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However, independently of the acquisition setup, stationary convolu-

tion cannot accurately model the formation of ultrasound images. To

overcome this issue, ultrasound images are generally divided in lo-

cal regions prior to deconvolution, assuming a block-wise spatially-

invariant PSF (see, e.g., [11]). To avoid issues related to stitching to-

gether the results of block-wise techniques, a few attempts have been

very recently made in [12] and [13] to account for non-stationary

convolution models in ultrasound imaging. The former relies on a

very restrictive model with few degrees of freedom whereas the de-

convolution method in the latter is computationally intractable for

large images.

This paper proposes an optimization algorithm adapted to ul-

trasound image restoration under the hypothesis of spatially-variant

PSF. The convolution kernel is assumed to be horizontally invariant

but to vary vertically as a linear combination of neighboring proto-

type point-spread functions (PSF). To regularize the solution of the

inverse problem generated by this model, we use herein the classical

elastic net constraint [14]. Elastic net ensures a compromise between

the ℓ1-norm promoting sparse solutions and the ℓ2-norm imposing

smooth results. Its interest in ultrasound imaging has been already

shown through different applications, e.g. compressed sensing [15],

beamforming [16] or clutter filtering [17]. The elastic net regularized

inverse problem has a non-differentiable objective and a large num-

ber of optimization variables. Therefore, it can only be addressed

using proximal gradient schemes. The proposed method, based on

the Accelerated Composite Gradient Method (ACGM) [18, 19], is

able to simultaneously exploit the strong convexity of the problem

and automatically provide a tight local estimate of the otherwise un-

known Lipschitz constant.

2. PROBLEM FORMULATION

The acquisition model considered in this work is given by

y = HPx+ n, (1)

where y denotes the observed image, x is the tissue reflectivity func-

tion (TRF) to be recovered and n represents independent identically

distributed additive white Gaussian noise. All images are of the

same size, x,y,n ∈ Df
def
= R

mt×nt , where mt denotes the height

(number of pixels along the axial dimension) and nt gives the width

(lateral pixel count) of the TRF. The linear operator P pads the TRF

with a mr×nr boundary, yielding an image of size mp×np, where

mp = mt + 2mr and np = nt + 2nr , respectively. Our model

accounts for any simple form of padding1.

The linear operator H performs the spatially-variant kernel con-

volution. Within a classical pulse-echo acquisition scheme, focused

1See [20] for a detailed discussion on simple padding and its implemen-
tation.

ABSTRACT

Most of the existing ultrasound image restoration methods consider 
a spatially-invariant point-spread function (PSF) model and circulant 
boundary conditions. While computationally efficient, this model is 
not realistic and severely limits the quality of reconstructed images. 
In this work, we address ultrasound image restoration under the hy-

pothesis of piece-wise linear vertical variation of the PSF based on 
a small number of prototypes. No assumption is made on the struc-

ture of the prototype PSFs. To regularize the solution, we use the 
classical elastic net constraint. Existing methodologies are rendered 
impractical either due to their reliance on matrix inversion or due to 
their inability to exploit the strong convexity of the objective. There-

fore, we propose an optimization algorithm based on the Accelerated 
Composite Gradient Method, adapted and optimized for this task. 
Our method is guaranteed to converge at a linear rate and is able to 
adaptively estimate unknown problem parameters. We support our 
theoretical results with simulation examples.

Index Terms— Accelerated Composite Gradient Method, 
point-spread function, reconstruction, restoration, spatially vary-

ing, ultrasound

1. INTRODUCTION

Ultrasound imaging is an efficient, cost effective, and safe medical 
imaging modality. It is widely used for various clinical applications 
and is especially well suited for the diagnosis of soft tissue patholo-

gies. These advantages are however mitigated by the relative low 
image quality, in terms of signal-to-noise ratio, low contrast, and 
poor spatial resolution. The main factors affecting the quality of 
ultrasound images are the finite bandwidth and aperture of the imag-

ing transducer as well as the physical phenomena (e.g., diffraction 
and attenuation) related to the propagation of sound waves in hu-

man tissues. Consequently, a rich body of scientific literature ad-

dresses ultrasound image reconstruction, i.e., the estimation of the 
tissue reflectivity function (TRF) from ultrasound images. Gener-

ally, existing approaches turn the TRF estimation into a deconvo-

lution problem, by considering, under the first order Born approxi-

mation, that the formation of ultrasound images follows a 2D con-

volution model between the TRF and the system point-spread func-

tion (PSF). The PSF can be either estimated in a pre-processing step 
(see, e.g., [1–6]) or jointly estimated with the TRF, i.e., blind de-

convolution (see, e.g., [7–10]). Mainly for computational reasons, 
most of the existing ultrasound image restoration methods consider 
a spatially-invariant PSF model and circulant boundary conditions.

Part of this work has been supported by the Academy of Finland, under 
grant no. 299243, and CIMI Labex, Toulouse, France, under grant ANR-11-
LABX-0040-CIMI within the program ANR-11-IDEX-0002-02.



ultrasound waves are sequentially emitted by a sliding active sub-

aperture. For each emission, the raw data is collected by the elements

within the active aperture and further beamformed to compute an A-

line representing one column of the ultrasound image. For this rea-

son, the PSF can be reasonably considered spatially-invariant in the

lateral (horizontal) direction. However, despite dynamic focusing in

reception and time gain compensation, the PSF strongly varies in

the axial (vertical) direction, i.e., in the direction of ultrasound wave

propagation, degrading spatial resolution away from the focal depth.

In our model, we account for this axial variation by assuming

that a small number nk of prototype kernels is known, each proto-

type PSF Kq having a center at row cq for all q ∈ {1, ..., nk}. The

prototype PSFs are sorted by cq and thus the values of cq form a

partition of the set of rows. The kernels of each row are computed

using linear interpolation. Specifically, kernels above c1 are equal to

K1, those below cnk
equal Knk

. The kernels of all other rows are

obtained as a convex combination (alpha-blending) of the prototype

PSF above and the one below that row, the proportion given by the

relative distance to the two centers.

Every row produced by the linear operator H is obtained by tak-

ing the corresponding row in the input image (padded TRF) along

with all pixels within a boundary of size mp × np and performing

discrete valid convolution with the kernel pertaining to that row, ob-

tained as explained above. It follows that the padding boundary size

has to match the prototype PSF radii. The use of discrete valid con-

volution is the reason behind the need for padding the TRF with P .

Our acquisition model can be used to construct a deconvolution

problem which seeks to minimize the additive white Gaussian noise

subject to regularization. When employing the elastic net, the TRF

can be obtained by solving the following optimization problem

min
x∈Df

1

2
‖HPx− y‖22 + λ1‖x‖1 +

λ2

2
‖x‖22. (2)

3. PROPOSED METHOD

To efficiently solve optimization problem (2) for any non-negative

value of λ2, we propose a variant of the Accelerated Composite Gra-

dient Method (ACGM) [18, 19] optimized for the elastic net2.

The objective F in problem (2) can be split into a quadratic func-

tion f and an elastic net regularizer Ψ as follows:

f(x) =
1

2
‖Ax− y‖22, Ψ(x) = λ1‖x‖1 +

λ2

2
‖x‖22, (3)

where A
def
= HP . Function f is quadratic and consequently has

Lipschitz continuous gradient. The Lipschitz constant Lf is given

by σ2
max(A), where σmax(A) is the maximum eigenvalue of oper-

ator A. In practice, σmax(A) may be intractable to compute and,

as we shall see, Lf need not be known at all to ACGM. However

it is known that operator A is ill-conditioned and we can assume

that function f has strong convexity parameter µf = 0. Elastic net

regularizer Ψ is not differentiable due to the l1 term but has strong

convexity parameter µΨ = λ2. Hence, the objective as a whole has

a strong convexity parameter of µ = µΨ = λ2.

ACGM does not require the exact form of the objective func-

tion. It instead relies on calls to its zeroth and first order operations,

collectively referred to as “oracle functions” [22]. The splitting of

2A simpler version of ACGM was introduced in [21] to deal with the case
of λ2 = 0. The proposed method can be regarded as a computationally
efficient generalization of this earlier scheme.

the reconstruction problem in (3) yields four such oracle functions:

f(x), Ψ(x), ∇f(x), and proxτΨ(x), for x ∈ R
n and τ > 0. The

gradient is given by

∇f(x) = A
T (Ax− y), (4)

where AT = P THT . The proximal operator, defined as

proxτΨ(x)
def
= argmin

z∈Rmt×nt

(

Ψ(z) +
1

2τ
‖z − x‖22

)

, (5)

can be written in closed form (see also [19] and [23]) as

proxτΨ(x) =
1

1 + τλ2
Tτλ1(x), (6)

where the shrinkage operator Tτ (x) is given by

(Tτ (x))i,j
def
= (|xi,j | − τ)+ sgn(xi,j),

τ > 0, i ∈ {1, ...,mt}, j ∈ {1, ..., nt}.
(7)

The structure of the objective function makes it possible to re-

duce the computational complexity of ACGM by departing from the

oracle model. To estimate the local Lipschitz constant, operator A

has to be applied at every iteration k to the new iterate x(k+1). It

is computationally inexpensive to cache these results by maintaining

alongside the main iterate sequence x(k), k ∈ {0, ..., kmax} the se-

quence x̃(k) = Ax̃(k). ACGM can be brought into an extrapolated

form whereby an auxiliary point z(k+1) can be obtained through lin-

ear extrapolation from x(k) and x(k−1). The new iterate x(k+1) is

computed based on the gradient of f at z(k+1). The computational

intensity of gradient expression (4) can be reduced as follows:

∇f(z(k+1)) = A
T (z̃(k+1) − y), (8)

where

z̃
(k+1) def

= Az
(k+1) = x̃

(k) + β(x̃(k) − x̃
(k−1)), (9)

and β is the extrapolation factor.

The line-search stopping criterion [19] of ACGM at every itera-

tion k is given by

f(x(k+1)) ≤ f(z(k+1)) +∇f(z(k+1))T (x(k+1) − z
(k+1))

+
L(k+1)

2
‖x(k+1) − z

(k+1)‖22,

(10)

where L(k+1) is the Lipschitz constant estimate at iteration k. Sub-

stituting gradient expression (4) and rearranging terms yields

‖A(x(k+1) − z
(k+1))‖22 ≤ L(k+1)‖x(k+1) − z

(k+1)‖22. (11)

We obtain a computationally efficient expression by reusing the pre-

computed values x̃(k+1) and z̃(k+1) as

‖x̃(k+1) − z̃
(k+1)‖22 ≤ L(k+1)‖x(k+1) − z

(k+1)‖22. (12)

The global Lipschitz constant Lf can alternatively be expressed

as

Lf = sup
Df

‖Ax‖22
‖x‖22

. (13)

In practice, the estimates are below this value and we set the initial

one to

L(0) =
‖Ax0‖

2
2

‖x0‖22
=

‖x̃0‖
2
2

‖x0‖22
. (14)

Incorporating the above performance enhancements into ACGM

in extrapolated form yields the method listed in Algorithm 1.



Algorithm 1 Proposed method

1: Input: x0, λ1, λ2, kmax

2: x̃(0) := HPx(0)

3: x(−1) = x(0)

4: x̃(−1) = x̃0

5: L(0) = ‖x̃(0)‖22/‖x
(0)‖22

6: q(0) = λ2

L(0)+λ2

7: t(0) = 0
8: for k = 0, ..., kmax − 1 do

9: α := 1− q(k)(t(k))2

10: L(k+1) := rdL
(k)

11: loop

12: q(k+1) := λ2

L(k+1)+λ2

13: t(k+1) := 1
2

(

α+
√

α2 + 4L(k+1)+λ2

L(k)+λ2
(t(k))2

)

14: β := t(k)
−1

t(k+1)
1−q(k+1)t(k+1)

1−q(k+1)

15: z(k+1) := x(k) + β(x(k) − x(k−1))

16: z̃(k+1) := x̃(k) + β(x̃(k) − x̃(k−1))

17: τ := 1/L(k+1)

18: G := P THT (z̃(k+1) − y)

19: x(k+1) := 1
1+τλ2

Tτλ1(z
(k+1) − τG)

20: x̃(k+1) := HPx(k+1)

21: if ‖x̃(k+1)−z̃(k+1)‖22 ≤ L(k+1)‖x(k+1)−z(k+1)‖22 then

22: Break from loop

23: else

24: L(k+1) := ruL
(k+1)

25: end if

26: end loop

27: end for

28: Output: x(kmax)

4. EXPERIMENTAL RESULTS

A three-step process was employed to simulate the RF ultrasound

image: i) the calculation of the spatially-variant prototype PSFs; ii)

the generation of the tissue reflectivity function (TRF); and iii) the

spatially-variant convolution between the PSFs and the TRF, follow-

ing the model described in (1) (Section 2).

The prototype PSFs were obtained in step i) using Field II, a

realistic state-of-the art simulator [24, 25]. The simulation involved

a linear 128-element ultrasound probe emitting ultrasound waves at

a nominal frequency of 3 MHz. The width of each element was

set to equal the wavelength (0.5 mm), while height was fixed at 5
mm. The distance between two consecutive elements was set to 0.1
mm. The transducer was excited using a two-period sinusoidal wave

of frequency 3 MHz. The backscattered RF signals were sampled

at a rate of 20 MHz. The prototype PSFs we obtained by placing

isolated scatterers in front of the transducer with a distance in depth

of 8.5 mm to each other. Ultrasound waves electronically focalized

at 47 mm from the probe were emitted and the received echoes were

statically focused prior to the delay-and-sum beamforming process.

Hann apodization was used both for the emission and the reception.

The resulting nk = 10 prototype PSFs are shown in Fig. 1. For

the purpose of visualizing the areas influenced by individual proto-

type PSFs, they are displayed after envelope detection and min-max

normalization centered at cq for all q ∈ {1, ..., nk} in Fig. 1(a). To

highlight the differences between individual prototype PSFs, they

are displayed separately in Fig. 1(b). The 5th prototype PSF (K5)
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Fig. 1. Prototype PSFs generated with Field II for nk = 10 depths at

regularly spaced intervals of 8.5 mm. (a) Global view, after demod-

ulation and min-max normalization, showing the location within the

image of the prototype PSF centers; (b) Individual view, showing the

spatial variance of the prototype PSFs.
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Fig. 2. The 5th prototype PSF K5 (left) and its demodulated version

(right).

located at 43 mm from the probe was used in spatially-invariant de-

convolution experiments. It is shown both in native form and after

envelope detection in Fig. 2.

The TRF was obtained in step ii) following the classical pro-

cedure employed in ultrasound image simulation. A collection of

uniform randomly located scatterers with zero-mean Gaussian ran-

dom amplitudes has been generated. The standard deviation used to

generate the amplitude of one scatterer depended on its location and

was related, as suggested in the Field II simulator, to a digital image

obtained from MRI and CT scans of a human kidney tissue. The

number of scatterers was sufficiently large (105) to ensure fully de-

veloped speckle. The scatterer map was finally linearly interpolated

onto a rectangular grid resulting into the TRF shown in Fig. 3(a).

In step iii), an ultrasound image was simulated from the TRF

using the model in (1) to produce a starting point (x0) for the decon-

volution experiments. First, the TRF was padded with a symmetric

boundary. Next, the padded image was convolved with the spatially

varying convolution operator H , based on the prototype PSFs shown

in Fig. 1. To simplify the hyperparameter tuning process, we have

scaled H to ensure that L(0), as given by (14), is equal to 1. Finally,

white Gaussian noise was added to the convolved image, such that

the signal-to-noise ratio is 40 dB. The simulated ultrasound image is

shown in B-mode representation in Fig. 3(b).

We have conducted two deconvolution experiments. Both used

as starting point the simulated ultrasound image shown in Fig. 3(b)

and the same values of the hyperparameters, λ1 = 0.005 and λ2 =
0.01, which were found by manual tuning to give the best results.

First, we have compared our method, which is able to inte-

grate the spatial variability of the kernels in the deconvolution



(a) (b)

(c) (d)

Fig. 3. (a) Ground truth of the tissue reflectivity function (TRF); (b) Observed B-mode image simulated from on the TRF in (a) using the image

acquisition model in (1) employing the spatially-variant convolution operation based on the prototype PSFs in Fig. 1; (c) Spatially-invariant

deconvolution result obtained using the fixed kernel K5 in Fig. 2; (d) Spatially-variant deconvolution result using our method.

process, with ACGM employing a spatially-invariant blur operator

H . Two restored images obtained after 150 iterations, are displayed

in Fig. 3(c, d). The image in Fig. 3(c) was estimated considering a

spatially-invariant PSF (K5 at 43 mm depth) and the one in Fig. 3(d)

was obtained using our method. The quality of the deconvolution

can be appreciated by comparing the restored images in Fig. 3(c, d)

with the true TRF in Fig. 3(a). Note that the deconvolution re-

sults are also shown in B-mode. While the deconvolved images are

similar in the vicinity of the focal point, our method manages to

restore image features at the vertical extremities (Fig. 3(d)). These

features are barely discernible both in the blurred image shown

(Fig. 3(b)) as well as in the spatially-invariant PSF reconstruction

(Fig. 3(c)). The simulation results support our previous claim that

reconstruction quality of an image patch depends on the similarity

between the blurring and the deblurring kernels applied to it, clearly

demonstrating the superiority of our model.

The second experiment concerned optimization algorithms. We

have compared the convergence behavior of our method to the state-

of-the-art applicable to our model, in this case the Fast Iterative

Shrinkage Thresholding Algorithm (FISTA) [26]. Fig. 4 shows the

objective function values across iterations for the two methods. The

convergence plot required an optimum value estimate x̂∗, which was

obtained by running ACGM until floating point precision was ex-

hausted. As predicted theoretically in [18, 19], the convergence rate

of ACGM is linear. FISTA is unable to exploit the strong convexity

of the objective and lags behind considerably.
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Fig. 4. Convergence rate of our method compared to FISTA.

5. CONCLUSION

We have devised a methodology for spatially-variant deconvolution

of ultrasound images. Our method is theoretically guaranteed to con-

verge linearly regardless of the structure of input data. In this respect,

the reliability of our method is particularly of value to the stringent

demands of the medical ultrasonography industry. Simulation re-

sults show that reconstruction is not only computationally tractable

but has a rate that is competitive with existing approaches relying

on far more restrictive assumptions. For that matter, our approach is

able to address far more complex imaging models, even those that

do not require horizontally-invariant PSF.
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