µ

1 + µ

)

= 2
c2(1− µ) + µ√

(1 + µ)2 + 4(c2(1− µ2) + µ2) + 1− µ
,

after simplifications, using c2 + s2 = 1 and multiplying both the top and bottom by
the conjugate. This lower bound is O(µ), as expected, when c2 = 0, O(2µ) when
c2 = µ, and O

(
c2/(1 + c2)

)
, and thus bounded away from zero, when µ ≪ c2 ≤ 1.

Appendix B. Proof of Lemma 3.1. Multiplying the left equality in (3.9) by
λxT

1 and using (3.11), we have

(B.1) λ2‖x1‖2 = λxT
1 Mγx1 + λxT

1 Cy1 = λρ1‖x1‖2 + λxT
1 Cy1.

Multiplying now the left equality in (3.10) by xT
1 C, we obtain

λxT
1 Cy1 = xT

1 C
2x1 + xT

1

[
CS 0 0

]
x2,

which together with (B.1) implies (3.12). Similarly, multiplying the right equality in
(3.9) by λxT

2 and using (3.11), we get

λ2‖x2‖2 = λρ2‖x2‖2 + λxT
2



S
0
0


 y1 + λxT

2



0
I
0


 y2.

Then, using (3.10) to replace λy1 and λy2, we can derive

λ2‖x2‖2 = λρ2‖x2‖2 + xT
2



S
0
0


(

Cx1 +
[
S 0 0

]
x2

)
+ xT

2



0
I
0


 [

0 I 0
]
x2,

implying (3.13). Finally, (3.14) and (3.15) immediately follow from (3.10).

Appendix C. Proof of Lemma 3.2. We first recall that Ā is invertible, and
consequently λ̄ > 0, under the hypotheses that are made (e.g., a KKT system with a
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positive definite (1,1) block and a full rank constraint matrix). Let us show first that
x̄1 is nonzero. Summing (3.12) and (3.13) and combining with (3.14) and (3.15), we
have that

(C.1) λ̄2(‖x̄1‖2 + ‖x̄2‖2)− λ̄(ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2) = λ̄2(‖ȳ1‖2 + ‖ȳ2‖2),

with ρ̄1 ∈ [µmin, µp], ρ̄2 ∈ [µp+1, 1] and satisfying

x̄T
1 Mγ x̄1 = ρ̄1‖x̄1‖2 and x̄T

2 M̃γ x̄2 = ρ̄2‖x̄2‖2.

Observe that ‖x̄1‖2 + ‖x̄2‖2 6= 0, since otherwise we would have that x̄1 = x̄2 = 0
and consequently that ȳ1 = ȳ2 = 0, since λ̄ > 0, implying a zero eigenvector x̄. From
(C.1), we can then deduce, since λ̄ > 0, that

λ̄ =
ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2
‖x̄1‖2 + ‖x̄2‖2

+ λ̄
‖ȳ1‖2 + ‖ȳ2‖2
‖x̄1‖2 + ‖x̄2‖2

≥ ρ̄1‖x̄1‖2 + ρ̄2‖x̄2‖2
‖x̄1‖2 + ‖x̄2‖2

= ρ̄1(1− θ) + ρ̄2θ,

where

θ =
‖x̄2‖2

‖x̄1‖2 + ‖x̄2‖2
∈ [0, 1].

Assuming ‖x̄2‖2 ≥ ‖x̄1‖2 (e.g., θ ≥ 1/2) leads to

λ̄ ≥ ρ̄1(1− θ) + ρ̄2θ ∈
[
ρ̄1 + ρ̄2

2
, ρ̄2

]

and in turn that λ̄ ≥ γ/2 (since µmin ≤ ρ̄1 < γ ≤ µp+1 ≤ ρ̄2 ≤ 1). This contradicts the
assumption that λ̄ < γ/2, and hence it is necessary to have ‖x̄2‖2 < ‖x̄1‖2, implying
that x̄1 6= 0.

Assume now that x̄2 = 0; we then directly have, from the right equality in (3.9)
and the left one in (3.10), that

(C.2) Sȳ1 = 0 and Cx̄1 = λ̄ȳ1.

Let us show that this also implies that

(C.3) Cx̄1 = x̄1.

First, observe that from the assumption cmin > 0, one has that cos θi > 0 for all
i = 1, . . . , p. If cos θi = 1, then obviously (C.3) holds for index i. If cos θi 6= 1,
implying that sin θi 6= 0 (since cos θ2i +sin θ2i = 1), then the corresponding component
in ȳ1 is equal to zero by the first equality in (C.2), and so is the corresponding
component in x̄1 by the second equality in (C.2), so that again (C.3) is satisfied for
this index i. Finally, from (C.3) we get C2x̄1 = Cx̄1 = x̄1, and from (C.2) we also
have SCx̄1 = λ̄Sȳ1 = 0, so that we can rewrite (3.12) as

−λ̄2‖x̄1‖2 + λ̄ρ̄1‖x̄1‖2 + ‖x̄1‖2 = 0,

and therefore, since x̄1 6= 0, we then get −λ̄2 + λ̄ρ̄1 +1 = 0. The positive root of this
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last equation in λ̄ gives

λ̄ =
ρ̄1 +

√
ρ̄21 + 4

2
> 1,

i.e., λ̄ > µmax = 1, which leads to a contradiction with the assumption that λ̄ < γ/2.
Hence we must also have x̄2 6= 0.

The necessary condition cmin < 1 is also induced by the same considerations.
Indeed, if cmin = 1 (meaning that all cosines are equal to 1), then the first equalities
in (C.2) and (C.3) both hold (since in this case C = I and S = 0), and (3.12) leads
again to −λ̄2 + λ̄ρ̄1 + 1 = 0, with the same contradiction.

Appendix D. Proof of Lemma 3.4.

Proof. Multiplying (3.28a) by ω and adding it to (3.28b), we get the equation

(ω + 1)λ2 − (ωρ̄1 + ρ̄2)λ−
(
ω(ᾱ+ 2τ) + β̄

)
= 0,

whose roots are given by

λ1,2 =
ωρ̄1 + ρ̄2 ±

√
∆

2(ω + 1)
,

where ∆ = (ωρ̄1 + ρ̄2)
2 + 4(ω + 1)(ωᾱ + 2ωτ + β̄). By (3.28g), together with ω > 0,

we have that τ2ω2 ≤ ᾱβ̄ω, or equivalently that τω ≥ −
√
ᾱβ̄ω, since τ ≤ 0, ᾱ > 0,

and β̄ ≥ 0. This last inequality implies that

ωᾱ+ 2ωτ + β̄ ≥ ωᾱ− 2

√
ᾱβ̄ω + β̄ =

(√
ᾱω −

√
β̄

)2

≥ 0,

so that, on the one hand, ∆ ≥ (ωρ̄1 + ρ̄2)
2
for ω ≥ 1, yielding λ1 ≤ 0. On the

other hand, it implies that ∆ ≥ ∆̄, so that the unique positive solution of (3.28a) and
(3.28b) is λ2 and satisfies (3.30).
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