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ABSTRACT

Supervised classification and spectral unmixing are two methods to

extract information from hyperspectral images. However, despite

their complementarity, they have been scarcely considered jointly.

This paper presents a new hierarchical Bayesian model to perform

simultaneously both analysis in order to ensure that they benefit from

each other. A linear mixture model is proposed to described the pixel

measurements. Then a clustering is performed to identify groups

of statistically similar abundance vectors. A Markov random field

(MRF) is used as prior for the corresponding cluster labels. It pro-

motes a spatial regularization through a Potts-Markov potential and

also includes a local potential induced by the classification. Finally,

the classification exploits a set of possibly corrupted labeled data

provided by the end-user. Model parameters are estimated thanks to

a Markov chain Monte Carlo (MCMC) algorithm. The interest of

the proposed model is illustrated on synthetic and real data.

Index Terms— Bayesian model, Markov random Field, super-

vised learning, image interpretation.

1. INTRODUCTION

Hyperspectral images are mainly interpreted via two widely used

techniques, namely spectral unmixing (SU) and classification. SU

aims at retrieving elementary components (referred to as endmem-

bers) present in the image and the corresponding proportions within

each pixel [1]. Conversely, classification assigns a unique label to

each pixel using a predetermined nomenclature [2]. Both analysis

own distinct advantages making them complementary. In particular,

unmixing is an unsupervised subpixel analysis relying on physical

descriptions of the observations [1, 3, 4]. To the contrary, supervised

classification provides a semantic description of the hyperspectral

image relying on external labeled data. Classification methods are

extensively used to interpret remote sensing images and in particular

hyperspectral images because of the multitude of available methods

and the quality of their results [5–8]. Despite its potential interest in

hyperspectral image analysis, the joint exploitation of the high-level

(classification) and low-level (unmixing) approaches has been barely

proposed [9, 10]. This paper proposes to fill this gap.

In [11], the authors proposed a Bayesian model as well as a

corresponding algorithm to perform unmixing and spatial cluster-

ing according to the homogeneity of abundance vectors, which is

a property also exploited recently in [12]. This paper extends this

approach to handle the availability of a set of labeled data, akin to

any conventional supervised framework which allows end-user to

provide a set of labeled pixels. More precisely, the spectral-spatial

Par of this work has been supported Centre National d’Études Spatiales
(CNES) and Occitanie region.

clustering proposed in [11] is enriched to be also informed by the

classification step. Moreover, since the classification step is recip-

rocally informed by the clustering, this model allows errors in the

ground-truth labels to be identified and corrected. Indeed, label mis-

takes in user-provided labeled data is a well known issue when con-

ducting supervised classification since they can impair the training

process [13, 14]. By exploiting both labeled data and clustering, the

robustness to labeling errors of the obtained classifier is improved, as

illustrated in [15]. The resulting Bayesian model allows abundance

vectors, clustering label and classification labels to be estimated si-

multaneously. Consequently, the proposed algorithm produces a hi-

erarchical description of the hyperspectral image in terms of unmix-

ing, spectral-spatial segmentation and thematic classification.

The paper is organized as follows. Section 2 presents the model

and more particularly develops the strategy to handle the unmixing,

clustering and classification tasks jointly. A Markov chain Monte

Carlo (MCMC) method is derived in Section 3 to sample according

to the posterior of interest. Section 4 shows the results obtained on

synthetic and real data. Conclusion is reported in Section 5.

2. FROM UNMIXING TO CLASSIFICATION

2.1. Problem statement

This work aims at performing the unmixing and classification of

an hyperspectral image composed of P pixel spectra yp ∈ R
D

(p ∈ P , {1, . . . , P}) which are measured in D spectral bands.

The R endmembers M = [m1, . . . ,mR] associated to elementary

components of the mixing are assumed to be known. Two main

quantities will be estimated: an abundance map A = [a1, . . . ,aP ]
and a classification map ω = [ω1, . . . , ωP ], where ap is the abun-

dance vector associated to the pth pixel and ωp ∈ J , {1, . . . , J}
is the classification label relating this pixel to a particular semantic

class, with J the number of classes. Each pixel is also characterized

by a cluster label zp ∈ K , {1, . . . ,K} assigning this pixel to a

group of homogeneous pixels. To reflect possible heterogeneity of

the semantic class, each class is assumed to contain one or several

clusters. Within a traditional supervised classification context, a par-

tial ground-truth map of the image is provided as a training set. For-

mally, a subset of the P pixels is assigned class labels cp ∈ J . These

labels are assumed to be potentially corrupted, e.g., due to some mis-

classification by the end-user. In the following, L ⊂ P stands for

the set of indexes of this subset of labeled pixels and, conversely,

U = P\L denotes the set of indexes of the remaining (i.e., non-

labeled) pixels. The hierarchical Bayesian model described hereafter

is derived to perform the low-level (e.g., unmixing) and high-level

(e.g., classification) tasks jointly, while simultaneously exploiting

the high-level external information cL , {cp, p ∈ L}. This model,

represented in Fig. 1, is detailed in the following paragraphs.



Y

s2

δ

M

A

Σ ψ

z

β1 Q

ω

β2 η cL

Observations Unmixing Clustering Classification

Fig. 1: Directed acyclic graph of the proposed model.

2.2. Bayesian hierarchical model

Mixing model – Following the conventional linear mixing model

[1], each pixel of the observed hyperspectral image is described as a

linear combination of R endmembers corrupted by an additive noise

yp = Map + np (1)

where np is the noise associated to the pth pixel, assumed to be white

and Gaussian, i.e., np|s
2 ∼ N (0D, s2ID), with ID the D × D

identity matrix and 0D the D-dimensional zero vector. It is worth

noting that the proposed model can be easily adapted to handle non-

whiteness or even non-Gaussian noises. Following the approach pro-

posed by [11], a conjugate inverse-gamma distribution and a non-

informative Jeffreys prior are used as a prior distributions for the

noise variance s2 and the associated hyperparameter

s
2|δ ∼ IG(1, δ), p(δ) ∝

1

δ
✶R+(δ) (2)

where ∝ means proportional to and ✶R+(·) is the indicator function

on R
+. These choices ensure a straightforward estimation of the

noise parameters. The observation model is then complemented

by clustering and classification models described in the following

sections.

Clustering model – As a bridge between the low-level task (i.e.

unmixing) and the high-level task (i.e. classification), an additional

clustering step is introduced in the model. More precisely, capital-

izing on [11], the hyperspectral pixels are assumed to belong to K
distinct clusters. To identify this belonging, each pixel is assigned

a cluster label zp ∈ K , {1, . . . ,K}. Within a given cluster, the

pixels are assumed to share common statistical behavior, i.e., abun-

dance vectors are assumed to be characterized by identical 1st and

2nd order moments, justifying the following a priori distribution

ap|zp = k,ψk,Σk ∼ N (ψk,Σk). (3)

In this work, the mean vector ψk and covariance matrice Σk are

assumed to be unknown and are also included within the Bayesian

model to be estimated. Thus, as unknown parameters, they are also

assigned prior distributions. First, Dirichlet distributions are chosen

as priors for ψk (k ∈ K)

ψk,r ∼ Dir(1). (4)

This choice allows the positivity and sum-to-one constraints clas-

sically used in SU to be imposed on the mean behavior of the

abundance vectors. The Σk covariance matrix is chosen as Σk =
diag(σ2

k,1, . . . , σ
2
k,R) and conjugate inverse-gamma a priori distri-

butions are assigned to the variance σ2
k,r , assumed to be a priori

independent
σ
2
k,r ∼ IG(aσ, bσ) (5)

where aσ = 1 and bσ = 0.01 are chosen to define non-informative

priors.

One of the main contributions of the proposed model lies in the

prior model designed for the cluster labels z = [z1, . . . , zP ]. A

non-homogeneous MRF [16] is designed to promote two behaviors,

namely, spatial coherence of the clustering and consistency between

clusters and classes. This non-homogeneous MRF is composed

of two terms, each associated with one of this behavior. Firstly,

as in [11], a Potts-Markov potential [17] of granularity parameter

β1 is employed to promote spatial regularity of the cluster labels.

Secondly, a local potential is introduced to promote coherence be-

tween cluster labels z and classification labels ω. This potential

is parametrized by a K × J interaction matrix Q. Thus, the prior

conditional probability of zp is defined as follows

P[zp = k|zV(p), ωp, qk,ωp ] ∝

exp



V1(k, ωp, qk,ωp) +
∑

p′∈V(p)

V2(k, zp′)



 (6)

where V(p) stands for the set of indexes of pixels neighboring the

pth pixel (a conventional 4-neighbor structure in our case) and qk,j
is the kth component of the jth column of Q. The two terms V1(·)
and V2(·) are the potential of coherence with classification and the

Potts-Markov potential defined by, respectively,

V1(k, j, qk,j) = log(qk,j)

V2(k, zp′) = β1δ(k, zp′)

with δ(·, ·) the Kronecker function. The matrix Q gathers a set of

coefficients that encodes the relation of each pair (k, j) ∈ K×J of

cluster and classification labels. More precisely, a high value of qk,j
promotes the assignation, for a given pixel of class label ωp = j,

a cluster label zp = k. More generally, the coefficients defining a

given column of Q provide an implicit description of a given class

in terms of cluster contributions. Thus, Dirichlet distribution is as-

signed as a prior for each column qj of Q assumed to be independent

qj ∼ Dir(1). (7)

It is worth noting that, in the special case where β = 0 (i.e., no

spatial regularization is imposed on the cluster labels), the choice of

this Dirichlet distribution leads to the following posterior conditional

distribution

qj |z,ω ∼ Dir(n1,j + 1, . . . , nK,j + 1) (8)

where nk,j = #{p|zp = k, ωp = j} is the number of pixels be-

longing to cluster k and class j. In particular, the posterior mean

of qk,j can be written as E [qk,j |z,ω] =
nk,j+1

∑
K
i=1

ni,k+K
which is an

empirical estimator of P [zp = k|ωp = j].

Robust classification model – The prior probabilities for the classi-

fication labelsω are defined similarly to the prior probabilities of the

cluster labels z defined in the previous paragraph. Two potentials are

tailored to define an appropriate non-homogeneous MRF as a prior

model for the ω. The first potential is a spatial regularization simi-

lar to the potential V2(·). The second potential exploits the external

ground-truth information cL available for pixels whose indexes be-

long to L and reduces to a non-informative potential for pixels whose

indexes belong to U . Thus, this prior probability is defined as

P[ωp = j|ωV(p), cp, ηp] ∝

exp



W1(j, cp, ηp) +
∑

p′∈V(p)

W2(j, ωp′)







with

W1(j, cp, ηp) =











{

log(ηp), if j = cp

log(
1−ηp
J−1

), otherwise
if p ∈ L

− log(J) otherwise

and
W2(j, ωp′) = β2δ(j, ωp′).

The potential W1(·) is parametrized by ηp ∈ (0, 1), a user-provided

hyperparameter reflecting the confidence the user owns in the classi-

fication label cp for the pth pixel. In the case of a high confidence in

this external data (ηp ≈ 1), the estimated classification label tends

to be equal to the user-provide one, i.e., ωp = cp. In the case of a

lower confidence, a pixel can be assigned an estimated classification

label ωp different from the label cp provided by the end-user. Thus,

the proposed hierarchical model allows this ground-truthed external

information to be corrected, resulting in a supervised classification

which is robust to the presence of mislabeling.

3. GIBBS SAMPLER

Bayesian estimators associated with the parameters defining the

model introduced in the previous sections are approximated thanks

to a MCMC algorithm [18]. This algorithm generates samples

asymptotically distributed according to the joint posterior distribu-

tion of the parameters using Gibbs moves. These samples are then

used to approximate the maximum a posteriori (MAP) estimators

of the cluster and classification labels, which consists in retaining

the most recurrent labels. Then, the minimum mean square error

(MMSE) estimators of the remaining parameters is approximated by

empirical averages over the samples. This Gibbs sampling strategy

consists in sampling according to the conditional posterior distri-

butions of each parameter. These distributions are derived in the

following paragraphs. More details are available in [19].

Abundances – Given the mixture model (1) and the prior (3), the

abundance vectors are a posteriori distributed according to the fol-

lowing multivariate Gaussian distributions

p(ap|yp, zp = k, s
2
,ψk,Σk)

∝ |Λk|
− 1

2 exp

(

−
1

2
(ap − µk)

t
Λ

−1
k (ap − µk)

)

with µk = Λk(
1
s2
Mtyp + Σ−1

k ψk) and Λk = ( 1
s2
MtM +

Σ−1
k )−1.

Cluster labels – As the cluster label zp is a discrete random variable,

its sampling can be achieved by evaluating the conditional probabil-

ities associated with all possible values of zp ∈ K

P(zp = k|ψk,Σk, ωp = j, qk,j)

∝ |Σk|
− 1

2 exp

(

−
1

2
(ap −ψk)

t
Σ

−1
k (ap −ψk)

)

× qk,j exp



β1

∑

p′∈V(p)

δ(k, z′p)



 . (9)

Interaction matrix – The conditional distribution of each column

qj (j ∈ J ) of the interaction matrix Q can be expressed as follows

p(qj |z,Q\j ,ω) ∝

∏K

k=1 q
nk,j

k,j

C(ω,Q)
✶S(qj)

where C(ω,Q) is the partition function of the MRF (introduced

as a normalization constant), Q\j denotes the matrix Q whose jth

column has been removed and ✶S(·) is the indicator function of the

probability simplex which ensures the positivity and sum-to-one

constraints. In particular, when β1 = 0 (i.e., no spatial regular-

ization is imposed on the cluster labels), this conditional posterior

distribution reduces to the Dirichlet distribution (8), which is easy

to sampled from. More advanced sampling strategies should be

considered when β1 > 0 [19].

Classification map – Similarly to the cluster labels, the classifica-

tion labels are sampled by evaluating their conditional probabilities

for all possible labels j ∈ J , while distinguishing the cases when

an external data cp is available or not for the considered pth pixel.

More precisely, when p ∈ U , this probability reads

P[ωp = j|zp, zν(p),qj ,ωV(p), cp, ηp]

∝
qzp,jπj exp

(

β2

∑

p′∈ν(p) δ(j, ωp′)
)

K
∑

k′=1

qk′,j exp

(

β1

∑

p′∈ν(p)

δ(k′, zp′)

) .

Conversely, when p ∈ L, this posterior probability is

P[ωp = j|zp, zν(p),qj ,ωV(p), cp, ηp]

∝

qzp,j exp

(

β2

∑

p′∈ν(p)

δ(j, ωp′)

)

K
∑

k′=1

qk′,j exp

(

β1

∑

p′∈ν(p)

δ(k′, zp′)

) ×

{

ηp,when ωp = cp
1−ηp
C−1

, otherwise.

4. EXPERIMENTS

Synthetic images – To assess the effectiveness of the proposed

model, experiments are first conducted on synthetic data. These

synthetic images are generated from a clustering map drawn from

a Potts-MRF. The classification map is then obtained by grouping

together several clusters. Abundance vectors are generated from a

Dirichlet distribution of fixed parameters for each cluster. Finally,

pixels of the hyperspectral images are generated using the mixing

model (1) with real spectra composed of D = 413 spectral bands

and a Gaussian noise with SNR= 30dB. To illustrate, two particular

instances of the cluster and classification maps generated according

to this protocol are represented in Fig. 2. The first case corresponds

to a 100×100 image composed of R = 3 endmembers, K = 3 clus-

ters and J = 2 classes (Image 1). The second case is a 200 × 200
image with R = 9 endmembers, K = 12 clusters and J = 5 classes

(Image 2).

For both images (Images 1 & 2), the upper quarter of the clas-

sification map has been used as external training data {cp}p∈L. To

evaluate the robustness of the proposed model face to mislabeling,

these labels have been corrupted by replacing the correct label class

by another with a probability equal to a particular corruption rate.

The confidence ηp (p ∈ L) in the provided ground truth has been

set equal to the percentage of correct labels. Classification results

have been compared to those obtained by conducting a mixture dis-

criminant analysis (MDA) [20]. MDA has been applied following

two different ways: either directly on the pixel spectra, or on the

abundance vectors estimated with the proposed model. Fig. 3 shows

the quality of the classification evaluated with Cohen’s kappa as a

function of the corruption rate. The obtained results underline the

expected robustness of the model.
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Fig. 2: Top, Image 1: classification (a) and clustering (b) maps. Bot-

tom, Image 2: classification (c) and clustering (d) maps.
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Fig. 3: Cohen’s kappa as a function of label corruption: MDA with

measured reflectance (green), MDA with abundance vectors (blue)

and proposed model (red). Shaded areas correspond to standard de-

viation resulting from 20 trials.

Moreover, to illustrate the richness of the proposed model in

term of possible interpretation, Fig. 4 represents the Q matrices esti-

mated for Images 1 & 2. These matrices lead to explicit descriptions

of the data structure by providing the distribution of the clusters with

respect to the different classes. For example, class ♯5 in Image 2
gathers clusters ♯3 and ♯5.
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Fig. 4: Estimated Q matrix for Image 1 (left) and Image 2 (right).

Real images – Finally, experiments are conducted on a real 600 ×
600 hyperspectral image composed of D = 349 spectral bands (af-

ter removing the bands of low SNR) obtained within the MUESLI

mission1. First, R = 7 endmembers have been extracted by con-

ducting a vertex component analysis [21]. The classification ground-

truth provided by the experts after a field campaign is composed of

L = 6 classes (summer crops, straw cereals, wooded area, build-

ings, bare/hayed land, meadow) and the left half of the ground-truth

is used as external data cL with a confidence ηp = 95% (∀p ∈ L).

1http://fauvel.mathieu.free.fr/pages/muesli.html

The number of clusters K has been set to a high value, i.e., K = 40.

The proposed algorithm is expected to empty most of these clusters.

Results in term of classification accuracy obtained by the proposed

method are compared to those obtained with a state-of-the-art ran-

dom forest (RF) classifier, known to be particularly robust to label-

ing errors [22]. Parameters of the RF classifier are optimized using

5-folds cross-validation (50 trees, maximum depth of 20). The quan-

titative results are averaged over 10 trials.

Table 1: Classification results averaged over 10 trials (± standard

deviation).

Cohen’s kappa Time (s)

Proposed model 0.737 (± 0.030) 6651 (± 62)

Random forest 0.695 (± 0.003) 16 (± 0.2)

Experiment results reported in Table 1 show significant better

classification results for the proposed model on this particular im-

age. Nevertheless, this result is obtained at the cost of more exten-

sive computations induced by the MCMC algorithm, as underlined

in the same table. However, it is worth noting that the proposed

method also provides additional parameters of interest, in terms of

abundance and cluster maps. To illustrate, results obtained for a par-

ticular trial are displayed in Fig. 5.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Real data: (a) pseudo-colored image, (b) expert ground-truth,

(c) training ground-truth, (d) RF classification, (e) obtained cluster-

ing and (f) obtained classification (with β1 = 0 and β2 = 1.0).

5. CONCLUSION

This paper introduced a new Bayesian model to perform spectral

unmixing, clustering and robust classification jointly. Through the

clustering step, the two well-admitted hyperspectral analysis meth-

ods, namely unmixing and classification, were conducted in a unified

framework, benefiting from low-level and high-level descriptions

of the data simultaneously. Interestingly, akin to any conventional

supervised classification setup, external ground-truth data could be

provided. However, the proposed model allowed corrupted ground-

truth labels to be taken into account and corrected, resulting in a

supervised classification robust to mislabeling. Results conducted

on synthetic and real hyperspectral datasets illustrated good perfor-

mance in term of classification and underlined the robustness of the

model in case of label errors in training data. Future works will

focus on the generalization of the proposed model to handle other

low-level tasks, i.e., different from spectral unmixing.
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