N
N

N

HAL

open science

Assessment of the SEMCO Model-Based Repository

Approach for Software System Engineering
Brahim Hamid

» To cite this version:

Brahim Hamid. Assessment of the SEMCO Model-Based Repository Approach for Software System
Engineering. International Conference On Model and Data Engineering (MEDI 2017), Oct 2017,

Barcelona, Spain. pp.111-125. hal-02348212

HAL Id: hal-02348212
https://hal.science/hal-02348212
Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02348212
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22350

Official URL
DOI : https://doi.org/10.1007/978-3-319-66854-3 9

To cite this version: Hamid, Brahim Assessment of the SEMCO
Model-Based Repository Approach for Software System
Engineering. (2017) In: International Conference On Model and

Data Engineering (MEDI 2017), 4 October 2017 - 6 October 2017
(Barcelona, Spain).

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

Assessment of the SEMCO Model-Based
Repository Approach for Software
System Engineering

Brahim Hamid®)

IRIT, University of Toulouse, 118 Route de Narbonne,
31062 Toulouse Cedex 9, France

hamid@irit.fr

Abstract. We have developed a methodological tool support for soft-ware development
based on the reuse of dedicated subsystems, that have been pre-engineered to adapt to a
specific domain. This paper proposes an empirical evaluation of the proposed approach
through its practical application to a use case in the railway domain with strong security
and dependability requirements, followed by a description of a survey per-formed among
domain experts to better understand their perceptions regarding our approach. The case
study enables us to determine that our approach centered around a model-based
repository of patterns leads to a reduction in the number of steps in the engineering
process or to their simplification. The survey assists in assessing whether domain experts
agree on the benefits of adopting the model-based repository approach in a real
industrial context.

Keywords: Modeling artifact + Model-based repository -+ Model repos-itory
Metamodel - Model-driven engineering - Software system engi-neering

1 Introduction

Repositories of modeling artifacts have recently gained increased attention as a
means of encouraging reuse in software engineering. In fact, repository-centric
development processes are more widely adopted in software system develop-
ment than are other approaches, such as architecture-centric or pattern-centric
development processes. According to Bernstein and Dayal [1], a repository is a
shared database of information regarding engineered artifacts. In our work, we
go one step further: we conceptualize a model-based repository to support the
specifications, definitions and packaging of a set of modeling artifacts. During
system development lifecycles, modeling artifacts may be used in various forms
such as domain models, design patterns, component models, code modules, test
and code generators [3]. However, the question remains of when and how to inte-
grate modeling artifacts into the software-intensive system development process.
Closely related to our vision is the approach of [8,12] that autonomously locates

DOI: 10.1007/978-3-319-66854-3_9

and delivers task-relevant and personalized components into the current software
development environment.

The envisioned modeling framework consists of two main pillars: solid theory
and proven principles. The first pillar offers an integrated conceptual design for
the specification and development of a model-based repository and its contents;
the second pillar offers a concrete and coherent methodology for the development
of software systems based on the repository. We have developed a System and
software Engineering with Multi-COncerns (SEMCO) framework [5,6] to assist
system and software developers in the domain of resource constrained systems
to capture, implement and document distributed system applications. SEMCO
aims at supporting model- and pattern-based development approaches by defin-
ing and providing several artifacts types representing the different related engi-
neering concerns (Security, Dependability, Safety and Resources) and architec-
tural information. The approach relies on an MDE tool suite called SEMCOMDT
to support the methodology and thus, in our context, to support the automated
construction of and access to the model-based repository. The foundation of
SEMCOMDT is a collection of Domain-Specific Modeling Languages (DSMLs)
built on an integrated repository of modeling artifacts working as a group, each
one relevant to a particular key concern. The resulting tool chain supports two
categories of users: developers who reuse existing artifacts from the repository
and developers of artifacts to be stored in the repository.

This work provides evidence of the SEMCO benefits and applicability
through the example of a representative industrial case from the FP7 TERESA
project! by applying the approach to Pattern-Based System Engineering
(PBSE). Modeling artifacts derived from the model repository and associated
with domain-specific models can assist developers in integrating in-development
application building blocks with pre-defined modeling artifact building blocks.
Empirical evaluation of the proposed approach, using Key Performance Indica-
tors (KPIs), is presented through its practical application to a use case in the
railway domain. KPI is an industry term that refers to a type of performance
measurement, to evaluate the success of a particular activity, project or product.
The second evaluation step is performed using a survey to better understand the
perceptions of practitioners regarding our findings. Based on the background of
our research project partners’, we started with an existing approach, such as
the Technology Acceptance Model (TAM) [2]. For instance, we have identified
a set of measures to evaluate our solutions, which produced the definition of a
set of hypotheses. Then, we enhanced the TAM using the ISO-9126’s quality-in-
use dimensions, i.e., effectiveness, productivity, safety and satisfaction. In some
cases, we employed the factors developed in Rogers’ theory of innovation diffu-
sion [9], which were involved in technology adoption: (1) Trialability; (2) Com-
patibility; (3) Relative advantage; (4) Observability; and (5) Complexity. We
designed a research strategy that is focused on testing these hypotheses by per-
forming and reporting empirical studies, following the guidelines described in [11]

! http://www.teresa-project.org/.

(e.g., construct a set of research questions, design of questionnaires, data collec-
tion, using statistical tools for data analysis and threat to validity).

The remainder of this paper is organized as follows. Section 2 provides theo-
retical background and SEMCO. In Sect. 3, we present an empirical evaluation of
our approach via a railway case study in framework of the TERESA project and
a survey. Finally, Sect. 4 presents our conclusions and suggests possible directions
for future work.

2 Motivations and Theoretical Background

A software system architect must work at multiple different levels. Integrating
all the subsystems and accounting for the associated software requirements in a
seamless fashion is quite a challenge given the various critical requirements and
uncertainties associated with them. We propose a solution for software develop-
ment based on the reuse of dedicated subsystems, so-called modeling artifacts
that have been pre-engineered to adapt to a specific domain. We use MDE to
develop a repository of models and a methodology for developing software sys-
tems based on this repository.

MDE promotes models as first-class elements. A model can be represented at
different levels of abstraction, and the concept of MDE is based on (1) the meta-
modeling techniques used to describe these models and (2) the mechanisms used
to specify the relations between them. Domain-Specific Modeling (DSM) [4] in
software engineering is a methodology in which models are used to specify appli-
cations within a particular domain. Several DSM environments exist, including
the open-source Eclipse Modeling Framework (EMF) [10] and its extended ver-
sion Eclipse Modeling Framework Technology (EMFT)?. Note, however, that our
vision is not limited to the EMF platform. EMF offers a set of tools to specify
metamodels in Ecore and to generate other representations of these metamodels.

The proposed approach consists of six main steps (the numbers in parentheses
below correspond to those indicated in Fig. 1):

— The first step (1) is the creation of a conceptual model of the repository.

— The second step (2) is the creation of a set of DSMLs for the specification of
modeling artifacts.

— Using the DSMLs and the conceptual model of the repository, a software
engineering expert defines the model and builds the repository (3).

— Using the DSMLs, a modeling artifact expert, with the help of the system
and software engineering expert, defines the modeling artifacts and begins
populating the repository (4).

— Then, a domain process expert adapts the modeling artifacts into a form that
is suitable for the system development process (5). For instance, they might
be adapted for use within a certain development environment.

— Finally, a domain engineer reuses the resulting modeling artifacts that have
been adapted and transformed for the given engineering environment (devel-
opment platform) to develop a domain application (6).

? https://eclipse.org/modeling /emft /.

Standard, MDE,
Software expert,
artifact expert

of a repository

'

Develop modeling languages for
modeling artifacts

Artifact kind Define repository model
expert for storage

@ Create model Define modeling
libraries artifacts

Construct conceptual model]

modeling framework

l Model libraries l_— j Modeling artifacts l \ development process

application development
process

Application
domain process expert

Artifact identification Artifact tailoring
and selection

Domain model of
system Soﬂware‘
engineering
expert
Integration of modeling Application domain
artifacts development
expert

Fig. 1. Methodology for the creation of the model-based repository modeling frame-
work

The first two steps (1 and 2) are performed once for a given set of domains.
The inputs to these steps are expertise, standards and best practices from soft-
ware system engineering. Step 3 is performed once for a given set of domains.
Step 4 is performed once per application domain. Step 5 is performed once for
each development environment. Performing Step 4 requires knowledge of soft-
ware engineering, whereas Step 5 requires knowledge of both software engineering
and the system development process for a specific application domain. Step 6 is
performed once for every system in the application domain. This step requires
the availability of knowledge of the specific target system and dedicated tools
that are customized for a given development platform.

3 Empirical Assessment

In this section, we first report on an industrial case study performed in the
railway domain (Sect.3.1) and then present a description of a survey performed
among TERESA domain experts (Sect. 3.2).

3.1 Case Study

Our case study is aimed at investigating the feasibility of our approach and
the level of effort involved in its application using Key Performance Indicators
(KPIs). A performance indicator or key performance indicator (KPI) is an indus-
try term referring to a type of performance measurement. KPIs are commonly
used to evaluate the success of a particular activity, project or company. In the
context of the TERESA project, we evaluated our approach in the construction
of an engineering discipline that is adapted to RCES by combining MDE and a
model-based repository of S&D patterns and their related property models.

3.1.1 Case Selection
The SafeRail system is composed of (1) a Clock which generates a periodic event
to trigger the system to estimate the current position and speed and to supervise
that the train complies with the current track restrictions, (2) a Environmental
Conditions to represent the physical interaction between environment (train,
track, others) with the sensors of the system, (3) a Balise which represents
a balise installed on the track to supply to the train supervision system with
new information regarding the current position and the track conditions, (4)
a Safe Train Interface which represents the actuators for the application and
(5) a Supervision System. In turn, the Supervision System is composed of (a) a
BaliseReader to detect and read the information provided by the balise on the
rail, (b) a Supervision, as the main component of the system, which is responsible
of carrying out the functionality of the system and (c) Sensors to provide the
actual position and speed of the train and the track conditions to the system.
To illustrate our study, two different railway industry scenarios will be consid-
ered: (1) Railway manufacturing group which is divided in subsidiary companies
specialized in the development of train and railway infrastructure systems and
(2) An SME that develops safety related embedded systems. This company has
a proven experience in the development of safety related embedded systems, but
accounts scarce experience in the railway domain. Therefore, the estimations
given for the railway domain provide two values with associated argumentation:

1. Large and complex safety systems, such as on-board ERTMS/ETCS, and
2. Intermediate safety systems, such as traction control safety supervision.

3.1.2 Research Questions
The purpose of our study was to address the following two research questions:

— RQ1: Does the proposed approach reduce the effort involved in developing a
new application (design and implementation)? To answer RQ1, we evaluate
whether the approach leads to a reduced number of steps in the engineering
process or to their simplification, and we assess whether the domain experts
agree on the benefits of adopting the approach in a real industrial context for
the development of new applications.

— RQ2: Is the effort involved to engineer a new version of an existing appli-
cation to add a security or dependability property acceptable? For RQ2, we
measure the ability of the approach to integrate security and dependability
solutions into existing products.

3.1.3 Data Collection Procedure

The procedure used for developing the case study closely followed the approach
described in Sect. 2. Given a repository requirements, a conceptual model is built
that fulfill these design requirements. The next step is the creation of a set of
Domain-Specific Modeling Languages (DSMLs) for the specification of model-
ing artifacts. In the context of our experiment, we have developed System and

Software Engineering Pattern Metamodel (SEPM) [7] and Generic PRoperty
Metamodel (GPRM) [13] to model pattern and property models, respectively.
Using the DSMLs and the conceptual model of the repository, a software engi-
neering expert defines the model and builds the repository. This work was done
by the author. Then, the modeling artifact expert, with the help of the system
and software engineering expert, defines the modeling artifacts and begins pop-
ulating the repository. Then, a domain process expert adapts the modeling arti-
facts into a form that is suitable for the system development process. Finally, a
domain engineer reuses the resulting modeling artifacts that have been adapted
and transformed for the given engineering environment to develop a domain
application.

For the purpose of our study, we have developed SEMcomDT *(SEMCO
Model Development Tools) as an MDE tool chain to support all steps of our
approach using EMFT. All metamodels used are specified using EMF. To create
model instances of the proposed metamodel, we choose to use a tree-structured
concrete syntax provided by EMFT. It provides graphical, but not-diagrammatic
notations, to specify Ecore models. The SEPM’s concrete syntax is described
using a mixed syntax combining structured-tree syntax and a UML-based dia-
grammatic syntax. The structure of the repository is derived from the repository
structure model and implemented using Java and the Eclipse CDO* framework.
This work was done by the two Phd students.

In the following, KPIs are presented with an estimated target value submit-
ted at the beginning of the case studies, and real values are estimated upon
completion of the case studies. Both values are averages because the individual
values highly depend on certain factors, such as the size of the project, the prod-
uct requirements, the expertise of the engineering team, the use of the approach
facilities and the availability of the appropriate patterns. In both cases, KPIs are
estimated based on previous knowledge of implementing such systems or equiv-
alents. A description of the considered constraints and assumptions is discussed
below.

— (K1) Overall engineering cost. Cost to develop a new application (design and
implementation) with dependability requirements using a target reduction of
10% to 20% (on average).

— (K2) Percentage of reused code. Amount of code reused from existing pat-
terns in a new development with dependability requirements using a target
reduction of 20% to 60% (on average).

— (K3) Engineering time. Time to develop a new application (design and imple-
mentation) with dependability requirements using a target reduction of 10%
to 25% (on average).

— (K/) Re-engineering time. Time to engineer a new version of an existing appli-
cation to add a dependability property with an estimated target reduction of
40% (on average).

3 http://www.semcomdt.org.
4 http://www.eclipse.org/cdo/.

— (K5) Errors in reused code. Number of errors appearing in code reused from
patterns using a target value of 10 as a factor of the probability of errors in
reused code with respect to new code.

— (K6) Code quality. Readability and compliance of the reused code with the
required standard with an estimated target value of compliance of 100%.

— (K7) Maintenance cost. Total cost and effort associated with bugs being
detected after deployment using a target reduction of 10% to 20% (on aver-
age).

— (K8) Incident response. Time and effort for identifying affected products from
reused code/concepts with an estimated target reduction of 30% to 50% (on
average).

3.1.4 Case Study Results and Discussion

Here, we discuss the results of the case study focusing on answering the research
questions that we presented in Sect.3.1. The creation of the conceptual model
of the repository required approximately 4 person months. The creation of the
DSMLs for the modeling artifacts took approximately 6 person months. The
construction of the model of the repository and the implementation of the MDE
tool chain took 6 person months. The construction of the domain model took
another 3 person months. The process of populating the repository took one
month. The proposed tool chain is designed to support the proposed metamodels,
and hence, the tool chain and the remainder of the activities involved in the
approach may be developed in parallel. This activity needs to be performed
only once for a given set of domains. We expect the effort for the creation of
a DSMLs and the development of tools to be less on future applications, as we
had to address several technical details in relation to using EMFT and CDO in
our first application.

A comparison of the resulting KPIs in the two cases is shown in Fig. 2, where
the estimated KPI values for the newly proposed approach at the end of the case
study are presented. From this comparison, it appears that using the security
and dependability pattern-based approach brings significant advantages in S&D
engineering, especially for intermediate safety systems.

RQ1. Does the proposed approach reduce the effort involved in developing a new
application (design and implementation)? With regard to the overall engineering
cost, we estimate that the development of large and complex systems (ERTM-
S/ETCS), respectively intermediate systems, is reduced by an average of 12.5%,
respectively 30% (K1). The overall engineering cost is reduced as follows. Dur-
ing the safety concept, system architecture, software architecture and module
detailed design phases, a reduction in the time to formalize and document the
design is observed using already-developed design patterns that include all nec-
essary safety information and reducing the effort required to document detailed
descriptions by hand. Moreover, a reduction in the time and effort associated
with verification is also observed because the design patterns are already verified
and provide a common understanding for both designers and verifiers. Finally,

=== Min. Target value == Max. Target value

Intermediate systemsvalue ~-Large&Complex systemsvalue

- //\\
2NN /
N7 = A P

K1 K2 K3 K4 KS K6 K7 K8

Fig. 2. Intermediate, large & complex safety systems

a reduction in the time and effort associated with RAMS® analysis is observed
because the design patterns are already verified and provide a common under-
standing for both designers and RAMS engineers. With regard to the percentage
of reused code, we estimate that during the development of large and complex
systems (ERTMS/ETCS), resp. intermediate systems, code is reused at an aver-
age of 12.5%, respectively 43% (K2). The selected case study, namely, ERTM-
S/ETCS on-board railway signaling acting as a large and complex safety system,
is a representative SIL4 safety embedded system in which multiple design pat-
terns can be instantiated. However, ERTMS/ETCS is a highly complex system
in which most of the software application implements the safety and functional
requirements established by the standard for interoperability. Selected and inte-
grated design patterns provide the safety skeleton and safety architectural foun-
dation of the system (key foundation), where the system-specific application is
deployed and executed. However, the ratio between system-specific software and
software that can be provided by design patterns is less than 0.1.

This is a paradox because other safety subsystems of the train that per-
form intermediate complexity safety functions might be developed with a much
smaller set of design patterns, although the ratio of design-pattern-based safety
software compared to system-specific safety software might be at least one to
one. For example, the safety function of a railway traction system (SIL2) act-
ing as an intermediate safety system has an intermediate complexity. It must
compare already acquired current, voltage and temperature measurements with
given minimum and maximum thresholds and perform a small set of coherency
checks on the measurements.

RQ2. Is the effort involved to engineer a new wersion of an existing applica-
tion to add a security or dependability property acceptable? With regard to the
re-engineering, we estimate that the development of large and complex systems
(ERTMS/ETCS), respectively intermediate systems, is reduced by an average

® Stands for Reliability, Availability, Maintainability, and Safety.

of 25%, respectively 33% (K4). After developing the demonstrator and consid-
ering the previous estimation of K2 (percentage of reused code) and that safety
design patterns provide key foundational patterns for the development of safety
systems, we estimate that the maintenance cost is reduced in large and complex
(ERTMS/ETCS), resp. intermediate systems, by an average of 12.5%, respec-
tively 25% (K7). Moreover, we estimate that the time and effort for incident
response is reduced in large and complex (ERTMS/ETCS) systems, resp. inter-
mediate systems, by an average of 20%, resp. 40% (K8). An example is the
reduction of complex incident responses associated with the operation of safety
replicas (e.g., data agreement, safety communication layer, etc.) that require a
considerable amount of time to be analyzed and solved.

3.2 Survey

After the completion of our case study, we conducted an experiment where we
presented our approach and the solution of our case study in order to collect
feedback from industry practitioners through a survey. The case study enables
us to determine that the model-based repository approach leads to a reduced
number or to a simplification of the engineering process steps, whereas the survey
assists in assessing whether domain experts agree on the benefit of adopting the
proposed approach in a real industrial context. In the following, we present and
discuss the design and results of this survey.

3.2.1 Context and Description of the Methodology
for Experimentation

The approach, its corresponding tool suite and the solution of our case study

presented in Sect. 3.1 were proposed to the industry practitioners for evaluation

through a survey. The purpose of this survey is to give an overview of the design

of a software architecture of a small but sufficiently complex system that we will

use to illustrate the model-based repository approach we propose.

All participants attended the TERESA MDE workshop in Toulouse, where
the experiment was initiated. Six security experts (SEC) participated in the sur-
vey: four from the TERESA domains and two from other domains. Five depend-
ability experts (DEP) also participated in the survey: three from the TERESA
domains and tow from another domain. In addition, five software engineering
(SEN) experts participated in the survey: two from the TERESA domains and
three from other domains. All participants were recognized as experts in their
domains with a high level of skill in security or dependability who had already
participated in the development of several projects related to their skills. All
participants were already familiar with S&D patterns and modeling tools. Over-
all, 62% of the participants had over two years of S&D engineering experience
and a further 19% had at least one year of experience with S&D engineering.

The objective of the survey was to determine whether domain experts agree
on the benefits of adopting our approach in a real industrial context. For that,

we proposed to use the factors developed in Rogers’ theory of innovation dif-
fusion [9], involved in technology adoption: (1) Trialability; (2) Compatibility;
(3) Relative advantage; (4) Observability; and (5) Complexity. To address these
factors we have developed a simple questionnaire, containing 20 questions (some
questions were used to measure more than one factor), to capture the informa-
tion required. Precisely, we focus on (1) the perceived usefulness of the approach
itself; (2) the perceived usefulness of the conceptual models, the execution of the
approach and the tool suite as a means of building and reusing modeling arti-
facts; and (3) the willingness to use a model-based repository approach in future
related activities. Next, the participants were asked to scale their satisfaction
on a scale from 1 to 5, 1 being the lowest value of satisfaction or the greatest
difficulty (meaning Not Useful at All, Very Difficult, Very Probably Not) and 5
being the highest value of satisfaction regarding the presented concepts or the
greatest ease in realizing a solution to the given question (meaning FExtremely
Useful, Very FEasy, Definitely). We calculated the averages of the values provided
by the participants.

3.2.2 The Questionnaire
The questionnaire was divided into three parts. The first section, which consisted

of QI1-Q5, as shown below, concerned the perceived usefulness of the approach
itself.

— Q1: Do you think that a model-based repository approach is a good idea?

— Q2: Do you think that a model-based repository approach helps to maintain
focus without being distracted by other aspects of software engineering?

— Q3: Is the information provided by the model-based repository approach useful
for defining meaningful "units of solution’?

— Q4: Does the model-based repository approach reduce the effort involved in
developing a new application (design and implementation)?

— Q5: Do you think that a model-based repository approach avoids the re-
invention of existing solutions?

The second section, (Q6—Q14, addressed the conceptual models, the execution
of the approach and the tool suite as a means of building and reusing modeling
artifacts.

— Q6: Were the presented conceptual models easy to understand?

— Q7: Overall, how easy to follow were the steps of our approach?

— Q8: Was the presented tool -suite easy to use?

— Q9: Did you find the models easy to use for engineering your application?

— Q10: Did you find it easy to define new security and dependability patterns?

— Q11: Do you think that the tool provided for tailoring security and depend-
ability patterns is easy to use?

— Q12: Do you think that the tools provided for the integration of security and
dependability patterns is easy to use?

— Q13: How easy was it to integrate the tool suite into your favorite development
environment?

— Q14: Does the presented tool suite provide useful assistance in the development
of secure and dependable applications?

The last section, Q15-Q20, concerned the participants’ willingness to use a
model-based repository approach in future related activities.

— Q15: Would you see value in adopting the presented approach at your com-
pany?

— Q16: Would you like to define other kinds of reusable modeling artifacts in
the future?

— Q17: Would you like to install other SEMCO plugins in the future?

— Q18: Would you like to use the approach in the future?

— Q19: Would you like to customize various SEMCO plugins in the future?

— Q20: Would you like to extend various features of the approach in the future?

3.2.3 Experiment Conduct
Because of the technical and administrative problems encountered in the design,
implementation and deployment of repository software, we performed this group
of tasks in a pre-processing step prior to the study. Thus, in our experiment, we
considered only a pre-defined model-based repository. In our case, the repository
server application is hosted on a machine at the University of Toulouse. Once
the service was initialized, we proceeded to the repository initialization. A Java-
based GUI application enabled the creation of the repository structure as well
as the initialization and management of compartments and users. Each of the
participants was given a login and password to manage her/his artifacts. The
second element of the SEMCO environment is the client tool suite, which is
provided as a set of Eclipse plugins. The client tool suite consists of a set of
modeling artifact editors, helpers for depositing artifacts into and retrieving them
from the repository, and the required repository interfaces. The installation is
finalized by setting the preferences on the client to point to the correct repository.
The experiment included five tasks: SEMCO plugin installation, property model
development, pattern development, pattern tailoring and pattern integration.
For each task, a set of materials was provided to the participants at the begin-
ning of the experiment: the SEMCO tool suite and its accompanying installation
and user documentation, a detailed textual description of the patterns and their
properties, a detailed requirements document, and a conceptual model of the
system under development in the form of UML diagrams. Finally, the partici-
pants were given a subjective post-experiment questionnaire consisting of a set
of questions, as described previously, and space for comments. In addition, they
were provided with a sheet presenting the instructions for each task (e.g., what
properties to specify and what patterns to develop, when to take note of the
time, and so on).

Training of the Participants. During the TERESA MDE workshop in Toulouse,
the participants were trained to use the method and the SEMCO tool suite.

The training was conducted in two sessions on the same day. The first session
was 3h long and was managed by two instructors. The first instructor intro-
duced MDE and presented a pattern-based development methodology and how
it might be used to support the development of secure and dependable appli-
cations. In addition, a 1-h practice session on Eclipse and the EMFT environ-
ment was presented by the second instructor as a laboratory exercise. During
the second hour-long session, several operating examples were introduced to the
participants, with detailed explanations, by two additional instructors who par-
ticipated in the development of the SEMCO tool suite.

Ezecution of the Experiment. The experiment was conducted in the context
of the TERESA project regarding the development of secure and dependable
applications. The participants were grouped according to whether they pos-
sessed expertise in the related domains. To improve and simplify the evalua-
tion of the results, the participants were asked to use only tools and methods
that were presented during the training sessions. However, they were allowed to
use their own resources, predominantly those related to the description of pat-
terns in their domain. Before they started, a general description of the objective
of the study was presented (30 min). Portions of these evaluation studies were
performed internally, whereas other studies were outsourced. The participants
were given 2h on site to complete the installation tasks (performed during the
TERESA MDE workshop in Toulouse). Then, a 6-month outsourced evaluation
was conducted to complete the other tasks.

Data Collection. The questionnaire was uploaded online using Google Docs, and
the link to the questionnaire was forwarded to the participants. All of the reg-
istered participants received the questionnaire link in this manner. At the time
of the survey, twelve participants were members of the TERESA project. The
data collection process began in January 2013 and continued for 6 months, and
ultimately, a sample of sixteen usable responses was collected. As the first step of
the analysis, the mean scores corresponding to the participant’s responses were
calculated.

3.2.4 Survey Results and Discussion

After the data were collected, data analysis was conducted to determine the
answers to the research questions. The following presents an overview of the
results of our experiment. The purpose of the first question was to assess the
first impressions of the participants. This answer was used as a baseline and as a
measure of whether they were prepared and motivated to perform the subsequent
steps of the experiment.

Of the participants in the experiment, 75% of them thought that the approach
would be extremely useful, and the remaining 25% thought that the approach
would be very useful. After being presented with a high-level description of the
approach, 31% of the participants perceived the approach as being extremely use-
ful for maintaining focus without being distracted by other aspects of software
engineering, whereas 69% thought it would be very useful. Based on the col-

lected responses, 56% of participants found the approach very useful for defining
meaningful units of solution, and the remaining 44% found it extremely useful.
We can also conclude that 69% of the participants found the approach to be
very useful for development through reuse, and 75% of them found the approach
to be very useful for development for reuse.

When presented with the conceptual models of the approach, 50% of the
participants perceived the approach as being very easy to understand, whereas
the remaining 50% thought it was easy to understand. The results reveal also
that 31% of the participants perceived the approach as very easy to follow,
whereas 56% thought it was easy, and the remaining 13% experienced average
difficulty. Regrading the tool support, 51% of the participants found the tool
suite very easy to use; meanwhile, 19% experienced average difficulty in using
the tool suite. With regards to integrating the provided tool-suite into other
development environment, 38% of the participants indicated that it is seldom
easy, 56% experienced average difficulty in integrating the tool-suite, whereas the
remaining participants (6%) found it difficult. However, the current tool suite
based on EMFT was expected to be useful. A total of 31% of the participants
believed that the tool-suite would be extremely useful for the development of
secure and dependable applications, and a further 44% thought that it would be
very useful. The remaining 25% of the participants thought that the tool suite
would be useful.

With regards to the adoption of the approach, 63% of the participants
thought that there was definitely value in adopting the approach, and a fur-
ther 31% thought that the approach was very probably worth adopting. Regard-
ing the extent to which the participants indicated that they would likely use
the model-based repository approach in the future for the development of other
kinds of systems, 19% Of the them indicated that they would definitely con-
tinue their application of the approach, whereas 63% said that they would very
probably do so.

In summary, the answers received in our survey suggest that the proposed
approach was overall regarded as easy to learn and to follow. Moreover, the
participants thought that it would be beneficial to use within their context.
These responses indicate that model-based repository approaches to the devel-
opment of software systems should be investigated further. We believe that
these experimental results may be generalized to other pattern-based develop-
ment approaches and, in a broader scope, to other model-based development
approaches, as the patterns were provided as models for the application devel-
opers.

4 Conclusion and Future Work

The proposed model-based approach for software application development relies
on a repository of models and focuses on the problem of software system engineer-
ing through a design philosophy that fosters reuse. This approach was evaluated
in the context of the TERESA project for application to a repository of S&D

patterns and property models. Following the specification, design, implementa-
tion and deployment of an S&D pattern repository, pattern designers can define
property and pattern models and store them in the repository. System designers
can then reuse existing patterns from the repository through identification and
tailoring mechanisms, leading to simpler and more seamless designs with higher
quality and reduced cost. By means of the practical demonstration provided by
our case study, we can validate the feasibility and effectiveness of the proposed
specification and design frameworks. We also conducted a survey of industry
practitioners among TERESA members and other security, dependability and
software engineering experts. The preliminary evidence indicates that users are
satisfied with the notion of a development approach centered around a model-
based repository of patterns and, in a broader context, a model-based repository
of modeling artifacts. However, the results also highlight one of the main chal-
lenges, namely, the design of an automated search functionality to allow the user
to derive the necessary modeling artifacts from an analysis of the requirements
for a project.

In our future work, we plan to study the automation of the model search
and tailoring tasks. Our vision is for modeling artifacts to be inferred from
the browsing history of users and constructed from a set of already developed
applications. We would also like to study the integration of our tools with other
MDE tools. For that purpose, we need to implement other kinds of software and
means of generating validated artifacts, such as programming language code and
certification artifacts, that are capable of producing a restrictive set of artifacts
that comply with domain standards.

References

1. Bernstein, P.A., Dayal, U.: An overview of repository technology. In: Proceedings
of the 20th International Conference on Very Large Data Bases, VLDB 1994, pp.
705-713. Morgan Kaufmann Publishers Inc. (1994)

2. Davis, F.: Perceived usefulness, perceived ease of use, and user acceptance of infor-
mation technology. MIS Q. 13(3), 319 (1989)

3. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Trans.
Softw. Eng. 31(7), 529-536 (2005)

4. Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
specific modeling. In: Fishwick, P. (ed.) Handbook of Dynamic System Modeling,
Chap. 7, pp. 1-20. Chapman & Hall/CRC, Boca Raton (2007)

5. Hamid, B.: A model-driven methodology approach for developing a reposi-
tory of models. In: Ait Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.)
MEDI 2014. LNCS, vol. 8748, pp. 29-44. Springer, Cham (2014). doi:10.1007/
978-3-319-11587-0.5

6. Hamid, B.: Modeling of secure and dependable applications based on a repository
of patterns: the SEMCO approach. Reliab. Digest, IEEE Reliab. Soc. Special Issue
Trustworthy Comput. Cybersecur. 1(1), 9-17 (2014)

11.

12.

13.

Hamid, B., Giirgens, S., Jouvray, C., Desnos, N.: Enforcing S&D pattern design in
RCES with modeling and formal approaches. In: Whittle, J., Clark, T., Kiihne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 319-333. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-24485-8_23. ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems (MODELS)

Katalagarianos, P., Vassiliou, Y.: On the reuse of software: a case-based approach
employing a repository. Autom. Softw. Eng. 2(1), 55-86 (1995)

Rogers, E.: Diffusion of Innovations, 5th edn. Free Press, New York (2003)

. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework 2.0, 2nd edn. Addison-Wesley Professional (2009). ISBN 0321331885
Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslén, A.: Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers,
Norwell (2000)

Ye, Y., Fischer, G.: Reuse-conducive development environments. Autom. Softw.
Eng. 12(2), 199-235 (2005)

Ziani, A., Hamid, B., Trujillo, S.: Towards a unified meta-model for resources-
constrained embedded systems. In: 37th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 485-492. IEEE (2011)

