
Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22355

Official URL

DOI : https://doi.org/10.5220/0006789903760382

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Saidi, Imad Eddine and El Hamlaoui,
Mahmoud and Dkaki, Taoufiq and Zarour, Nacer Eddine and Charrel,
Pierre-Jean Translation of Heterogenous Requirements Meta-Models
Through a Pivot Meta-Model. (2018) In: International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE),
23 March 2018 - 24 March 2018 (Madeira, Portugal).

Translation of Heterogeneous Requirements Meta-Models Through a
Pivot Meta-Model

Imed Eddine Saidi1, Mahmoud El Hamlaoui2, Taoufiq Dkaki1,
Nacer Eddine Zarour3 and Pierre-Jean Charrel1

1IRIT Laboratory, University of Toulouse-Jean Jaurès, Toulouse, France
2IMS-ADMIR Laboratory, ENSIAS, Rabat IT Center, Mohammed V University in Rabat, Rabat, Morocco

3LIRE Laboratory, University Constantine 2, Constantine, Algeria

Keywords: Requirements Engineering, Pivot Model, Translation, Interoperability.

Abstract: Companies use these different approaches to elicit, specify, analyse and validate their requirements in
different contexts. The globalization and the rapid development of information technologies sometimes
require companies to work together in order to achieve common objectives as quickly as possible. We
propose a Unified Requirements Engineering meta-model (UREM) that allows cooperation in the
requirements engineering process between heterogeneous RE (Requirement Engineering) models. In this
paper, we explore UREM as a pivot meta-model to ensure interoperability between heterogeneous RE
models.

1 INTRODUCTION

stakeholders in this stage a difficult activity due to
the heterogeneity of these approaches. The aim
of this paper is to propose a solution which
allows companies that use different kinds of RE
approaches to cooperate without forcing companies
to migrate to a unique approach which is very
time and cost consuming.

Bendjenna, (Bendjenna and al., 2010)
has proposed an integrated approach MAMIE
which combines different kinds of concepts: goal,
scenario and viewpoint in order to allow cooperation
between companies. In i* approach, there exists
different variations for particulars usages. Carlos
(Carlos and al., 2011) has defined super meta-
model hosting identified variations of i* and
implementing a translation algorithm between
these different variations oriented to semantic
preservation. Our work intends to be a
combination between the two works. We propose
an abstract meta-model which allows cooperation
and translation of information between different
kinds of RE approaches.

This paper is organized in six sections. In
section two, we present requirements
engineering meta-models. In section three, we
present the idea behind the unified meta-model
and in section four, we present our unified
meta-model UREM. In section five, we deduct
translation rules between concepts.

1 INTRODUCTION

The globalization and the rapid
development of information technologies
require that nowadays systems and
organizations cooperate with each other.
Many research works have emerged to
support this cooperation which gave birth
to the Cooperative Information Systems
(CIS) in order to deal with the problem of
heterogeneity at all levels of software
development lifecycle. Most of the work focuses
on the architectural (conceptual) level
of software projects. Very little work focuses on
the most abstract level (early stage) of
the software development lifecycle namely
the requirements engineering (RE); which aims
to describe and manage upstream phases
of software projects. This does not mean that
there are no problems in this stage of RE
when it comes to inter-company cooperation.
It should be noted that one of the reasons
affecting the failure of software projects is the
bad definition of requirements. Hence, focusing
on requirements engineering becomes gradually
one of the most important concerns in the
software development lifecycle. This has
resulted in the emergence of different
kinds of requirements engineering
approaches such as goal, viewpoint, and scenario
oriented approaches. This variety of RE
approaches makes cooperation among
companies

In section five, we illustrate a simple example of
translation between RE models. Finally, we
conclude and draw perspectives of this paper.

2 REQUIREMENTS
ENGINEERING
META-MODELS

In requirements engineering, different models exist
and each model is composed of a set of concepts,
these approaches are commonly grouped in three
groups. In this section, we draw the meta-model of
what we believe is the most widely approach of each
group or type. We explore respectively the meta-
model of i* as a goal oriented approach, PREview as
a viewpoint oriented approach and CREWS as a
scenario oriented approach. Most of the concepts in
the following meta-models share two common
attributes: ID and Name. Intuitively, each concept
has a name. The attribute ID is added in order to
keep a trace (index) to each instance of each
concept. Figure 1 illustrates the meta-model of i*
according to the description given in (Castro and al.,
2011).

Figure 1: i* meta-model.

In i*, Actors depend on each other through four
intentional elements: Task, Goal, SoftGoal and
Resource. An Actor can be an Agent which occupies
a certain position. Each position covers a set of
Roles. The Task concept can be decomposed into a
set of intentional elements: Sub-Tasks, Sub-Goals,
Sub-SoftGoals and Resources. A soft goal can
contribute positively or negatively to the
achievement of one or more goals.

Figure 2 illustrates the meta-model of PREview
(Sommerville and al., 1997).

Figure 2: PREview meta-model.

PREview is a viewpoint-oriented approach where
each viewpoint has a Focus, a Name, and a Type and
is composed of a set of concerns, sources,
requirements and history which aims to ensure the
traceability of the focus, requirements and sources of
information. We can observe the attribute Version in
the three classes that represent the history concept.
Figure 3 illustrates the meta-model of CREWS as
described in (Sutcliffe and al, 1998).

Figure 3: CREWS meta-model.

CREWS is a scenario oriented approach starting by
defining use cases of the problem to be solved. Each
use case can generate one or more scenarios
knowing that each scenario is a sequence of events.
Many agents can participate to a use case and
involve one or more actions. Actions are inter-
connected through eight types of links. An action
can use an object and can change its state through a
state transition.

3 INTEROPERABILITY OF
HETEROGENEOUS MODELS

Conceptually, the interoperability of heterogeneous
models can be performed either directly without

between redundant code detection tools and SVG
(Scalable Vector Graphics) model.

The use of pivot as an intermediate model makes
it easy to centralize and optimize the data format in
order to represent the input models in the same
formalism. The interoperability process is thus
simplified and can continue with less complexity.

In the next section we explore our Pivot model
(UREM) which is proposed to perform translation
between different RE models.

4 UNIFIED REQUIREMENTS
ENGINEERING META-MODEL

UREM is an intermediary of communication and
information translation between different types of
RE models. RE models are instances of different
types of RE meta-Models where each meta-Model is
composed of a set of concepts.

The idea behind the pivot UREM is to create a
new meta-Model which is composed of a set of
classes where each class is an abstraction of a set of
concepts (similar concepts) that exist in different RE
meta-models. To find abstractions between RE
concepts, we have adopted a rigorous process that is
concerned with the meaning of concepts (Semantic
Process). Our process is based on WordNet (George,
1995) to find semantic relationships and similarities
between words which represent RE concepts (words
are the only thing that we get to apprehend RE
concepts).

Our aim is to perform cooperation between
different types of approaches. In the unification
process, we have chosen one approach from each
type of RE approaches in order to achieve our goal,
regardless of the RE approach chosen, our
unification process is applicable to various other
approaches. In this paper, we deal with approaches
that are widely used: i* (Castro and al., 2011) as
goal oriented approach, CREWS (Sutcliffe and al,
1998) as scenario oriented approach and PREview
(Sommerville and al., 1997) as viewpoint oriented
approach.

The following sub-sections give us an overview
of the unification process.

4.1 Concepts Categorization

The first step of the unification process is to
categorize all concepts of the three RE approaches
mentioned above under two categories:

intermediate transformation or after a transformation
tin order to express models within the same "pivot"
language. A pivot model is a model used as an
intermediate representation to align the input models
to the same formalism.

The concept of a pivot model has been
introduced in several research areas related to the
model-driven engineering especially in taking into
account the interoperability. Commonly, the term
“pivot” means the point of rotation in a lever system.
It is also the term used to describe an interpreter who
translates a low level language “Maltese” (national
language of Malta) to a language (e.g : English). The
translated text is then used as a source of translation
for other languages (Beleg and al., 2009).

One of the first uses of the term “pivot” in
Computer Science referred to the quicksort
algorithm numbers (quicksort). The algorithm
consists in choosing a number (called pivot) from a
list of disordered numbers and switch all the
elements, so that all those who have a lower value to
the pivot are placed to the left and all those who a
higher value on his right.

Milanovic introduced in (Milanovic and al.,
2009): R2ML (Rewerse Rule Markup Language), a
pivot meta-model for bidirectional alignment taking
into account in one hand the ontologies that are the
backbone of the semantic web and in the other hand
MDA concepts. In the field of ontologies, central
area of the Semantic Web, the models are described
by OWL (Ontology Web Language) and SWRL
language (Semantic Web Rule Language) for
expressing validation rules for the semantic web.
Whereas in the field MDA, models are described in
UML with OCL as constraints expression language.
Thus models expressed in UML / OCL can be
exploited in the field of semantic web by translating
them into OWL/SWRL models and vice versa
through neutral model: R2ML.

Similarly Sun and al. in (Yu Sun and al., 2009)
have defined a pivot model. Many tools according to
them are developed to automatically detect
redundant codes in a program and represent them
into appropriate statistics. The problem is that each
of these tools has a different representation of the
obtained result which gives the integrator a hard task
to know each of these representations in order to act
on the portion of the appropriate program.

The idea presented is to provide a common
graphical representation in SVG. This is achieved by
defining a meta-model pivot GCC (Generic Code
Clone) that contains common concepts and
characteristics of redundant code blocks detection
tools. This meta-model will serves as (intermediate)

 Concepts of category one: the most of these
concepts are represented as one word and we
can get directly the definition and the different
semantic relationships between them from
WordNet;

 Concepts of category two: the most of these
concepts are composed of more than one
word and we cannot get directly the
definition and the different semantic
relationships between them from WordNet.

We adopt an incremental process in order to
create the unified meta-model UREM. We start with
concepts of category one. Next, we use results of
category one to complete the unification process
with the concepts of the second category and
conclude UREM.

4.2 Dealing with Concepts of Category
One

The algorithm of unification of this category of
concepts is composed of two steps:

4.2.1 Semantic Relatedness and Word Sense
Disambiguation (WSD)

In English language, a word can have more than one
sense that can lead to ambiguity. Disambiguation is
the process of finding out the most appropriate sense
of a word (concept) that is used in a given context.

The Lesk algorithm (Lesk, M., 1986) uses
dictionary definitions (gloss) to disambiguate a
polysemous word in a sentence context. The idea of
the algorithm is to count the number of words that
are shared between the two glosses. The more
overlapping (overlap scoring) the words, the more
related the senses are. We have used an adapted
version of Lesk (Satanjeev B., and al., 2002) which
uses WordNet to access a dictionary with senses
arranged in a hierarchical order. This extended
version uses not only the gloss/definition of the
synset, but also considers the meaning of related
words.

4.2.2 Least Common Hypernym and
Semantic Similarity between Two
Senses

In this step we look up using WordNet the least
common hypernym (LCH) for each pair of this
category of concepts using appropriate senses
that are previously assigned. Hyponymy is a ‘kind
of’ relation, for example: tree is a kind of plant, tree

is a hyponym of plant and plant is a hypernym
(abstraction) of tree. We treat the taxonomy of
hyponymy as a tree TH. Once all trees are built, we
establish connections between all LCH. These LCH
are the set of abstraction concepts used in UREM.

4.3 Dealing with Concepts of Category
Two

In this step, we use results obtained from the
previous step to conclude the unified requirements
engineering meta-model UREM. We are aware that
where exist a common hypernym between two
concepts, there exist a path between them in the tree
TH. The shorter path from the first concept to the
second, the more similar they are. Regarding this
category of concepts, we compute similarity scores
between concepts by comparing text definitions for
each pair of them with LCH elements that are
archived in the previous step. The resulted meta-
model UREM is shown in figure below.

Figure 4: Unified Requirements Engineering meta-model.

Each abstract concept in UREM covers a set of RE
concepts that exist in different RE models,
proceeding from UREM, we are looking for all
correspondences between RE concepts of the three
meta-models. These correspondences will be used to
translate a source concept CS of a source model MS
to a target concept CT of a target model MT. In one
hand, we can say that the whole set of all possible
RE concepts can be in the same correspondence at a
certain abstraction because all UREM concepts are
related through inheritance relationship knowing that
each instance of a class in object oriented design can
be an instance of its parent class according to the
Liskov Substitution Principle [6]. In the other hand,

we care more about details when performing
translation in order to maximize the quantity of
information to be translated among concepts. Each
correspondence should have at least one concept for
each approach (i*, CREWS or PREview) to ensure
that all concepts in all approaches can be translated
to other concepts in the remaining approaches. We
define correspondences from the most detailed
concept in UREM to the most abstract by relating
each abstract concept to its parent until getting at
least one concept for each approach in the
correspondence. The result is given in the following
correspondences:

• Corresponence 1 = {Scenario, Object
(CREWS) , Goal (CREWS,i*), SoftGoal
(i*), Viewpoint, History, Name, Source
(PREview)}

• Correspondence 2= {Task(i*), Action,
Event, StructureObject (CREWS),
Requirements (PREview)}

• Correspondence 3={UseCase, State, Agent,
StateTransition (CREWS), Concern, Focus
(PREview),Resource, Actor (i*)}

Concepts in the same correspondence which share
the same abstraction are more similar to each other
than the rest of concepts in the same
correspondence. This important point is proportional
for the information to be translated among concepts.

5 DEDUCTION OF
TRANSLATION RULES FROM
UREM

Translation. The following sub-sections describe
each type of translation.

5.1 Direct Translation

This type of translation is used if the source concept
cS of a model M1 and the target concept c2 of a
model M2 share the same abstraction cG in UREM.
To perform translation from the source concept to
the target concept, we check the abstraction of the
source concept then create the target concept by
implementing the abstraction cG in two steps: Copy
shared attributes to the target concept and then
translate the rest of attributes one by one.

For example, the concept Resource in an
instance of i* meta-model share the same abstraction
Quality in UREM with the concept Concern of a
PREview model then Resource concept must be
translated to a Concern in PREview model and vice
versa.

5.2 Inheritance Translation

This type of translation is used if a source concept cS
of a model MS can’t be translated to any target
concept cT of model MT using Direct Translation. In
this type of translation, we check classes that are
linked to the abstraction cG of the source concept in
order to find the abstraction of a target concept c2.
Since we care more about details of concepts, we
check first child classes of cG. If no abstraction of a
target concept is founded, we check parent classes
(abstractions of cG). If no abstraction of a target
concept is founded then the source concept cS can’t
be translated to a target concept cG.

Figure 5: Activity diagram of translation between
requirements engineering concepts.

For example, to perform translation from a
Requirement of a PREview model to other concept
in i* model. We observe that Requirement doesn’t

In this section, we deduct translation rules from
UREM illustrated in figure one. We observe in
figure one a list of concepts of different RE meta-
models near each class of UREM. So, each class
covers a set of concepts and plays the role of a pivot
between these concepts. Proceeding from UREM,
we are looking to find for each source concept cS of
model MS, a target concept or a set of target
concepts cT of model MT. We perform two-way
translation between two given models M1 and M2,
first from M1 to M2 then we translate each not-
translated concept of M2 to a target concept of M2.
Two-way translation allows us to ensure that we
have applied translation on all concepts of all
different RE models.
We conclude two types of translation between
concepts: Direct Translation and Inheritance

share an abstraction which is Event with any
concepts of i*. Thus, we look up child classes of
Event class level by level. We find that the child
class Work of Event covers the concept Task in i*
then, when we perform translation from a PREview
model to an i* model, the concept Requirement of
PREview must be translated to the concept Task of
i* and vice versa.

The activity diagram which describes the overall
process of finding translation between concepts is
shown in the figure 5.

6 EXAMPLE OF CONCEPTS
TRANSLATION

The following example is just a simple illustration
of concepts translation between different RE
models in the development of a simple batch
payroll system. A complete case study and
translation between concepts in details will be in a
future work.

CREWS, i* and PREview approaches are used in
order to create a requirements specification of the
desired system. One of the concepts specified in
i* model is the goal ‘employee payment’. To
translate i* model to PREview model, the goal
‘employee payment’ will be translated to Viewpoint,
History, Name and Source concepts as shown in
figure 3.

To translate the goal ‘employee payment’ of an
i* model, we perform the following steps:

 Create an abstraction of type content of the
goal;

 Create the abstraction Knowledge of Content;

 Implement Knowledge by creating three
classes of concepts: Viewpoint, Source and
History. The concept Name is an attribute of
the Viewpoint class and represents the
identifier of the given viewpoint.

Figure below gives us a simple view of
translation from Goal to Viewpoint, History, Name
and Source concepts and does not give a lot of
details of attributes translation.

Figure 6: Translaton of goal concept in i* model to
PREview concepts.

For each employee, there exists a payment
viewpoint associated to this employee. This
viewpoint encapsulates information about the
payment such as: payment type (Hourly, Salaried,
etc.), amount and so on. History class contains a list
of payment records that have been carried out.
Source class represents the money used to pay
employees.

7 CONCLUSION

This paper has presented a unified requirements
engineering meta-model that is resulted from a
semantic unification process of different
requirements engineering meta-models. The
unification process is based on finding semantic
similarities between different concepts that already
exist in different types of requirements engineering
meta-models. The aim of the unified requirements
engineering meta-model UREM as mentioned in
section two and three is to perform translation
between different types of requirements engineering
models in order to allow cooperation between
companies that have different cultures and use
different kinds of Requirements Engineering
approaches. The translation rules are deducted in
section four directly from the unified meta-model
UREM. One of the gaps of these translation rules is
the lack of concrete semantic translation at attributes
level of concepts. We seek to fix this issue of
semantic translation between concepts in a future
work. We seek also to demonstrate other features of
UREM such as evolution and composition.
Evolution is how UREM is easy to update and
maintain. Composition is how to compose a full
requirements specification document of a project

from different pieces of requirements specifications
arisen from different models. Afterward, we are
looking to implement a visualization tool in order to
present and illustrate the translation operation
between models as graphs.

REFERENCES

Sommerville, I., Sawyer, P., 1997. Requirements
Engineering: A Good Practice Guide. John Wiley &
Sons, Inc. New York, NY, USA. ISBN: 0471974447.

Bendjenna, H., Zarour, N.E., Charrel, P.J., 2010. Eliciting
Requirements for an inter-company cooperative
information System. Journal of Systems and
Information Technology (JSIT).

Cares, C., Franch, X., 2011. A Metamodelling Approach
for i* Model Translations. 23rd International
Conference, CAiSE 2011.

Beleg, G. Design and prototypical implementation of a
pivot model as exchange format for models and
metamodels in a qvt/ocl development environment.
Ph.thesis, Université de technology Dresden, 2007.

Milanovic, M., Gaševic, D., Giurca, A., Wagner, G., and
Devedžic, V. On interchanging between owl/swrl and
uml/ocl. In Proceedings of 6th Workshop on OCL for
(Meta-) Models in Multiple Application Domains
(OCLApps) at the 9th ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems (MoDELS), Genoa, Italy, pages 81–95,
2006.

Zekai, Y. S., Jouault, F., Tairas, R. and Gray, J. Software
language engineering. A Model Engineering Approach
to Tool Interoperability, pages 178–187. Springer, 2009.

Saidi, I. E., Dkaki, T., Zarour, N. E., Charrel, P. J., 2012.
Towards Unifying Existing Requirements Engineering
Approaches into a Unified Model. KMIS 2012: 311-
315.

George, A. M., 1995. WordNet: A Lexical Database for
English, Communications of the ACM. Vol. 38, pp. 39-
41

Castro, J., 2011. Goal Oriented Requirements Engineering
i*, Fifth International Conference on Research
Challenges in Information Science.

Sutcliffe, A. G, Maiden N., Shailey, M., Darrel, M.,
1998. Supporting Scenario-Based Requirements
Engineering, IEEE Transactions on software
engineering, vol. 24, No. 12.

Sommerville, I., Sawyer, P., 1997. Viewpoints: principles,
problems and a practical approach to requirements
engineering. Computing Department, Lancaster
University, UK, Annals of Software Engineering.

Lesk, M., 1986. Automatic sense disambiguation using
machine readable dictionaries: how to tell a pine cone.

Satanjeev B., Ted P., 2002. An Adapted Lesk Algorithm
for Word Sense Disambiguation Using WordNet,
Computational Linguistics and Intelligent Text
Processing Lecture Notes in Computer Science
Volume 2276, 2002, pp 136-14.

