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be guaranteed [3]. When data acquisition is done by function

f1 and recording is done by function f2, delay between start

of f1 and end of f2 should not exceed 0.5 seconds. If f1 and

f2 are allocated to different processors, communication delay

has to be considered in the analysis.

Thus distribution of avionics functions has to deal with

both scheduling of partitions and end-to-end delay analysis.

Previous work has been devoted to similar problems.

Many of them take into account allocation problems. The

allocation can be done on-line, i.e. partitions are executed on

the first available processor, or off-line, i.e. a planning is done

on the basis of the temporal characteristics of partitions. For

certification and reliability reasons, the scheduling is done off-

line. In [4] authors proceed in two steps: first they schedule

partitions on execution nodes, second they route flows on

the avionics network. Work proposed in [5] deals with the

allocation of partitions trying to minimize the communication

costs.

Several approaches integrate temporal analysis of embed-

ded systems. Many works have been devoted to the worst-

case delay analysis on AFDX network [6] [7], the temporal

requirements verification of systems [8], and the complexity

of communication delays [9]. ASIIST is a tool that has

been proposed in [10]. It permits to verify the scheduling of

partitions and to calculate bus delays according to a predefined

allocation of partitions and mapping of communications.

In these previous works, each part has been studied sepa-

rately: first an allocation is defined, then a possible scheduling

is found and finally end-to-end delay constraints are checked.

If one of these steps is not validated, a new scheduling or a

new allocation has to be defined again.

The contribution of this paper is to propose a mapping

algorithm, which copes altogether with static allocation of

partitions and with a guaranteed applicative end-to-end delay.

Section II gives main modeling assumptions. Section III

explains the proposed mapping algorithm on an illustrative

example. A realistic case study is analyzed in Section IV.

Section V addresses scalability issue of the mapping algorithm.

Section VI concludes the paper and proposes directions for

future research.

Abstract—Current avionics architectures implemented on large 
aircraft use complex processors, which are shared by many 
avionics applications according Integrated Modular Avionics 
(IMA) concepts. Using less complex processors on smaller aircraft 
such as helicopters leads to a distributed IMA architecture. 
Allocation of the avionics applications on a distributed archi-
tecture has to deal with two main challenges. A first problem is 
about the feasibility of a static allocation of partitions on each 
processing element. The second problem is the worst-case end-
to-end communication delay analysis: due to the scheduling of 
partitions on processing elements which are not synchronized, 
some allocation schemes are not valid. This paper first presents 
a mapping algorithm using an integrated approach taking into 
account these two issues. In a second step, we evaluate, on 
a realistic helicopter case study, the feasibility of mapping a 
given application on a variable number of processing elements. 
Finally, we present a scalability analysis of the proposed mapping 
algorithm.

I. INTRODUCTION

Helicopter and aircraft industries attempt to reduce weight

and power consumption. The Integrated Modular Avionics

(IMA) architecture is a first step in this direction: instead

of having one function per processor like in federated archi-

tectures, several functions share the same processor. Most of

the time, communication means are also shared to reduce the

number and the weight of cables [1] [2].

Avionics systems are composed of an increasing number of

more and more complex functions. It leads to avionics archi-

tectures composed of powerful and complex processors. Such

processors cannot be used in small aircraft and helicopters

(cost, space, . . .).
A classical solution to deal with this problem is to have 

a larger number of (possibly less complex) processors that

can be distributed among the whole helicopter. The problem

is then to distribute avionics functions on these processors in 
such a way that timing properties are guaranteed. The first 
constraint is to guarantee that the set of functions allocated 
to a given processor is schedulable on this processor. Such 
scheduling is built statically in IMA. The second constraint

is to guarantee that end-to-end delay constraints are not ex-

ceeded: for example, the delay between the completion of the

data acquisition process and the recording of the resulting data

in the non volatile crash-protected recording medium should
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Fig. 1. APEX channel

II. MAIN MODELING ASSUMPTIONS

The goal is to allocate and schedule a set of partitions

P on a set of processing elements E taking into account

applicative temporal constraints. First, partitions attributes and

IMA scheduling are specified in section II-A. Then, end-to-end

applicative constraints are defined thanks to a communication

semantic. Finally, computation of end-to-end communication

delays according to this semantic is developed in section II-C.

A. Partition and scheduling description

Let P = {P1, ..., Pn} be the set of partitions to be

distributed. Each partition Pi is characterized by the couple

(Ti, Ci): Ti is the period of the partition Pi and Ci is its

worst case execution time (WCET). Each partition Pi is strictly

periodic: the duration between two consecutive executions is

exactly Ti. Periods are assumed harmonic. This is a classical

assumption for avionics systems. Each WCET has to verify:

0 ≤ Ci ≤ Ti (1)

Each partition implements a read-execution-write semantic:

at the beginning of its execution, the partition reads data from

its input ports; at the end of its execution, it writes data in its

output ports. Partitions exchange data through virtual channels,

called APEX channel in the standard ARINC 653 [11], as

depicted in Figure 1. At any time only the last data written in

the buffer is considered (sampling port).
Let E = {PE1, ..., PEmaxNbPE} be the set of processing

elements PE. A subset of P , noted p, is allocated on a

processing element PE. We first have to insure that the

temporal load of PEj is not exceeded:

∑

Pi∈p

Ci

Ti

≤ 1 (2)

Second, partitions in p have to be scheduled on PE. IMA

scheduling on each processing element PEj is based on a

MAjor Frame MAFj : it statically defines the execution pattern

of all the partitions allocated to PEj . This static scheduling

is done off-line, with no pre-emption allowed. Such a MAF is

depicted in Figure 2. MAF length of PEj is the least common

multiple of the periods of partitions in p. Since periods are

harmonic, MAF length is the largest period among partitions

on p:

Hypj = LCMPi∈p(Ti) = max
Pi∈p

(Ti) (3)

In Figure 2, p includes two partitions P1 and P2. MAF length

is the period of P2.
Each MAjor Frame MAFj is composed of a subset of

periodic intervals s of length tinterval:

tinterval = min
Pi⊂PEj

(Ti) (4)

Thus we have:

MAFj = {s1, ..., s Hypj

tinterval

} (5)

Each partition Pk in p is allocated one slot every Tk

tinterval

interval. In Figure 2, P1 is allocated one slot in every interval,

while P2 is allocated one slot every two intervals.

ri defines the initial time of the first slot allocated to

partition Pi in MAFj .

Fig. 2. Execution pattern

The load in each interval of a MAF should not exceed

tinterval:
∑

Pi⊂Intervalj

Ci ≤ tinterval (6)

B. Communication and end-to-end delay constraints

As previously mentioned, partitions exchange data. A com-

municating partitions chain is an ordered sequence of parti-

tions with an end-to-end applicative constraint from the first

partition of the chain to the last one. Typically the first partition

transmits a message to the second one, which transmits a

message to the third one and so on.

More formally, a set of communicating partitions chains

C = {c1, ..., cm} is considered. Each chain ci is a n-uplet

composed of a subset p of P:

ci = {P1, ..., Pk} (7)

The end-to-end delay constraint of chain ci is denoted

Dci,max. It is defined according to the Button-to-action (BTA)

semantic defined in [12] as depicted in 3: it consists in finding

the worst-case duration between the generation of a data by

the first partition in the chain and its first utilization by the

destination partition.

Fig. 3. Button-to-Action semantic

C. Allocation and end-to-end delay validation

An allocation ai is defined as the set of partitions allocated

to each processing element as well as the MAF of each

processing element. An allocation is total if all the partitions

in P are allocated to a processor. Otherwise, the allocation is

partial.



Fig. 4. Delay between two communicating partitions in the same processing
element

Fig. 5. Delay between two communicating partitions in different processing
elements

An allocation ai is valid if:

• all the partitions allocated to a processing element PEk

are schedulable on PEk,

• the end-to-end delay constraints Dci are guaranteed for

all the communication chains.

Given an allocation am, this delay is calculated for all the

chains ck. It consists in summing all the WCETs of the

partitions contained in ck and each pair of consecutive parti-

tions (Pi, Pj) in ck, the worst-case distance, noted delay(i, j),
between the end of Pi and the beginning of Pj :

Dck,am
=

∑

(Pi,Pj)∈ck,(Pi,Pj)⊂am

(

delay(i, j)
)

+
∑

Pi∈ck

Ci (8)

Worst-case distance delay(i, j) depends on the allocation.

If the two communicating partitions Pi and Pj are on the

same processor, the communication is local: the delay between

the source and the destination partition execution depends on

the MAF as depicted in figure 4. In this case, the first execution

of the destination partition just after the source one has to be

considered. Let ri (respectively rj) be the release time in the

MAF of the source (respectively destination) partition. Delay

is given by:

delay(i, j) = min
k∈N

(rj + k · Tj − (ri + Ci)) ≥ 0 (9)

If partitions are on different processors, the communication

is remote: transmission latency has to be taken into account

in the delay calculation, i.e. the Worst Case Traversal Time

(WCTT (i, j)) of a message generated by the source partition

Pi to the destination one Pj as illustrated in figure 5. We

also have to take into account the worst-case delay between

the reception of the message and the next execution of the

destination partition. In the worst case, the message arrives

just after the beginning of the destination partition execution

and it has to wait for nearly one period of the destination

partition Pj . Overall the worst case delay between the end of

the source partition execution and the destination one is given

by:

delay(i, j) = WCTT (i, j) + Tj (10)

Fig. 6. Computation of the delay in case of a loop

This worst-case delay can be reduced when a communi-

cation chain comes back to a previous processing element as

depicted in figure 6. In this situation, the button-to-action delay

depends on the first partition allocated to the same processor

as the destination one.

Let:

• lastCouple(ck) be the last couple of partitions of the

chain ck,

• c′k be a communication chain with c′k ⊂ ck.

The first and the last partitions of c′k are allocated to the

same processor. The aim is to find the next execution of the

destination partition following the reception of the data by the

processor as illustrated in figure 6. The delay calculus is done

in two steps: the first one consists in calculating the arrival

time of the data back to the first processor and second finding

the next execution of the destination partition thanks to the

previous calculus. Then, the BTA delay is given by:

if∃k ∈ N /

0 ≤ min
k∈N

(

rj − ri + k · Tj + Cj

−
(

∑

(Pm,Pn)∈c′
k
−lastCouple(c′

k
)

delay(m,n)

+ Ci +WCTT (lastCouple(c′k))
)

)

delayc′
k
= rj − ri + k · Tj + Cj (11)

III. MAPPING ALGORITHM ILLUSTRATION

We illustrate the mapping algorithm on a set of partitions

P = {P1, P2, P3, P4, P5, P6} which requires to be allocated

to up to 3 processing elements, i.e. E = {PE1, PE2, PE3}.

The characteristics of the partitions are depicted in Table I,

which gives for each partition its WCET (equal to Ci) and its

period (Ti).



TABLE I
REAL-TIME SPECIFICATIONS OF PARTITIONS OF THE ILLUSTRATIVE

EXAMPLE

Partitions Ci (ms) Ti (ms)
P1 3 10
P2 2 10
P3 2 20
P4 4 40
P5 1 40
P6 4 40

Three communication chains are defined as follows:

C = {c1, c2, c3}

c1 = {P1, P2, P3}, Dc1,max = 30ms

c2 = {P2, P5}, Dc2,max = 40ms

c3 = {P4, P5, P6}, Dc3,max = 60ms

We assume, on this example, that if the communication

between two communicating partitions is remote, the WCTT

is equal to 5 ms, and 0 if the communication is local.

The partitions are first sorted by increasing periods. Valid

global allocations of all partitions on the available processing

elements are found thanks to an in-depth research across

a tree whose nodes correspond to partial allocations of a

limited number of partitions on a given amount of processing

elements.

Each new child node consists in allocating a new partition

on an increased number of processing elements. The number

of child nodes is given by the lowest number between the avail-

able processing elements maxNbPE and the used processing

elements plus one. A partial allocation is valid when a child

node validates the scheduling and the temporal constraints at

the same time. We generate such child nodes until it remains

a non-allocated partition.

The in-depth search algorithm is illustrated on the above

example and depicted in figure7.

The first step consists in allocating the first partition P1 to

the first processing element PE1 in the partial allocation a1.

The MAF is composed of 1 slot which lasts 10 ms, i.e. the

period of the partition P1. The MAF is composed of only one

slot and the release time r1 is 0:

MAF1 = {s1} (12)

s1,MAF1
= {r1 = 0} (13)

As there is only one partition allocated, the current BTA

delays Dc1,a1
, Dc2,a1

and Dc3,a1
are respectively equal to 7, 3,

9. The MAF satisfies both scheduling and temporal constraints,

so the partial allocation a1 is valid.

The second step consists in allocating the partition P2 using

the previous valid partial allocation, a1. Here, P2 can be

allocated to either PE1, or to a new processing element PE2:

two new partial allocation children are generated, a2 and a3.

If we take the partial allocation a2, the partition P2 has

the same period as P1 and can be allocated before or after

P1 on the processing element PE1. When we build the

corresponding MAF, P2 can be allocated in the same slot:

s1,MAF1
= {r1 = 0, r2 = 3}. (14)

Adding this partition, we have to verify the end-to-end delay

of the partial chain c1, Dc1,a2
, that can be computed by:

Dc1,a2
= delay(1, 2) + C1 + C2 + C3 (15)

delay(1, 2) corresponds to the minimum distance between the

end of the partition execution P1 and the beginning of P2 as

described in figure 4. In this case, k is equal to 0.

delay(1, 2) = min
k∈N

(

r2+k ·T2−(r1+C1)
)

= 3+0∗10−3 = 0

(16)

thus, we have:

Dc1,a2
= delay(1, 2) + C1 + C2 + C3

= 0 + 3 + 2 + 2 = 7 ≤ Dc1,max (17)

As this partial allocation is valid, we try to add the partition

P3 either on this PE1 processing element or on the new one

PE2. So we have two potential partial allocations: a4 and a5.

On node a4, P3 is allocated to the same processing element as

P1 and P2 but it does not have the same period. The MAF’s

hyperperiod has to be modified (and corresponds to the period

of the added partition). This MAF becomes:

MAF1 = {s1, s2} (18)

When enlarging the MAF, previous slots are replicated. We

only have to validate the allocation of a new partition on the

first slots to avoid useless verification (same cyclic MAF).

Slots can be characterized by:

s1,MAF1
= {r1 = 0, r2 = 3, r3 = 5}

s2,MAF1
= {r1 = 0, r2 = 3} (19)

The end-to-end delay of the extended c1 chain has to be

verified:

Dc1,a4
= delay(1, 2) + delay(2, 3) + C1 + C2 + C3 (20)

In that case:

Dc1,a4
= 0 + 0 + 3 + 2 + 2 = 7 ≤ Dc1,max (21)

All constraints are verified, so a4 is a valid partial allocation.

In a fourth step, we try to allocate P4 , either to the same

processing element PE1 in the partial allocation a6, or to the

new processing element PE2 in the partial allocation a7. If we

take a7 case, the MAF on PE1 is not modified and the MAF

on PE2 is quite simple: MAF2 = {s1} with s1 = {r4 = 0}.

As Dc3,a7
is equal to 9, it is a valid node.

The fifth step deals with the allocation of P5, either on PE1,

PE2 or on a new processing element PE3 which corresponds

to the allocations a8, a9, a10 respectively. In the case of node

a10, the communication between P2 and P5 leads to:

Dc2,a10
= delay(2, 5) + C2 + C5 (22)

delay(2, 5) = WCTT (2, 5) + T5 = 5 + 40 = 45 (23)



Fig. 7. An in-depth research in an allocation tree

Dc2,a10
= 45 + 2 + 1 = 48 > Dc2,max (24)

We notice that if partitions P2 and P5 are not on the same

processing element, the end-to-end constraint Dc2 is not

verified. a9 and a10 cannot have new child node.

In a8 partial allocation node, we add P5 in the processing

element PE1. As the partition P5 has a higher period, the

hyperperiod has to be modified and the MAF has to be

extended again. 2 new slots have to be added, s3 and s4
replicate the slots s1 and s2 respectively:

MAF1 = {s1, s2, s3, s4} (25)

As there is enough time in the first slot to run P5, it is allocated

to this slot:

s1 = {r1 = 0, r2 = 3, r3 = 5, r5 = 7}

s2 = {r1 = 0, r2 = 3}

s3 = {r1 = 0, r2 = 3, r3 = 5}

s4 = {r1 = 0, r2 = 3} (26)

Allocating it in the first processing element permits to valid

end-to-end delay Dc2,max.

In a sixth step, we try to allocate P6. Three child nodes

are then generated: a11, a12 and a13. a13 is not valid due to

communication delay. a11 and a12 are valid after a scheduling

search. In the case of the allocation a12, the partition P6

is delayed to begin at 15 ms in order to valid Dc3 with a

loop as illustrated in figure 8. In the case of the allocation

a11, the partition P6 can only be scheduled at the end of the

second or the fourth slots as depicted in figure 9, otherwise the

scheduling does not respect equation 6. The solution consists

in shifting step by step the less frequent partitions in other

slots: P5 is shifted to s2,MAF1
. Then, P6 is scheduled in the

second slot, just after P5, validating Dc3 .

Finally, the validated global allocations are a11 and a12.

Fig. 8. Valid scheduling schemes in allocation a12

Fig. 9. Modification of the scheduling in allocation a11

IV. MAPPING ALGORITHM ON A CASE STUDY

This work is based on an helicopter case study described in

[13]. The aim is to distribute its avionics functions on a larger

number of less complex processors.

Figure 10 describes the applicative architecture, i.e. seven

partitions, P1 to P7: four partitions, P1 to P4, can be dis-

tributed in several processing elements whereas three ones,

P5 to P7, have to be allocated to all of them.

The existing allocation is depicted in figure 11 (1 processing

element, allocation 1). One envisioned evolution of this system

is to replace each processing element by a set of less pow-

erful ones. Figure 11 depicts 4 among 14 possible allocation



Fig. 10. Main flows of communicating partitions

Fig. 11. Possible allocation schemes

schemes on sets of 2, 3 and 4 processing elements.

We focus on the three communicating partitions as depicted

in figure 12. At the end of their execution, partitions send

their computed data, whose sizes are given above the outcome

arrow. One constraint taken into account in this case study

is to avoid any deterioration of running with or without a

distribution of partitions: the button-to-action delay cannot

exceed 78 ms, the current value given by the case study.

We have taken 4 different types of processing elements. The

corresponding WCET for each partition is detailed in Table II.

In this study, the WCTT is equal to 2 ms.

The following results detailed in Table III give the number

Fig. 12. The communication chain c1

TABLE II
REAL-TIME SPECIFICATIONS OF PARTITIONS ACCORDING TO THE

PROCESSOR TYPE

Partitions Proc1 Proc2 Proc3 Proc4 Period
P1 10 12 13 14.5 25
P2 10 10 11 11.5 50
P3 6 6.5 7 8 100
P4 6 6.5 7 8 50
P5 5 5.5 6 6.5 100
P6 2 2 2.5 2.5 100
P7 1 1 1 1.5 100

TABLE III
VALID PROCESSOR ALLOCATIONS ACCORDING TO THE PROCESSOR TYPE

Number of processors Proc1 Proc2 Proc3 Proc4

2 3 2 2 1
3 2 2 2 0
4 0 0 0 0

of valid allocations according to the processor type and the

number of processing elements.

When the processor type Proc4 is used, we note that only

one allocation is valid. This single case is composed of two

processing elements where partitions P2, P3 and P4 are on

the same processing element. The best scheduling is depicted

in figure 13 and shows that there is no waiting time between

the execution of communicating partitions.

Fig. 13. A valid configuration with 2 processors Proc4

Other allocations with two processing elements Proc4 were

not processed. Let us take one of them: partitions P1, P3, P5,

P6 and P7 are allocated to one processing element and P2, P4,

P5, P6 and P7 to the other one. As illustrated on figure 14,

first partition P3 runs and transmits its data at the end of its

execution. Then, the message arrives at destination processor,

but P4 has already begun its execution: the data will be used at

the next cycle of P4, i.e. 50 ms later. At the end of the second

execution of partition P4, there is no waiting time to execute

the partition P2. The end-to-end delay is equal to 79.75 ms,

which is 1.75 ms too much.

Fig. 14. A scheduling configuration of 2 PEs Proc4 showing an exceeded
delay

In the case where 4 processing elements are used, we note

that no valid allocation exists due to the delay which exceeds

78 ms: as a message can arrive when a partition has just begun

its execution, the waiting delay undergone by the received

data is equivalent to the period of the destination partition.

Here, all communicating partitions are on different processing



elements. In a worst case study, the messages can arrive just

after the beginning of destination partitions: the added waiting

time is the sum of the periods of destination partitions, in our

example, two times 50 ms. Thus, the waiting time is higher

than the button-to-action delay.

When the WCETs are lower, i.e. with the processor types

Proc1, Proc2 or Proc3, it exists two allocations with 3

processing elements which meet the different constraints: allo-

cation, scheduling and delay. These allocations are composed

of a first processing element which contains partitions P1, P5,

P6 and P7. The second and the third ones both contain P5, P6

and P7. P2, P3 and P4 are allocated to the different processing

elements according to the communications as illustrated on

figure 15: either P3 and P4 (configuration 3A) or P2 and

P4 (configuration 3B) are on the same processing element. In

these allocations, a single remote communication exists in the

chain. Delays in other allocations exceed the button-to-action

delay because the waiting time becomes too important like

the allocation to four processing elements: as communicating

partitions are on different processing elements, the worst delay

depends on the period of the destination partitions. To avoid

too high delays, two communicating partitions whose destina-

tion partition period is large must be preferably allocated on

the same processing element.

Fig. 15. Possible allocations to 3 specific processors

V. MAPPING ALGORITHM SCALABILITY ANALYSIS

In this section, we are looking for the limits of this algorithm

on a larger architecture. Different parameters are modified at

partitions level:

• the number of partitions: from 10 up to 20,

• the WCET noted C: from 5 ms up to 25 ms.

The partitions have here the same period T = 25ms.

The set C is composed of N chains c of two communicating

partitions: ci = {P2i−1, P2i}. The end-to-end delay Dci,max

is the same for all the chains and is equal to either 20 ms (a

very restrictive delay) or 40 ms.

These partitions are allocated to a set of 10 up to 20

processing elements PE.

A first test consists in allocating 10 partitions to up to 10

processing elements, taking into account different values of

the WCET. Here, Dci,max is equal to 20 ms. We notice in

Tables IV and V that when the WCET increases, analysis

times and numbers of generated MAFs respectively decrease.

A quick cut of the branches is done due to unschedulable

partitions or unsatisfied end-to-end temporal constraints in

partial allocations when the WCET is high.

TABLE IV
ANALYSIS TIME (S) FOR 10 PARTITIONS WHEN Dci,max = 20ms

Number of
PEs

WCET (ms)
5 10 15 20 25

2 0.04 < 10
−4 < 10

−4 < 10
−4 < 10

−4

3 0.06 1 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

4 0.08 1 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

5 and more 0.09 2 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

TABLE V
NUMBER OF GENERATED MAFS FOR 10 PARTITIONS WHEN

Dci,max = 20ms

Number of
PEs

WCET (ms)
5 10 15 20 25

2 8752 7 2 2 1
3 11103 11 2 2 1
4 16445 15 2 2 1
5 16946 18 2 2 1
6 and more 16947 19 2 2 1

TABLE VI
ANALYSIS TIME (S) FOR 10 PARTITIONS WHEN Dci,max = 40ms

Number of
PEs

WCET (ms)
5 10 15 20 25

2 0.06 < 10
−4 < 10

−4 < 10
−4 < 10

−4

3 235 2 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

4 4956 6 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

5 12866 8 ∗ 10
−4 < 10

−4 < 10
−4 < 10

−4

6 15463 1 ∗ 10
−3 < 10

−4 < 10
−4 < 10

−4

7 15560 1 ∗ 10
−3 < 10

−4 < 10
−4 < 10

−4

8 22520 1 ∗ 10
−3 < 10

−4 < 10
−4 < 10

−4

9 21625 1 ∗ 10
−3 < 10

−4 < 10
−4 < 10

−4

10 21054 1 ∗ 10
−3 < 10

−4 < 10
−4 < 10

−4

TABLE VII
NUMBER OF GENERATED MAFS FOR 10 PARTITIONS WHEN

Dci,max = 40ms

Number of
PEs

WCET (ms)
5 10 15 20 25

2 1415 10 2 2 2
3 450923 24 2 2 2
4 2415999 52 2 2 2
5 2908636 62 2 2 2
6 2967705 93 2 2 2
7 1456829 93 2 2 2
8 1457616 93 2 2 2
9 1457662 93 2 2 2
10 1457663 93 2 2 2

A second test consists in slackening the end-to-end temporal

constraint Dci,max. If we compare Tables IV and V corre-

sponding to the analysis with Dci,max=20 ms and Tables VI

and VII corresponding to the analysis with Dci,max=40 ms,

we note an explosion of the number of generated MAFs and

the analysis time when the WCET is low. More branches are

covered because more scheduling schemes are possible and

could be valid.

A third test consists in modifying the number of partitions.

The WCET for all the partitions is equal to 5 ms and the

end-to-end delay constraint Dci,max for all the chain is 20



TABLE IX
NUMBER OF GENERATED MAFS WHEN Ci = 5ms AND Dci,max = 20ms

Number of
PEs

Number of partitions
10 12 14 16 18 20

2 8752 8752 8752 8752 8752 8752
3 11103 14424 822684 822684 822684 822684
4 16445 108876 913731 963771 77703186 77703186
5 16946 129861 1456356 10214991 82803486 83589411
6 16947 130864 1518394 12491602 140640952 1055180557

7 16947 130865 1520158 12643182 148237480 > 1.2 ∗ 10
9

8 16947 130865 1520159 12646020 148561189 > 1.2 ∗ 10
9

9 16947 130865 1520159 12646021 148565468 > 1.2 ∗ 10
9

10 16947 130865 1520159 12646021 148565469 > 1.2 ∗ 10
9

TABLE VIII
ANALYSIS TIME (S) WHEN Ci = 5ms AND Dci,max = 20ms

Number of
PEs

Number of partitions
10 12 14 16 18 20

2 0.04 0.04 0.04 0.05 0.05 0.06
3 0.06 0.08 5.8 6.3 6.8 7.0
4 0.08 0.7 7.6 9.9 841.3 869.4
5 0.09 0.8 12.6 155.8 2061.6 4631.9

6 0.09 0.8 12.9 177.4 4877.0 > 10
5

7 0.09 0.8 12.9 176.2 4189.8 > 10
5

8 0.09 0.8 12.9 175.9 4038,4 > 10
5

9 0.09 0.8 12.9 172.8 3967,7 > 10
5

10 0.09 0.8 12.9 171.0 4068,0 > 10
5

ms. Firstly, we can state with Table VIII that the analysis

time reaches a maximum threshold from a number of pro-

cessing elements, e.g. 6, 7 and 8, ... processing elements for

respectively 10, 12, 14, ... partitions. According to Table IX,

the number of generated MAFs reaches a limit. Secondly, we

note that the analysis time is multiplied by 10 when we add

2 new partitions: as the number of possibilities increases, a

larger number of branches in the allocation tree is covered.

This algorithm gives encouraging results on a larger archi-

tecture, but it reaches its limits due to a temporal explosion

of this worst-case analysis when a larger number of partitions

with small WCET related to their period are processed, or

delays are not constrained. Those limits are due to the large

number of possible scheduling schemes which increases the

size of the search tree.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose an integrated mapping approach

taking into account altogether scheduling of partitions on each

processing element as well as end-to-end timing constraints.

We explain on an illustrative example how a depth search in a

tree of potential partial allocations can be handled. Then, we

show on a helicopter case study how this mapping algorithm

can help choosing the optimal number of processing element

in a distributed IMA architecture. A scalability analysis shows

some limits of such a comprehensive algorithm on large con-

figurations: computing the MAF for each processing element

is costly and a heuristic approach should be proposed.

Ongoing work deals with the definition of such a heuristic

approach in order to be able to find optimal or near-optimal

allocations in the context of complex systems. Moreover, tak-

ing into account local I/O constraints when mapping partitions

is another important objective as well as analysis of a possible

oversampling of emitting partitions (increasing their period to

overcome exceeded end-to-end communication delays).
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