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Introduction

Motivated by the rapid development of Lattice-Boltzmann (LB) methods in the field of low-Mach external aerodynamics and aeroacoustics [START_REF] Chen | Lattice boltzmann method for fluid flows[END_REF], and particularly its potential as an engineering tool [START_REF] D'hooge | Application of real-world wind conditions for assessing aerodynamic drag for on-road range prediction[END_REF][START_REF] Gleason | Comparison of computational simulation of automotive spinning wheel flow field with full width moving belt wind tunnel results[END_REF][START_REF] Khorrami | Computational evaluation of airframe noise reduction concepts at full scale[END_REF][START_REF] Khorrami | Simulation-based airframe noise prediction of a full-scale, full aircraft[END_REF][START_REF] Casalino | Turbofan broadband noise prediction using the lattice boltzmann method[END_REF] we recently proposed a hybrid LB framework able to tackle combustion in low-Mach flows [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF] in line with the quest of extending the LB capabilities to reactive flows [START_REF] Filippova | A Novel Lattice BGK Approach for Low Mach Number Combustion[END_REF][START_REF] Yamamoto | LB simulation on soot combustion in porous media[END_REF][START_REF] Chiavazzo | Coupling of the model reduction technique with the lattice boltzmann method for combustion simulations[END_REF][START_REF] Xu | Multiple-relaxation-time lattice boltzmann kinetic model for combustion[END_REF][START_REF] Sun | A diffuse interface method for simulating the dynamics of premixed flames[END_REF][START_REF] Ashna | Extended lattice boltzmann scheme for droplet combustion[END_REF][START_REF] Hosseini | Mass-conserving advection-diffusion lattice boltzmann model for multi-species reacting flows[END_REF].

Based on nearest neighbor lattices, our model's implementation is straight-forward, but assumes a constant heat capacity for the mixture, a stark limitation when temperatures above 1000K are encountered. Neglecting the pressure work term in the energy conservation equation, written in temperature form, is a second strong assumption of our previous contribution [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF]. This contribution aims at lifting these two limitations as to make the model fully functional for the simulation of reactive flows, including detailed chemistry description. This is achieved through consideration of the classical thermodynamic closure based on NASA polynomial coefficients [START_REF] Esch | Thermodynamic properties in polynomial form for carbon, hydrogen, nitrogen, and oxygen systems from 300 to 15000 k[END_REF], as used in CHEMKIN [START_REF] Kee | The chemkin thermodynamic data base[END_REF], or CANTERA [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF]. Chemistry is accounted for, through a 12-step mechanism for H 2 -air combustion [START_REF] Boivin | An explicit reduced mechanism for H 2 -air combustion[END_REF] derived from the San Diego mechanism [START_REF] Williams | Chemical-kinetic mechanisms for combustion applications[END_REF]. Each of the nine species is assigned a Schmidt number relating its diffusion property with a temperature-dependent viscosity coefficient. Thermal diffusion is accounted for via a Prandtl number as in [START_REF] Schönfeld | Steady and unsteady flows simulations using the hybrid flow solver avbp[END_REF].

Validation is carried out by comparisons with Cantera computations [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF] in premixed configurations. To further demonstrate the capability of the model, the Darrieus-Landau instability is simulated, and the associated growth-rate is compared with asymptotic descriptions [START_REF] Denet | Numerical study of thermal-diffusive instability of premixed flames[END_REF][START_REF] Denet | A numerical study of premixed flames darrieus-landau instability[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF], showing excellent agreement for the linear onset of the instability.

The paper is organized as follows. First, the LB combustion model is presented, with extensive implementation details. The model is then systematically validated, with results compared to Cantera computations [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF]. Conclusions and future perspectives are then discussed.

A hybrid Lattice Boltzmann combustion model

In line with our initial combustion model proposal [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF], this new contribution consists of a Lattice Boltzmann (LB) solver coupled with a Finite Difference (FD) solver. This Section presents successively the LB solver, responsible for the resolution of mass and momentum conservation, the FD solver, responsible for the resolution of energy and species conservation, and details on their two-way coupling.

Mass and momentum conservation: Lattice Boltzmann approach

The LB solver part is identical to that of our previous contribution [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF], with the exception of data exchanges. The equations and resolution procedure are nonetheless reminded hereafter.

The mass and momentum conservation equations read

       ∂ρ ∂t + ∂ ∂x α (ρu α ) = 0, ∂ρu α ∂t + ∂ ∂x β (ρu α u β ) = - ∂p ∂x α + ∂ ∂x β µ( ∂u α ∂x β + ∂u β ∂x α - 2 3 
∂u γ ∂x γ δ αβ ) , (1) 
where ρ is the local density, u α the velocity vector, p the pressure, µ is the dynamic viscosity and δ αβ is the Kronecker symbol. Computation of the pressure p in (1) requires the choice of a thermodynamic closure. This work considers a multicomponent ideal gas, and the pressure reads

p = ρrT, (2) 
where r = R/W ; R being the gas constant and W the mean molecular weight, obtained as

1/W = k Y k /W k , (3) 
with Y k the k-th component mass fraction, and W k its molecular weight. Instead of these classical variables, Lattice-Boltzmann methods consider the probability density function f (x, c, t) for a particle to be at position x, velocity c and instant t. The n-dimensional velocity space is then discretized into m discrete velocities c iα , forming the standard D n Q m lattice tensor with characteristic velocity c s [START_REF] Mohamad | Lattice Boltzmann method: fundamentals and engineering applications with computer codes[END_REF][START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF]. The macroscopic quantities in lattice units relate with the m probability density functions f i (x α , t) as

ρ = m i=1 f i , ρu α = m i=1 c iα f i . (4) 
Following the Chapman-Enskog technique [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF], one can show the asymptotic equivalence between solving the continuous formulation (1) and solving the Bhatnagar-Gross-Krook (BGK) model [START_REF] Bhatnagar | A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems[END_REF] 

f i (x α + c iα δt, t + δt) -f i (x α , t) = - 1 τ [f i (x α , t) -f eq i (x α , t)] ( 5 
)
where τ is a non-dimensional relaxation time, δt is the time-step and f eq i is the i-th equilibrium distribution function corresponding to the Maxwell-Boltzmann distribution [START_REF] Shan | Kinetic theory representation of hydrodynamics: a way beyond the navier-stokes equation[END_REF], here expanded up to the third-order:

f eq i = ρw i 1 + c iα u α c 2 s + A (2) αβ Q (2) iαβ 2c 4 s + A (3) αβγ Q (3) iαβγ 6c 6 s , A (2) 
αβ = u α u β + (θ -1)c 2 s δ αβ , Q (2) 
iαβ = c iα c iβ -c 2 s δ αβ , A (3) αβγ = u α u β u γ + (θ -1)c 2 s [uδ] αβγ , Q (3) 
iαβγ = c iα c iβ c iγ -c 2 s [cδ] αβγ . (6) 
In the above, [cδ] αβγ = c α δ βγ + c β δ αγ + c γ δ αβ and θ is the non-dimensional temperature

θ = rT c 2 s = RT c 2 s k Y k W k . (7) 
The single relaxation time, required in the resolution of the discrete Boltzmann equation ( 5), can now be defined as

τ = µ ρθc 2 s δt + 1 2 , (8) 
with the viscosity µ being assigned a temperature-dependent value following a power-law

µ = µ 0 T T 0 β . (9) 
Lattice Boltzmann variables can be converted to physical units for length, time, mass and temperature following the same relations as in our previous work [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF]. For instance, δt = δx. cs csp , where c sp is the reference physical sound speed.

Energy and species conservation: finite difference approach

The energy and species conservation are solved through a classical finite difference approach.

As in [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF], the N species conservation equations read

∂Y k ∂t + u α ∂ ∂x α Y k = 1 ρ ∂ ∂x α (-ρV k,α ) + ωk ρ , (10) 
with ωk the chemical source term for species k. In our work, we use one of the simplest models for the species diffusion velocity

V k,α = -D k ∂X k ∂x α W k W + V c α Y k , (11) 
X k being k-th species mole fraction. Note that a more detailed transport model, e.g. [START_REF] Ern | Multicomponent transport algorithms[END_REF][START_REF] Ern | Eglib: A general-purpose fortran library for multicomponent transport property evaluation[END_REF], may be considered instead, should the application require it. The diffusion coefficient D k is defined via a component specific Schmidt number Sc k as a function of the viscosity

D k = µ ρSc k . ( 12 
)
and V c α is the correction velocity [31]

V c α = N k=1 D k ∂X k ∂x α W k W (13)
ensuring the global mass conservation.

As to lift the constant heat capacity C p limitation of [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF], it was found easier to now consider an energy conservation equation (in place of the temperature equation) due to its simpler and arguably more classical form [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]. Among the many energy equations forms [START_REF] Poinsot | Theoretical and numerical combustion[END_REF], we went for the internal energy form (sensible + chemical):

e = N k=1 Y k e k (T ), e k = T T 0 C v,k (T )dT - RT 0 W k + ∆h o f,k , (14) 
associated to the following corresponding energy equation

∂e ∂t + u α ∂e ∂x α = - 1 ρ ∂q α ∂x α + σ αβ ρ ∂u α ∂x β . ( 15 
)
where the viscous and pressure tensors are combined into σ αβ as in [START_REF] Poinsot | Theoretical and numerical combustion[END_REF] 

σ αβ = τ αβ -pδ αβ = -pδ αβ - 2 3 µ ∂u γ ∂x γ δ αβ + µ( ∂u α ∂x β + ∂u β ∂x α ). (16) 
Lastly the heat flux q α reads

q α = -λ ∂T ∂x α + ρ N k=1 h k Y k V k,α , (17) 
where

h k = T T 0 C p,k (T )dT + ∆h o f,k , (18) 
and the thermal conductivity λ is defined as a function of the viscosity and the Prandtl number

λ = µ P r N k=1 Y k C p,k . (19) 
The thermodynamic properties required for the thermodynamic closure are specified in the form of the classical NASA polynomials [START_REF] Esch | Thermodynamic properties in polynomial form for carbon, hydrogen, nitrogen, and oxygen systems from 300 to 15000 k[END_REF] for each species k.

Note that alternative energy conservation equations are indeed equivalent to (15) under continuous form [START_REF] Poinsot | Theoretical and numerical combustion[END_REF], but not necessarily in filtered form. As part of this model's development, it is worth mentioning that we have implemented and tested the conservation equation for sensible energy, i.e. Eq. ( 14) without formation enthalpy ∆h o f,k , without noticeable change regarding the model's validity or numerical stability.

Implementation: two-way coupling between the LB and FD solvers

The implementation of the presented model is rather straight-forward and follows the same logic as in our initial version [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF]. The algorithm flowchart is reminded in Fig. 1,updated to this new version. The idea is that, at every time-step, the FD solver communicates the updated non-dimensional temperature θ to the LB solver, for use in the equilibrium function computation [START_REF] Casalino | Turbofan broadband noise prediction using the lattice boltzmann method[END_REF]. Simultaneously, the LB solver communicates to the FD solver updated values for the density ρ and velocity vector u α .

LB solver specifics

Within a time-step, solving the LB approach can be done directly through [START_REF] Khorrami | Simulation-based airframe noise prediction of a full-scale, full aircraft[END_REF]. Although not required for the test cases presented in the following section, we recommend the use of a source term to correct for the defect of symmetry of the third-order moment on standard lattices, modifying (5) into

f i (x α + c iα δt, t + δt) = f i (x α , t) -1 τ [f i (x α , t) -f eq i (x α , t)] (20) 
+(1 -1 2τ )s i where the external force term s i reads [START_REF] Feng | A three dimensional lattice model for thermal compressible flow on standard lattices[END_REF][START_REF] Feng | A compressible lattice Boltzmann finite volume model for high subsonic and transonic flows on regular lattices[END_REF] 

s i = w i 2c 4 s Q ixx ∂ ∂x [ρu x (1 -θ -u 2 x )] + Q iyy ∂ ∂y [ρu y (1 -θ -u 2 y )] . (21) 
Similarly, inclusion of a regularization step is also recommended [START_REF] Feng | Regularized thermal lattice Boltzmann method for natural convection with large temperature differences[END_REF][START_REF] Jacob | A new hybrid recursive regularised bhatnagargross-krook collision model for lattice boltzmann method-based large eddy simulation[END_REF].

FD solver specifics

The choice of discrete operator for solving the discrete form of Eqs ( 10) and ( 15) is fundamental in the overall model stability. The isotropic finite difference operators [START_REF] Kumar | Isotropic finite-differences[END_REF] are used in the following Section. Regarding temporal integration, forward euler, RK2 and RK4 have been implemented, with no effect on the validation carried out in the next Section. RK2 has our preference in order to keep consistency with the LB solver, which is second-order in time [START_REF] Krüger | The Lattice Boltzmann Method: Principles and Practice[END_REF].

Boundary conditions

The LB inlet boundary is based on the standard bounce back scheme [START_REF] Yu | Improved treatment of the open boundary in the method of lattice boltzmann equation: general description of the method[END_REF]. Alternatively, the LB inlet boundary may be implemented following the regularized non-equilibrium bounce back scheme presented in [START_REF] Malaspinas | General regularized boundary condition for multi-speed lattice Boltzmann models[END_REF]. For the validations carried out in the following Section, the inlet boundary conditions on the FD solver are hard-coded (fixed) for species and energy. Outlet boundary conditions are treated as zero gradient. Periodic or symmetric boundary conditions are used for the walls.

Validation test cases

The hybrid Lattice-Boltzmann combustion model was implemented in the D 2 Q 9 framework, and validation simulations were carried out, in premixed configurations. The reference solutions provided for comparison were obtained with the Cantera software [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF], with use of the same transport and thermodynamic properties.

H 2 -air combustion model Throughout this Section, we consider the 12-step skeletal mechanism for H 2 -air combustion [START_REF] Boivin | An explicit reduced mechanism for H 2 -air combustion[END_REF] derived from the detailed San Diego mechanism [START_REF] Williams | Chemical-kinetic mechanisms for combustion applications[END_REF]. The mechanism, summarized in Table 1, involves eight reacting species, as well as inert N 2 for combustion with air. The associated thermodynamic data was obtained from the San Diego mechanism website [START_REF] Williams | Chemical-kinetic mechanisms for combustion applications[END_REF].

The various parameters required for the computation of the viscosity through [START_REF] Yamamoto | LB simulation on soot combustion in porous media[END_REF] 

f i = f eq i (ρ, u, θ) (Y k , e) ( ρ , u ) θ = f ( Y k , T ) ( 7 ) 
Figure 1: The algorithm proposed consists of a Lattice-Boltzmann (LB) solver coupled with a classical Finite Differences (FD) solver. Data exchanges between the two solvers are clearly identified.

Table 1: The 12-step skeletal mechanism for the combustion of H 2 -air [START_REF] Boivin | An explicit reduced mechanism for H 2 -air combustion[END_REF]. Up-to-date rates are available [START_REF] Williams | Chemical-kinetic mechanisms for combustion applications[END_REF].

1 H + O 2 ⇋ OH + O 7 HO 2 + OH → H 2 O + O 2 2 H 2 + O ⇋ OH + H 8 H + OH + M ⇋ H 2 O + M 3 H 2 + OH ⇋ H 2 O + H 9 2 H + M ⇋ H 2 + M 4 H + O 2 + M → HO 2 + M 10 2 HO 2 → H 2 O 2 + O 2 5 HO 2 + H → 2 OH 11 HO 2 + H 2 → H 2 O 2 + H 6 HO 2 + H ⇋ H 2 + O 2 12 H 2 O 2 + M → 2 OH + M
species [START_REF] Sun | A diffuse interface method for simulating the dynamics of premixed flames[END_REF] and heat [START_REF] Williams | Chemical-kinetic mechanisms for combustion applications[END_REF] diffusion properties are those recommended in Cerfacs' database [START_REF]Cerfacs online database for cantera[END_REF] and validated for this mechanism. They are reported in Table 2. 

1D freely propagating flame

Let us now consider the standard freely propagating flame configuration, following the same setup as in [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF]. The computational domain is pseudo one-dimensional of length L, with a height corresponding to three cells and grid size of 1.0×10 -5 m. At the left of the domain, the velocity is set to an arbitrary value U f , and the right boundary is left open (zero gradient). Periodic boundary conditions are applied to the top and bottom limits. The inital conditions, reported in Table 3, consists of two half-domains with a sharp transition at L/2. The left hand-side of the domain corresponds to the fresh gases, whereas the right hand-side corresponds to the burnt gases initialized at the corresponding thermochemical equilibrium, computed with Cantera [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF]. As in our previous contribution [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF], we measure the flame speed as

S L = U f - ρ f U f -ρ b U b ρ f -ρ b , (22) 
where the subscript f represents fresh and b burnt state of the gases, respectively the first and last cell of the computational domain. History of this expression ( 22) is monitored until convergence to the flame velocity [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF].

The results obtained are compared with Cantera reference computations in Fig. 2.a. The temperature and mass fractions profiles show an excellent agreement, including for the minor species H and HO 2 , whose profiles in the flame appear indistinguishable from the reference. The equivalence ratio of the fresh gases was then modified as to obtain Fig. 2.b, again showing an excellent agreement for the flame velocity as a function of the equivalence ratio. 

2D Darrieus-Landau instability

To conclude the validation of our model, let us study the intrinsic instability of the premixed flame presented in previous sub-section. The pseudo one-dimensional computational domain is now extended to a fully two-dimensional domain with grid size of 1.11 × 10 -5 m. At t = 0, the 2D domain is initialized with the profiles obtained from the 1D computation reported in Fig. 2.a. The front position, defined as the maximum temperature gradient position is then perturbed with a wavenumber (k) of 600m -1 . The evolution of the front position is reported in Fig. 3.a. It is interesting to note that the evolution produces the expected behavior, a) and that the coupling between the LB and FD solvers is robust to more complex flame front shapes. Note that increased stability has been obtained through regularization of the collision operator [START_REF] Malaspinas | General regularized boundary condition for multi-speed lattice Boltzmann models[END_REF]. Figure 3.b concludes the validation of the model by comparing the growth rate in the linear regime with the analytical solution [START_REF] Denet | Numerical study of thermal-diffusive instability of premixed flames[END_REF][START_REF] Denet | A numerical study of premixed flames darrieus-landau instability[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF]. As expected, the amplitude of the perturbation A grows exponentially from its initial value A 0 according to

A = A 0 e ωt , (23) 
with ω the perturbation growth rate. Theory indicates that, in the linear regime [START_REF] Denet | Numerical study of thermal-diffusive instability of premixed flames[END_REF][START_REF] Denet | A numerical study of premixed flames darrieus-landau instability[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF],

ω = S L k -σ + √ σ 3 + σ 2 -σ σ + 1 , (24) 
with k the wave number and σ = ρ f /ρ b = 6.822 the ratio between the fresh and burnt gases density.

Concluding remarks

A new hybrid Lattice-Boltzmann model for the simulation of reactive flows has been presented. Mass and momentum conservation are addressed within a Lattice-Boltzmann solver, whereas the energy conservation is addressed via a classical finite difference solver. Major improvements from our initial proposal [START_REF] Feng | A lattice-boltzmann model for low-mach reactive flows[END_REF] include the consideration of detailed kinetics and a more complete thermodynamic closure, where the species thermodynamic properties are set individually via the classical NASA polynomials.

Heat and molecular diffusion are also accounted for via introduction of Prandtl and Schimdt numbers, related to a user-specified temperature-dependent viscosity coefficient. Validation of the model was carried out based on a 1D planar freely propagating flame test case and a 2D simulation of the Darrieus-Landau thermo-diffusive intrinsic instability.

Future work will include application of the model to more complex, three-dimensional configurations.
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 12 Figure 2: Freely propagating flame: a) Temperature profile (thick line), H 2 (△), O 2 (▽), H 2 O ( * ), H ( ), HO 2 (•) mass fractions. Fresh gases are in stoichiometric proportion, at 300K and atmospheric pressure. b) Variation with equivalence ratio of the corresponding flame speed. Cantera reference (plain line), and present model (red dashed line).
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 3 Figure 3: 2-D Darrieus Landau instability. a) Representation of the expansion with interval δt = 1.111 10 -4 s and k = 600m -1 . The front is initially at x ≈4.5mm. The vertical line marks the end of the linear regime depicted in plot b. b) Comparison of analytical (plain line) and simulated growth rate (dashed line) in the linear region delimited ending at the vertical line in plot a.

Table 2 :

 2 Power-law's viscosity coefficients (SI units), Prandtl number and Schmidt numbers for each species of the 12-step mechanism. Sc H 2 O 0.6000 Sc HO 2 0.8000 Sc H 2 O 2 0.8200 Sc N 2 1.0000

	µ 0 P r	1.8405 × 10 -5 0.7500	β Sc H 2 0.2100 0.6759
	Sc H	0.1400	Sc O 2 0.8000
	Sc OH 0.5300	Sc O 0.5300

Table 3 :

 3 Initial conditions: 1-D domain is initialized with fresh gases corresponding to (0 : L/2) and burnt gases (L/2 : L)

	V ariables 0 : L/2	L/2 : L
	T	300.000 K	2385.000 K
	p	1.000 atm	1.000 atm
	u	0.000	0.000
	Y H 2 Y H Y O 2 Y OH Y O Y H 2 O Y HO 2 Y H 2 O 2 Y N 2	2.852 × 10 -2 1.145 × 10 -3 0.000 6.983 × 10 -5 2.264 × 10 -1 7.474 × 10 -3 0.000 5.458 × 10 -3 0.000 3.838 × 10 -4 0.000 2.403 × 10 -1 0.000 1.074 × 10 -6 0.000 1.444 × 10 -10 7.451 × 10 -1 7.451 × 10 -1
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