
HAL Id: hal-02348196
https://hal.science/hal-02348196

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A greedy heuristic for distributing hard real-time
applications on an IMA architecture

Émilie Bérard-Deroche, Jean-Luc Scharbarg, Christian Fraboul

To cite this version:
Émilie Bérard-Deroche, Jean-Luc Scharbarg, Christian Fraboul. A greedy heuristic for distributing
hard real-time applications on an IMA architecture. 12th IEEE International Symposium on Industrial
Embedded Systems (SIES 2017), Jun 2017, Toulouse, France. pp.1-8, �10.1109/SIES.2017.7993390�.
�hal-02348196�

https://hal.science/hal-02348196
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22333

Official URL

DOI : https://doi.org/10.1109/SIES.2017.7993390

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Bérard-Deroche, Émilie and Scharbarg,
Jean-Luc and Fraboul, Christian A greedy heuristic for distributing
hard real-time applications on an IMA architecture. (2017) In: 12th
IEEE International Symposium on Industrial Embedded Systems
(SIES 2017), 14 June 2017 - 16 June 2017 (Toulouse, France).

A greedy heuristic for distributing
hard real-time applications on an IMA architecture

Emilie Deroche∗, Jean-Luc Scharbarg∗ and Christian Fraboul∗
∗University of Toulouse, IRIT-INPT/ENSEEIHT, 2, rue Charles Camichel, 31000 Toulouse, France

Email: {Emilie.Deroche, Jean-Luc.Scharbarg, Christian.Fraboul}@enseeiht.fr

the recording of the resulting data in the non-volatile crash-

protected recording medium should be guaranteed [3]. When

data acquisition is done by function f1 and recording is done

by function f2, delay between start of f1 and end of f2 should

not exceed 0.5 seconds. If f1 and f2 are allocated to different

processors, communication delay has to be considered in

the analysis. Thus distribution of avionics functions has to

deal with both scheduling of partitions and end-to-end delay

analysis.

The problem of mapping real-time applications on a dis-

tributed architecture has been addressed in a significant num-

ber of papers.

A first group of solutions (e.g. [4]) proceed in two steps:

first, partitions are scheduled on execution nodes, second,

flows are routed on the avionics network. Such approaches

cannot be directly applied to our problem. It would come to,

first assign all the functions to available processing elements

in such a way that at least one valid scheduling exists for

each processing element, second assess that end-to-end delay

constraints are satisfied. First problem is that the number

of candidate allocations explodes when the number of func-

tions increases. Second problem concerns scheduling problem,

which is NP-complete in the strong sense, even in the case of

a single processor [5].

A second group of solutions search for an allocation which

minimizes the communication costs. In [6], authors propose

an algorithm for allocating partitions with an off-line real-time

scheduling, taking into account the traversal time of communi-

cations with a specific protocol (Token Ring): communicating

subsystems are clustered to minimize the bus traffic and

to increase schedulability. In [7], the aim is to cluster the

dependent tasks onto the same machines such that the network

communication is minimized. Such approaches put the focus

on the communication cost, which is only a minor issue in

our case. A more important feature to be considered for our

problem is the value of each end-to-end delay constraint (long

or short).

A third group of solutions implement integrated approaches

where scheduling of partitions and end-to-end delay con-

straints are considered together. Such approaches are the most

promising ones for our problem, since scheduling of partitions

and end-to-end delay constraints are cross-dependent. In [8],

the allocation problem is addressed in the context of auto-

motive. Based on a MILP formulation, tasks are allocated,

signals are mapped to messages and priorities are assigned

Abstract—Current avionics architectures use complex proces-
sors, which are shared by many avionics applications according
Integrated Modular Avionics (IMA) concepts. Using less complex
processors on small aircraft such as helicopters leads to a
distributed IMA architecture. Thus the set of partitions has to be
distributed on the set of available processors. This distribution
has to deal with both schedulability constraints on each processor
and end-to-end latency constraints for chains of communicating
partitions. Several mapping approaches exist for various applica-
tive contexts. An approach has been proposed in the context
of avionics. It implements an exhaustive analysis of all possible
mappings. Time needed to perform this exhaustive analysis is
drastically limited by incrementally mapping avionics functions
and checking both scheduling and end-to-end constraints at each
step. This approach is able to map small avionics application.
However, it doesn’t scale well, mainly because the scheduling
space quickly explodes. In this paper, we integrate a greedy
heuristic in the approach, in order to limit the scheduling space.
We show that the resulting approach scales much better and
gives mapping results which are close to those of the exhaustive
approach.

I. INTRODUCTION

Helicopter and aircraft industries attempt to reduce weight

and power consumption. The IMA architecture is a first step

in this direction: instead of having one function per processor

like in federated architectures, several functions share the same
processor. Most of the time, communication means are also
shared to reduce the number and the weight of cables [1] [2].

Avionics systems are composed of an increasing number of

more and more complex functions. It leads to avionics archi-

tectures composed of powerful and complex processors. Such
processors cannot be used in small aircraft and helicopters
(cost, space, . . .).

A classical solution to deal with this problem is to have
a larger number of (possibly less complex) processors that
can be distributed among the whole helicopter. The problem

is then to distribute avionics functions on these processors in
such a way that timing properties are guaranteed. The first
constraint is to guarantee that the set of functions allocated to a
given processor is schedulable on this processor. Such
scheduling is built statically in IMA: each function is allocated

to dedicated slots. It corresponds to a non-preemptive off-line

scheduling. The second constraint is to guarantee that end-to-

end delay constraints are not exceeded: for example, the delay

between the completion of the data acquisition process and

to tasks and messages. In [9], [10], the focus is put on the

extensibility or the flexibility of the obtained allocation. Those

approaches consider a run-time priority-based scheduling of

tasks as opposed to IMA case where a strictly periodic static

scheduling is built offline. The work presented in [11] con-

siders non-preemptive distributed scheduling problems with

dependencies, strict periodicity constraints and fulfilment of

end-to-end delay constraints. However, it considers synchro-

nized processors, which is not the case for civilian avionics.

An integrated approach, dealing with IMA features, has

been proposed in [12]. The main idea of this approach is to

check both schedulability and delay constraints on-the-fly, i.e.

each time a partition is assigned to a processing element. It

comes to validate partial allocations, where only a subset of

the partitions is allocated. Thus, invalid allocations are early

eliminated. It has been shown in [12] that this approach is able

to distribute small industrial case studies and that it scales well

in a reasonable amount of cases. However, it does not work

when the search space for scheduling is too large. It occurs

when a large number of functions with tight delay constraints

have to be assigned to a number of processors which is hardly

sufficient. Such a situation will occur in the context of avionics

if we want to distribute a significant part of the redundant

avionic functions on a limited number of processors.

The main contribution of this work is to propose and

evaluate a heuristic which drastically limit the search space for

scheduling. The basic idea is to select candidate scheduling,

based on metrics taking into account delay constraints.

The rest of the paper is organized as follows: next Section

develops the problem statement and gives main modelling

assumptions. Section III explains the heuristic algorithm we

propose. Section IV evaluates proposed approach on case

studies and compares it with a previous algorithm. Finally,

section V concludes the paper and proposes directions for

future work.

II. PROBLEM STATEMENT

A. System model

We consider an avionics application defined by a set of

n communicating partitions P = {P1, ..., Pn} which will be

executed on a set of at most maxNbPE processing elements

E = {PE1, ..., PEmaxNbPE
}. In the context of this paper,

we consider that all processing elements are identical. This

is reasonable assumption in our context. Nevertheless, the

proposed approach can be easily extended to the case with

heterogeneous processors.

A partition Pi is characterised by its period Ti and Worst

Case Execution Time (WCET) Ci on any of the (identical)

processors. Classically, we have:

0 ≤ Ci ≤ Ti (1)

Each partition Pi is strictly periodic: the duration between

two consecutive executions is exactly Ti as illustrated in

Figure 1. Periods are assumed harmonic. This is a classical

assumption for avionics systems.

Fig. 1. Strictly periodic partition

A set CH = {ch1, . . . , chm} of m communication chains is

associated to the partitions. Each chain chj = {Pj1 , . . . , Pjk}
indicates that data are transmitted from source partition Pj1 to

destination partition Pjk through intermediate partitions Pjl

(1 < l < k). A delay constraint Dchj ,max is associated to

each chain chj . It defines the maximum allowed delay between

the start of source partition and the end of corresponding

destination partition (end-to-end delay constraint). In this

paper, we assume that delay constraints follow the Button-

To-Action (BTA) semantic defined in [13]. BTA semantic is

illustrated in Figure 2. The end-to-end delay is measured from

the generation of a data by the first partition in the chain to

its first utilization by the last partition in the chain. Other end-

Fig. 2. Button-to-Action semantic

to-end delay semantics have been proposed in [13], e.g. age

delay which considers the last utilization of the data by the

destination partition. In the context of avionics applications,

BTA is the most commonly used semantic. The approach

proposed in this paper can deal with any end-to-end delay

semantic.

Let’s illustrate communication partition features

with the example in Table I. It includes six

TABLE I
REAL-TIME SPECIFICATIONS OF PARTITIONS OF THE ILLUSTRATIVE

EXAMPLE

Partitions Ci (ms) Ti (ms)
P1 3 10
P2 2 10
P3 2 20
P4 4 40
P5 1 40
P6 4 40

partitions with the following communication chains:
ch1 = {P1, P2, P3} with Dch1,max = 30 ms

ch2 = {P2, P5} with Dch2,max = 40 ms

ch3 = {P4, P5, P6} with Dch3,max = 60 ms
Each partition implements a read-execution-write semantic:

at the beginning of its execution, the partition reads data from

its input ports; at the end of its execution, it writes data in its

output ports. Partitions exchange data through virtual channels

(APEX channel in ARINC 653 [14]). This is illustrated in

Figure 3.

Fig. 3. APEX channel

Sampling ports are assumed: at any time only the last data

written in the buffer is considered.

Scheduling of the partitions allocated to a processing el-

ement PEl is defined by IMA. It is based on the off-

line construction of a MAjor Frame MAFl, which statically

defines the periodic execution pattern of all the partitions

allocated to PEl. Such a MAF is shown in Figure 4. It

considers the example in Table I, where partitions P1 and

P3 are allocated to processing element PE1. Since partition

periods are harmonic, the duration DUR(MAFl) of MAFl is

the largest period among partitions allocated to PEl. In Figure

4, DUR(MAF1) is the period of P3, i.e 20 ms. Indeed, we

have T1 = 10 ms and T3 = 20 ms.

A MAF is a sequence of intervals with equal duration. The

duration DUR(intl) of an interval of MAFl is the smallest

period among partitions allocated to processing element PEl.

In Figure 4, MAF1 is composed of two intervals of 10 ms,

the period of P1.

Each partition Pi allocated to a processing element PEl

is allocated one slot every Tl

DUR(intl)
interval. The duration

of this slot is Ci, i.e. Pi WCET. Since partition executions

have to be strictly periodic, slots allocated to a given partition

have to be periodic. In Figure 4, P1 is allocated one slot per

interval, while P3 is allocated one slot every two intervals.

Fig. 4. MAF illustration

ri defines the start time of the first slot allocated to partition

Pi in MAFl. In the example in Figure 4, we have r1 = 0 and

r3 = 3

B. Allocation process

The goal is to find all valid allocations of a set of partitions

P with communication chains CH on up to maxNbPE

processing elements. An allocation is valid iff there exist

at least one set of MAF (one per processing element) such

that each partition is periodically scheduled on its allocated

processing element and end-to-end delay constraints are met.

The allocation process is based on the approach presented

in [12]. Schedulability as well as end-to-end constraint ver-

ifications are done on-the-fly, i.e. after each allocation of a

partition. The idea is to early eliminate groups of invalid

allocations and, thus, to limit the search space.

This approach is illustrated on the example in Table I. A

tree including all possible allocations is covered in a depth-

first manner. A part of this tree is shown in Figure 5. The

process starts with an empty allocation (root of the tree). First,

P1 is allocated to a first processor (it can be any processor,

since they all are identical). On the next level of the tree,

next partition P2 can be assigned to the same processor as

P1 (left son) or to a different one (right son). In each node,

both schedulability of partitions already allocated to processors

and end-to-end delay constraints are verified. It comes to find

a valid set of MAFs (one MAF per processor), i.e. e set of

MAFs such that no end-to-end constraint is violated. This set

of MAFs is built by adding the partition allocated in the current

level of the tree to the valid set of MAFs built in the father

node. If a valid set of MAFs is found in a given node, then,

the process moves to the next level in the tree where possible

allocations for the following partition are tested (for instance,

in figure 5, P3 is considered after P2). If no valid set of MAFs

is found, the process backtracks to the father node where it

searches for another valid set of MAFs. A valid allocation is

found in each node where a valid set of MAFs is successfully

built and all the partitions have been allocated. It corresponds

to lower level nodes in the tree (after the allocation of P6 in

figure 5).

Fig. 5. Tree cover

End-to-end delay computation for a given chain has been

detailed in [12]. An end-to-end delay is composed of worst-

case execution time of partitions and worst-case durations be-

tween these executions. Two cases have to be considered when

computing the worst-case duration between two consecutive

partitions of a chain:

• when both partitions are allocated on the same processor,

this worst-case duration only depends on the MAF of this

processor; it is the largest duration between consecutive

executions of the two partitions (we assume sampling

ports);

• when partitions are allocated on different processors,

Worst-Case Traversal Time between the two processors

as well as waiting delay on the destination processors are

added; since processors are not synchronized, the worst-

case waiting delay is the period of the second partition.

When a partition of a chain is not yet allocated, only its WCET

is considered (null duration between its execution and the

executions of the preceding and following partitions in the

chain).

All the details of this end-to-end delay computation can be

found in [12].

It should be noticed that, in the context of this paper, we

consider a unique worst-case traversal time (WCTT) for all

the flows and we assume that it has been predetermined before

starting the allocation process. Since this WCTT has to capture

all possible allocations, it is pessimistic. The computation is

based on existing worst-case end-to-end delay analysis ap-

proaches, e.g. the ones presented in [15] for avionics switched

Ethernet networks. Such approaches are quite fast since they

provide results in a few seconds on a configuration with one

thousand flows. However, running such an approach in each

node of the allocation tree will not scale.

C. MAFs construction

The problem is to schedule off-line a set of strictly periodic

partitions with harmonic periods. Korst and al. show that

the problem of non-preemptively scheduling periodic tasks

is NP-complete in the strong sense in the case of a single

processor, but that it is solvable in polynomial time if the

periods are harmonic [5]. It has been shown in [16], [17]

that a valid scheduling of tasks with harmonic periods on

a single processor exists iff one such scheduling based on

the bin structure exists. Thus it comes to schedule tasks by

increasing periods in bins. The bin size corresponds to the

smallest period among tasks and the number of bins is equal to

the ratio between the longest and the smallest period. Indeed,

since periods are harmonic, the least common multiple (LCM)

of the periods is the largest period among tasks.

Our MAF construction is based on this algorithm, since it

fits with our problem. We illustrate this MAF construction

on the example in Table I. Part of the tree of considered

allocations is shown in figure 5. The unique WCTT is equal

to 5 ms in this example.

Let’s consider the node where partitions P1, P2 and P3 have

been allocated to first processor and P4 is allocated to second

one (bold text). A valid scheduling of these four partitions on

first and second processors is shown in Figure 6 (a). At this

point, P5 can be allocated to the first processor, the second one

or another one. Let’s assign it to first one. Figure 6 (b) depicts

a first possible scheduling, where P5 is placed in the first

available interval (immediately after P3). The obtained MAF

set is valid, since end-to-end delay constraints are satisfied.

Thus the process advances to P6 allocation. A first solution

is to assign P6 to the first processor. In this case, P6 can be

scheduled in the second (Figure 6 (c)) or fourth interval in

the first processor MAF. However, both solutions lead to ch3

end-to-end constraint violation. It means that there is no valid

MAF set in this node of the tree. Thus the process backtracks

and searches for another valid MAF set when P1, P2, P3 and

P5 are allocated on the first processor and P4 is allocated on

the second one. Such a valid MAF set is depicted in figure

6 (d). P5 is moved to the second interval. Then the process

tries again to allocate P6 to the first processor. A valid MAF

set is found. Thus, the current node corresponds to a valid

allocation.

III. HEURISTIC FOR VALID MAF SET SELECTION

It has been shown in [12] that such an approach is able to

distribute small industrial case studies and that it scales well

in a reasonable amount of cases. However, it doesn’t work

if we want to distribute a large number of redundant avionic

functions on a limited number of processors. This is due to

the fact that the number of MAF sets to be tested explodes.

In order to deal with this explosion, we propose to eliminate

backtracking, using a greedy heuristic. The idea is to choose

the most promising valid MAF set in each node of the tree

and to never look for another valid MAF sets in this node.

The choice of the most promising valid MAF set is based

on the potentialities of each valid MAF set for the allocation

of the remaining partitions. In this paper, we consider that the

potentialities of a valid MAF set are based on the sum fc of

margins for communication chains in the current allocation:

fc =
∑

chi∈CH⊂A

machi,A (2)

where

machi,A = Dchi,max −Dchi,A (3)

The margin of a communication chain is the difference be-

tween the chain constraint and the current end-to-end delay

Dchi,A of each chain chi. The aim of this metric is to choose

the scheduling which maximizes the flexibility for allocating

remaining partitions belonging to communication chains.

Coming back to the example in Figure 6, at the point

when partition P5 is allocated to processor one, schedulings

in Figure 6 (b) and (d) are both candidates. Potentialities of

the first scheduling is:

fc = (30− 17) + (40− 35) + (60− 54) = 24

and potentialities of the second one is:

fc = (30− 17) + (40− 33) + (60− 54) = 26

Thus, the second scheduling is selected. As previously ex-

plained, it leads to a valid total allocation.

In [12], partitions were processed by increasing periods. The

goal was to limit the search space for candidate schedulings

at upper levels in the tree. Indeed, allocating partitions with

Fig. 6. Scheduling search

large periods increases the size of the MAF, leading to a much

larger number of candidate schedulings. Delaying as much as

possible the allocation of partitions with large periods also

limits the increasing of candidate scheduling.

In the approach presented here, the problem is a bit dif-

ferent, since only one scheduling is selected in each node,

without backtracking. It follows that the number of schedul-

ings considered by the selection process in each node remains

very small, even for large MAFs. Thus, limiting MAF size

in early steps of allocation process will not bring significant

improvement in terms of execution time.

Conversely the heuristic for valid MAF set selection is

based on margins for communication chains. Thus starting the

allocation process with partitions belonging to communication

chains with small margins should bring more flexibility in the

last steps of the allocation process (when the last partitions

have to be allocated). Consequently, partitions are sorted by

increasing chain margin. At the beginning of the process,

the margin of a communication chain is its end-to-end delay

constraint minus the worst-case execution time of all its

partitions. Then partitions are sorted in such a way that, if a

partition Pi belongs to one chain which has a smaller margin

than all the chains including partition Pj , Pi is processed

before Pj .

IV. CASE STUDIES

The heuristic approach proposed in this paper and the

exhaustive integrated one in [12] have been implemented. Two

comparisons have been conducted. First one considers a small

helicopter application. Second one considers various larger

arbitrary configurations.

First goal is to measure to which extend the heuristic ap-

proach misses valid allocations which are found by exhaustive

one. Second goal is to measure the gain brought by the

heuristic approach in terms of execution time.

The worst-case traversal time for a flow a assumed to be 1

ms.

A. Helicopter application

We consider the Vehicle Monitoring System whose applica-

tive architecture is summarized in Figure 7 [18]. It includes

seven partitions and six communication chains (two of them

are shown in Figure 7). This application is replicated three

times for redundancy reasons.

Up to now, each replica is implemented on one powerful

processor. The aim is to use less complex processors which

should be distributed in different locations in the helicopter.

Figure 8 shows 4 candidate allocations for one replica, using

between one and four processors (many other allocations can

be envisioned). We can see that, due to applicative constraints,

Fig. 7. Main flows of communicating partitions

partitions P5, P6 and P7 have to be replicated on all proces-

sors. Indeed, these partitions collect log information from other

partitions.

Fig. 8. Possible allocation schemes

Table II gives the period of each partition as well as its

WCET on the envisioned less powerful processor.

TABLE II
REAL-TIME SPECIFICATIONS OF PARTITIONS OF THE VEHICLE

MONITORING SYSTEM

Partitions Ci (ms) Ti (ms)
P1 10 25
P2 10 50
P3 6 100
P4 6 50
P5 5 100
P6 2 100
P7 4 100

Both exhaustive and heuristic approaches have been tested

on this application, taking into account the replicas. For the

exhaustive one, two cases have been considered: in the first

one, partitions are processed by increasing period. In the

second one, a random order is used.
All approaches find 625 valid allocations. It means that,

for this specific system, the heuristic approach misses no

solution. Thus, the selection of a valid MAF set in each node

is pertinent.
Figure 9 shows the execution time and the memory needed

by each approach to find the first valid allocation, while Figure

Fig. 9. Time and memory, first solution

Fig. 10. Time and memory, all solutions

10 gives the same information for the full process (find all

valid allocations). All approaches get the first valid allocation

in less than 100 ms with similar memory usage. For the full

process, the heuristic approach outperforms the exhaustive

one, both in terms of execution time (11 seconds versus 162

when partitions are sorted by increasing periods and 381 when

they are not) and memory usage. This is due to the drastic

limitation of considered valid MAF sets.

B. Arbitrary configurations

Configurations including various number of partitions are

considered. The first one includes 30 partitions. Each partition

has a period T = 25 ms and a WCET C = 5 ms. There are

15 communication chains. Each one includes two partitions.

End-to-end delay constraint is 20 ms for each chain.

The partitions are allocated to a set of 2 to up to 10

processing elements.

Fig. 11. Both approaches, first solution, Dchi,max = 20ms

Fig. 12. Heuristic approach, one solution, Dchi,max = 20ms

First we use both exhaustive and heuristic approaches to

find the first valid allocation. For the exhaustive one, we

consider that partitions are processed by increasing periods.

Both approaches find the same first solution, which means

that, once again, valid MAF set selection has no impact on the

result. Figure 11 shows that the heuristic approach significantly

reduces the execution time: when the limit on the number of

processors is 5, the execution time is 177 026 seconds for

the exhaustive approach and 3 seconds for the heuristic one.

We can observe that the execution time increases with the

limit on the number of processors until this limit is 7. Then

it decreases. This is due to the fact that nodes in the tree are

visited from right to left. The goal is to maximize the number

of processors for the distribution of the configuration. On this

specific configuration, a valid allocation is quickly found when

at least 8 processors are available. This is not the case with

less processors.

Fig. 13. Exhaustive approach, one solution, Dchi,max = 20ms

Fig. 14. Heuristic approach, all solutions, Dchi,max = 20ms

Similar results are obtained with different numbers of par-

titions as depicted in Figures 12 (heuristic approach) and 13

(exhaustive approach).

When searching for all valid allocations, the exhaustive

approach does not finish in a reasonable time while the

heuristic one find all valid allocations in less than 1000 s for

all tested configurations, except the one with 30 partitions on

up to 8 processors.

Figure 15 shows that the execution time needed to find all

valid allocations significantly increases when chain constraints

are relaxed to 40 ms. This is due to the fact that the number of

valid allocations drastically increases. Thus very few branches

are pruned and the algorithm has to visit most of tree nodes.

However, the heuristic algorithm always terminates in less than

4000 seconds.

All these results show that the heuristic approach scales

much better than the exhaustive one. Thus it is a very promis-

ing solution for distribution of avionics applications, since the

Fig. 15. Analysis time comparison to find the first and all solutions with the
heuristic algorithm, 10 partitions Pi = (25, 5) and Dchi,max = 40ms

size of these applications usually does not exceed the size of

configurations we have considered in this paragraph. On all

tested configurations, the heuristic approach finds the same

valid allocations as the exhaustive one. It means that selecting

a valid MAF set based on the margin of communication

chains is a good solution. Actually, end-to-end communication

constraints are the most difficult ones to be satisfied, especially

because processing elements are not synchronized.

V. CONCLUSION

The goal of this paper was to propose a scalable approach

for the distribution of avionics application composed of a set

of partitions on a set of processors. The proposed approach

is based on the exhaustive one proposed in [18]. It checks

both schedulability and end-to-end delay constraints on-the-

fly, i.e. each time a partition is allocated to a processor. Main

contribution of this paper is to propose a greedy heuristic

which drastically limits the search space for scheduling. At

each step, the most promising scheduling is selected and all

other valid schedulings are eliminated. The selection is based

on the available margin for communication chains.

We show on a small helicopter application and on various

larger configurations that this greedy heuristic drastically re-

duces the execution time without missing valid solutions.

Thus, the proposed approach is a promising candidate for

the distribution of avionics applications.

Next step is to integrate inputs and outputs, such as displays,

sensors and actuators, in the distribution process. This can be

done by considering specific processing elements where these

inputs and outputs are pre-allocated. Then the distribution

process starts from a non-empty allocation. We can guess that

it will reduce the search space, since additional constraints on

communication chains integrating inputs and outputs should

lead to early elimination of invalid partial allocations.

Another important problem concerns the choice of one

allocation in the obtained set of valid ones. Flexibility and

extensibility are very important in the context of avionics,

since we don’t want to modify the whole allocation when the

application slightly changes. Interesting solutions are proposed

in [9] and [10]. We plan to investigate their integration in our

approach.

REFERENCES

[1] P. Bieber, F. Boniol, M. Boyer, E. Noulard, and C. Pagetti, “New
challenges for future avionic architectures,” Journal Aerospace Lab,
vol. 4, May 2012.

[2] J. Moore, Digital Avionics Handbook, Second Edition - 2 Volume Set.
CRC Press 2000, 2001, ch. Advanced distributed architectures, pp. 33–
1–33–12.

[3] ED-112A: Minimum operational performance specification for crash

protected airborne recorder systems, EUROCAE, EUROCAE Std.,
September 2013.

[4] A. Al Sheikh, “Resource allocation in hard real-time avionic systems.
scheduling and routing problem,” Ph.D. dissertation, EDSYS, September
2011.

[5] J. Korst, E. Aarts, and J. K. Lenstra, “Scheduling periodic tasks,”
INFORMS Journal on Computing, vol. 8, no. 4, pp. 428–435, 1996.

[6] K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time tasks:
An np-hard problem made easy,” Real-Time Systems, vol. 4, no. 2, pp.
145–165, 1992.

[7] C. Ekelin and J. Jonsson, “A lower-bound algorithm for minimizing
network communication in real-time systems,” in Parallel Processing,

2002. Proceedings. International Conference on, 2002, pp. 343–351.
[8] Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, and A. Sangiovanni-

Vincentelli, “Optimization of task allocation and priority assignment in
hard real-time distributed systems,” ACM Transactions on Embedded

Computing Systems, vol. 4, December 2012.
[9] P. Emberson and I. Bate, “Stressing search with scenarios for flexible

solutions to real-time task allocation problems,” IEEE Transactions on

Software Engineering, vol. 36, no. 5, pp. 704–718, October 2010.
[10] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-

Vincentelli, “Optimizing the software architecture for extensibility in
hard-real-time distributed systems,” IEEE Transactions on Industrial

Informatics, vol. 6, pp. 621–636, November 2010.
[11] O. Kermia, “Ordonnancement temps rel multiprocesseur de tches

non-premptives avec contraintes de prcdence, de priodicit stricte et
de latence,” Ph.D. dissertation, 2009, thse de doctorat dirige par
Sorel, Yves Informatique Universit de Paris-Sud. Facult des Sciences
d’Orsay (Essonne) 2009. [Online]. Available: http://www.theses.fr/
2009PA112291

[12] E. Deroche, J.-L. Scharbarg, and C. Fraboul, “Mapping real-time
communicating tasks on a distributed ima architecture,” in Emerging

Technologies Factory Automation (ETFA), 2016 IEEE 21th Conference

on, Sept 2016, pp. 1–8.
[13] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson, “A compositional

framework for end-to-end path delay calculation of automotive systems
under different path semantics,” Proceedings of the IEEE Real-Time

System Symposium - Workshop on Compositional Theory and Technol-

ogy for Real-Time Embedded Systems, Barcelona, Spain, November 30,

2008, 2008.
[14] Avionics application software interface, part 1 - Required services,

ARINC specification 653P1-3, Aeronautical radio, Inc., Aeronautical
radio, Inc. Std., November 2010.

[15] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Improving the worst-case
delay analysis of an AFDX network using an optimized trajectory
approach,” IEEE transactions on industrial informatics, vol. 6, no. 4,
pp. 521–533, Novembre 2010.

[16] F. Eisenbrand, K. Kesavan, R. S. Mattikalli, M. Niemeier, A. W.
Nordsieck, M. Skutella, J. Verschae, and A. Wiese, “Solving an avionics
real-time scheduling problem by advanced ip-methods,” in European

Symposium on Algorithms. Springer, 2010, pp. 11–22.
[17] F. Eisenbrand, N. Hähnle, M. Niemeier, M. Skutella, J. Verschae, and

A. Wiese, Scheduling Periodic Tasks in a Hard Real-Time Environment.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 299–311.

[18] E. Deroche, J.-L. Scharbarg, and C. Fraboul, “Performance evaluation of
a distributed ima architecture,” in Work-in-Progress Proceedings, Real-

Time Systems (ECRTS), 2015 27th Euromicro Conference on, Sept 2015,
pp. 17–20.

