
HAL Id: hal-02348192
https://hal.science/hal-02348192v1

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Upper bound computation for buffer backlog on AFDX
networks with multiple priority virtual links

Rodrigo Coelho, Gerhard Fohler, Jean-Luc Scharbarg

To cite this version:
Rodrigo Coelho, Gerhard Fohler, Jean-Luc Scharbarg. Upper bound computation for buffer backlog on
AFDX networks with multiple priority virtual links. Annual ACM Symposium on Applied Computing
(SAC 2017), Apr 2017, Marrakech, Morocco. pp.586-593. �hal-02348192�

https://hal.science/hal-02348192v1
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22332

Official URL

DOI : https://doi.org/10.1145/3019612.3019729

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Coelho, Rodrigo and Fohler, Gerhard and
Scharbarg, Jean-Luc Upper bound computation for buffer backlog on
AFDX networks with multiple priority virtual links. (2017) In: Annual
ACM Symposium on Applied Computing (SAC 2017), 4 April 2017 - 6
April 2017 (Marrakech, Morocco).

Upper Bound Computation for Buffer Backlog on
AFDX Networks with Multiple Priority Virtual Links

Rodrigo Coelho
Technische Universität

Kaiserslautern, Germany
coelho@eit.uni-kl.de

Gerhard Fohler
Technische Universität

Kaiserslautern, Germany
fohler@eit.uni-kl.de

Jean-Luc Scharbarg
Université de Toulouse,

France
jean-

luc.scharbarg@enseeiht.fr

ABSTRACT
In recent avionics systems, AFDX (Avionics Full Duplex
Switched Ethernet) is the network used to replace the previ-
ously deployed point-to-point networks. In AFDX networks,
nodes are not synchronized and therefore data contention re-
peatedly occurs at the switches output ports. AFDX switches
implement output buffers on each output port to address the
data contention issue. Considering the safety critical appli-
cation of AFDX networks, overflow of these buffers must be
avoided at all cost to prevent data loss.

In this paper we consider AFDX networks that allow for the
classification of traffic into more than two priority levels. We
present a novel method to compute an upper bound for the
backlog of each priority buffer of each output port on a AFDX
network with multiple priority traffic.

Keywords
Networks, buffer backlog, upper bound, AFDX network

1. INTRODUCTION
Avionics full duplex switched Ethernet (AFDX), standard-
ized as ARINC 664-P7 [1], is an Ethernet based network tai-
lored to account for avionics constraints. Avionics functions
are distributed on a set of end systems (ES) interconnected
by an AFDX network. Each ES is connected to exactly one
switch port and each switch port is connected to at most
one ES. AFDX switches relay all ingress frames according
to the store and forward paradigm.

DOI: http://dx.doi.org/10.1145/3019612.3019729

End systems exchange frames through virtual links (VLs). A
VL statically defines a unidirectional virtual communication
channel between one source ES and one or more destination
ESs. A bandwidth allocation gap (BAG), a minimum and a
maximum frame length (Smin and Smax) and a priority level
define the properties of a VL. The BAG defines the minimum
time between the transmission of two consecutive frames of
the associated VL: consequently, we can classify a VL as a
sporadic flow. The path of each virtual link is fixed and de-
fined at design time. The current ARINC 664-P7 standard
defines two priority levels for VLs. However, some commer-
cial AFDX products allow for the assignment of multiple
priority levels to VLs. For instance, the AFDX switch pre-
sented in [10], permits the classification of virtual links with
8 priorities, allowing the generation of a non-preemptive rate
monotonic frame schedule.

AFDX end systems do not share any notion of global time
and consequently are not synchronized. Thus, frames that
ingress a switch from separate physical links might compete
for the same output port at the same moment in time, lead-
ing to data contention. AFDX resolves this data contention
issue by means of buffering [1]. Due to the safety criti-
cal requirements of avionics systems, buffer overflow and
the resulting data loss must be avoided at all cost. There-
fore, the network designer must reserve enough memory for
each buffer so that they do not overflow at run time. Over-
reservation, however, has to be avoided. Due to the non
synchronized dispatch of frames, obtaining the largest buffer
backlog by simulating all possible combinations of frame ar-
rivals is intractable for an industrial AFDX network.

We consider, in this work, a AFDX network with multiple
priority traffic and present a method to compute an upper
bound for the backlog of each buffer on the network. The
main contribution of this paper is twofold: first, present-
ing the arrival order of the frames that leads to the largest
backlog (worst case scenario) for each priority buffer on each
output port of each switch; second, present the equations
to compute an upper bound for this backlog, providing a
method to dimension AFDX buffers for multiple priority
traffic.

This paper focuses on the worst case analysis, the respective
proofs, and equations for the upper bound computation. We
defer to a future work the comparison between the upper
bounds achieved with the method presented in this paper
against those achieved by other existing methods.

The paper is organized as follows: Section 2 presents the
related work; Section 3 presents the assumptions, notations
and definitions used in this paper; Section 4 presents an
overview of our method; Sections 5 presents the worst case
scenario and the upper bound computation for the buffer
backlog of AFDX networks with multiple priority traffic;
Section 6 discusses the applicability of our method in switches
with assumptions different from those used in this paper;
and Section 7 presents the conclusions and future work.

2. RELATED WORK
Several methods have been presented to compute an upper
bound for the buffer backlog of AFDX networks under differ-
ent assumptions. Next we present the related work grouped
by the number of addressed priorities.

Single priority traffic: [2] presents a method to provide
the exact analysis of AFDX networks and the respective
computation of exact end-to-end delays. This method how-
ever does not scale and consequently can not be used in
industrial AFDX networks with hundreds or thousands of
virtual links. [3] computes backlog upper bounds using the
trajectory approach (TA). The authors show that for the
majority of the investigated case, TA leads to bounds tighter
than network calculus (NC). [8] shows that the end-to-end
delay bounds (and possibly the buffer backlog upper bound)
computed by the trajectory approach can be optimistic in
some cases and identifies the source of the optimism. This
problem was addressed by [9]. Most recently, [7] presented
the forward end-to-end delay approach (FA) which computes
an upper bound for the end-to-end delay for AFDX networks
based on the maximum backlog of single priority traffic. As
an intermediate result of the end-to-end delay, FA computes
the largest buffer backlog for each output port.

Two priorities traffic: Results on the upper bound for the
buffer backlog of AFDX networks with two priority traffic
have been presented in [6]. However, some of the conditions
assumed for the worst case scenario are not realistic, e.g.
frames arriving in decreasing order of size per priority level
independent of their virtual links.

Many priorities traffic: [3] uses network calculus to com-
pute stochastic upper bounds for multiple priority traffic.
The authors consider that the system interconnected with
the AFDX network can handle buffer overflow and assume
that applications are designed to give accurate results even if
they miss some frames. [4] presents the computation for the
buffer backlog upper bound of AFDX networks under the
unrealistic assumption that all frames have the same size.

In comparison to previous work, our paper computes a deter-
ministic, i.e. not stochastic, upper bound for the backlog of
each priority buffer of each output port on a AFDX network
with multiple priority levels traffic. Our solution further
relaxes the unrealistic assumption that all frames have the
same size.

3. ASSUMPTIONS, NOTATIONS AND DEF-

INITIONS
This paper assumes an AFDX network N comprised of a
set of AFDX nodes, i.e. end-systems and switches as de-

scribed in the AFDX standard [1], a given network topology,
a network bandwidth BW constant and equal for all physical
links, a set of virtual links and fixed paths for each virtual
link. Further, this paper assumes:

• each virtual link is classified with one out of a set of
priority levels (one, two or more priority levels)

• the network switches apply the fixed priority first-in
first-out (FP/FIFO) algorithm to dispatch the ingress
frames to the respective output ports

• switches dispatch ingress frames according to the store
and forward paradigm, i.e. a frame can only be trans-
mitted after it is completely stored in the output buffer

• data transfer occurs bit-wise, i.e. frames are copied
to and removed from the output buffers bit by bit,
respectively as frames ingress or egress

• the path of each virtual link is known

• each output port of each switch has one buffer for each
priority level.

Additionally, this paper assumes that there exist a method
that provides the frames in the largest busy period encoun-
tered by a frame of each virtual link. The trajectory ap-
proach, for instance, is one possible method. Notice that
any other method that computes the number of competing
frames can be used in our approach.

This paper uses the terminology time of transmission and
time of arrival to refer to the time when a frame is com-
pletely transmitted and received, respectively. Further, the
terms ingress and arrival of frames, and egress and trans-
mission of frames are used interchangeably. We use the
term competing frames to refer to all frames present in the
busy period of the virtual link under analysis and scenario
to refer to a specific arrival sequence of competing frames.
We consider that each full-duplex connection (link) between
two nodes in the network is seen by each node as two unidi-
rectional links: one input and one output link.

Table 1 presents the terms, indices and sets used to describe
and to compute the upper bound for the buffer backlog in
each buffer of each switch on an AFDX network.

We summarize the meaning of three functions presented in
Table 1 as follows: s(fa) computes the size of a given frame
fa; t(s(fa)) computes the time required to transmit this
frame; d(time) is the inverse function of t(size), i.e. com-
putes the amount of data transmitted during a given interval
of time. One can compute the data transmitted during the
transmission time of fa as d(t(s(fa))), which is equivalent to
s(fa). Notice that, different from s(), d() takes a time value
as an input. In this paper, the positive part of any variable is
represented with the notation ()+, e.g. (∆)+ = max(0,∆).

4. OVERVIEW
Algorithm 1 presents an overview of the steps used in our
method to compute an upper bound for the buffer backlog
on the output ports of AFDX nodes. In order to compute
an upper bound for the backlog of a buffer on the network
(for each output port o – Line 1, one buffer per priority
p – Line 2), we compute the competing frames (Line 4) of
each egress virtual link v (Line 3) with the same priority as

Table 1: Notations
N AFDX network, i.e. switches, end-systems, net-

work topology and virtual links (including their
routes)

BW Network bandwidth
O Set of output ports in the network
o, p, i , v Indices used to represent a switch output port,

priority, input link and a virtual link, respectively
CFv,o Set of frames that compose the busy period of a

frame of the virtual link v on the output port o.
Po Set of priorities of all VLs that egress the output

port o (same port as virtual link v)
Io Set of input links connected to the same switch

as the output port o
Vo,p Set of virtual links of priority p that egress the

output port o

Vo,p,i Set of virtual links of priority p that egress the
output port o and ingress from the input link i

* Index and acronym used to represent the scenario
leading to the largest backlog faced by a virtual
link (worst case scenario)

’ Index and acronym used to represent a scenario
other than the worst case scenario

ω Time when the first frame starts to arrive in the
scenario under analysis

α Time when the first frame starts transmission in
the scenario under analysis

β Time when the latest frame of priority other than
the frame under analysis completes transmission

θp Time when the latest frame of the priority under
analysis or of higher priority arrives

s(data) Function that computes the size of data
t(size) Function that computes the time required to

transmit some data of length equals to size over
a physical link, i.e. t(size) = size/BW

d(time) Function that computes the maximum amount of
data transmitted on a physical link during a time
length equal to time, i.e. d(time) = time ∗BW

σp
ALL

Sum of the size of all frames with priority p

σp
Interval

Sum of the size of frames with priority p trans-
mitted during a given interval

R*p

(b−a)
Amount of received(R) data of priority p in sce-

nario * during the interval]a, b]. T *p

(b−a)
repre-

sents the respective amount of transmitted data
P-buffer,
P-frame,
P-data

Respectively, buffer, frame and data of priority p

B*p
θp

P-buffer backlog at time θ*p in the worst case
scenario

Bo,p,v,max Largest P-buffer backlog perceived by a frame of
the virtual link v

Bo,p,max Largest P-buffer backlog, i.e. after considering all
priority p virtual links

blp(t) Function to compute P-buffer backlog at time t

δR’p
τ The difference on the amount of data that ingress

from ω* until τ between the scenario ’ and *. δT ’p
τ

is the counterpart for egress frames

the buffer under analysis. Then, we compute in Line 5, the
largest backlog encountered by a frame of this virtual link.
In Line 7, we calculate the upper bound for the backlog of
the buffer of priority p by computing the largest backlog
among all virtual links of priority p that egress the output
port o.

Algorithm 1 Upper bound computation overview

1: for each output port o ∈ O do
2: for each priority p ∈ Po do
3: for each virtual link v ∈ Vo,p do
4: CFv,o = GetCompetingFrames(N, o, v)
5: Bo,p,v,max = ComputeBacklog(CFv,o)
6: end for
7:

B
o,p,max = max

∀v∈Vo,p
(Bo,p,v,max)

8: end for
9: end for

In order to improve readability, the next sections omit the
output port index o whenever possible.

4.1 Intervals
For the analysis of the buffer backlog of any given priority,
e.g. P, we investigate the transmission and reception of P-
frames during time intervals classified according to Table 2.
This table presents the buffer backlog accrual according to
the reception and transmission of P-frames as well as to the
size of the respective interval. It is noteworthy that any time
interval that does not match the properties of Table 2 can be
decomposed into smaller intervals until each of them adheres
to properties of an interval type presented in Table 2.

Table 2: Interval types description and respective
buffer backlog accrual
interval
type

ingress of
P-frames

egress of
P-frames

backlog accrual

1 Yes No σP
Interval

2 Yes Yes σP
Interval

− s(Interval)

3 No No 0

4 No Yes < 0

In intervals of type 1, P-frames ingress and no P-frame
egresses during the whole interval. Consequently, the back-
log accrual is equal to the sum of all P-data that ingress P-
buffer in this interval. In intervals of type 2, P-frames ingress
and egress during the complete interval. Consequently, the
backlog accrual is equal to the sum of all P-data that ingress
P-buffer minus the length of the interval. In intervals of
type 3, no P-frame ingresses or egresses the buffer and con-
sequently the P-buffer backlog does not change. In intervals
of type 4, no P-frame ingresses while P-frames egress during
the complete interval. Thus, the backlog decreases during
type 4 intervals.

The example in Figure 1 depicts all types of intervals. The
upper part of the figure presents the ingress competing frames
on the input links IL1 to IL4 and the egress frames on the
output link (OL). The central part of Figure 1 presents the
backlog on P-buffer and lower part the intervals types.

Next, we present the important points in time used for the
backlog computation of the P-buffer backlog. Notice that
the scenario index (*, ’) is omitted since the following ex-
planations apply for any scenario.

P
- b
u
ff
e
r

b
a
c
k
lo
g

OL

IL 1

IL 2

IL 3

IL 4

ω
′

α
′

θ
′p

t

frames

hp

p

lp

1
2
3
4

in
te
rv
a
l

ty
p
e

Figure 1: Example scenario. Ingress and egress
frames at the top, buffer backlog as a function of
time in the middle and interval types at the bottom

• ω: start of arrival of the first ingress frame

• α: start of transmission of the first egress frame

• β: time when the latest frame of priority other than
the one under analysis completes transmission

• θp: time when the latest frame of the priority under
analysis or of higher priority arrives

For the sake of simplicity and without loss of generality, we
assume in this paper that the start of arrival of the first
ingress frame occurs at t = 0, i.e. ω = 0.

Additionally, we define a new variable ∆ to represent the
amount of transmitted data between θp and β, i.e. ∆ =
d(θp−β). Negative values of ∆ are analyzed separately and
reflect scenarios in which the latest frame of priority other
than P egress after the ingress of the latest P-frame.

5. BUFFER BACKLOG UPPER BOUND

FOR MANY PRIORITIES TRAFFIC
We divide this section into three parts: the first part presents
the scenario leading to the largest backlog (worst case sce-
nario); the second presents the computation of the buffer
backlog upper bound encountered by a frame of the virtual
link under analysis; and the third presents the backlog upper
bound computation for the buffer under analysis.

We assume that each virtual link is classified with one pri-
ority (P) out of a set of many priorities, not only two. For
the analysis of the backlog of the P-buffer encountered by
a virtual link v on a output port o, we classify each virtual
link that egresses this output port into: HP, LP or P to re-
fer to the virtual links with higher, lower priority or same
priority than the virtual link under analysis, respectively.

5.1 Worst Case Scenario
This section starts presenting a formal description of the
worst case scenario and the respective proofs. Then, we
present the computation of the important points in time
used in the computation of the buffer backlog upper bound.
This section concludes describing the impact on the upper

P
- b
u
ff
e
r

b
a
c
k
lo
g

OL

IL 1

IL 2

IL 3

IL 4

ω∗ α∗ β∗ θ∗p

t

frames

hp

p

lp

1
2
3
4

in
te
rv
a
l

ty
p
e

Figure 2: Worst-case scenario for P-buffer consider-
ing the same competing frames of Figure 1

bound computation due to some mutually exclusive condi-
tions assumed in the description of the worst case scenario.

Figure 2 depicts the worst case scenario (index *) for the P-
buffer backlog with the same competing frames of Figure 1.
Theorem 1 describes the properties of the worst case scenario
for the P-buffer backlog.

Theorem 1. The scenario leading to the largest backlog
encountered by a frame of a virtual link of priority P presents
the following properties: i) the smallest sum of lengths of
type 2 intervals, ii) no type 4 interval before the arrival of
the latest P-frame, iii) no type 2 interval before the latest
type 1 interval, and iv) the largest P-buffer backlog occurs at

the point in time when the latest P-frame arrives, i.e. θ*p.

Next, we prove the four properties of Theorem 1.

i) Smallest sum of lengths of type 2 intervals

Proof. The backlog at θ*p is equal to the sum of all
ingress P-data minus the sum of all egress P-data until θ*p.
Considering that no type 4 interval occurs before θ*p, P-
data can only egress during type 2 intervals, therefore the
backlog at θ*p is equal to:

B
*p

θ*p
= σ

p
ALL −

∑
s(Intervaltype 2)

Consequently, the shorter the sum of lengths of type 2 in-
tervals, the larger the P-buffer backlog at θ*p. Thus, in the
worst case scenario, the shortest sum of lengths of type 2
intervals occurs.

ii) No type 4 interval occurs before the arrival of the
latest P-frame

Proof. During intervals of type 4 the amount of data
in the P-buffer decreases (see Section 4). Consequently, in
the worst case scenario no interval of type 4 occurs until the
last P-frame arrives.

iii) No type 2 interval occurs before the latest type
1 interval

Proof. Let β’ represent the transmission time of the last
frame of priority other than P in a scenario different than

the one described in Theorem 1, i.e. the counterpart of β*.
We compare the buffer backlog in two different scenarios:
the scenario described by Theorem 1 and another scenario
in which P-frames are transmitted before β’. We prove that
there exists no scenario in which the buffer backlog is larger
than the backlog at θ*p in a scenario described by Theo-
rem 1.

Let B’p
τ be the buffer backlog of scenario ’ at a given moment

in time τ and B*p
τ be the buffer backlog of scenario * at the

same time τ . We prove that B’p
τ at any point in time is

not larger than the buffer backlog at θ*p in the worst case
scenario.

The buffer backlog of scenario ’ at any point in time τ is
equal to the buffer backlog of scenario * at the same time
τ plus the difference (increase or decrease) of the amount
of data that ingresses minus the difference on the amount
of data that egresses P-buffer from ω* until τ . We assume
ω* = 0, and represent B’p

τ as:

B
’p
τ = B

*p
τ + δR

’p
τ − δT

’p
τ (1)

where

δR
’p
τ = R

’p
τ −R

*p
τ (2)

δT
’p
τ = T

’p
τ − T

*p
τ (3)

In the worst case scenario, we represent the backlog at θ*p

w.r.t. any point in time τ as:

B
*p

θ*p
=B

*p
τ +R

*p

(θ*p−τ)
− T

*p

(θ*p−τ)
(4)

Consequently, from Equation (1) and (4) we represent the

difference between B
*p

θ*p
and B’p

τ as:

B
*p

θ*p
−B

’p
τ =R

*p

(θ*p−τ)
− T

*p

(θ*p−τ)
− δR

’p
τ + δT

’p
τ

Considering that, per definition R(a−b) = Ra −Rb, then:

R
*p

(θ*p−τ)
= R

*p

θ*p
−R

*p
τ = σ

p
ALL −R

*p
τ

σ
p
ALL = R

’p
τ +R

’p

(θ’p−τ)

After some algebraic manipulation we have:

B
*p

θ*p
−B

’p
τ =R

’p

(θ’p−τ)
− (T *p

(θ*p−τ)
− δT

’p
τ) (5)

We prove, in the Appendix, that Equation (5) is larger than
or equal to zero for any value of time τ .

iv) The largest P-buffer backlog occurs at θ*p

Proof. According to Theorem 1, in the worst case sce-
nario no type 4 interval occurs before θ*p, i.e. the backlog
on the P-buffer does not decrease until θ*p. Therefore, the
value of the P-buffer backlog can be represented by an in-
creasing function blp(t) where t varies from ω* until θ*p and

consequently: blp(θ*p) ≥ blp(τ), ∀ ω* ≤ τ ≤ θ*p

5.1.1 Computation of β*, α*, θ*p

According to Theorem 1, in the worst case scenario, no in-
terval of type 2 or 4 occurs before β* and no P-frame arrives
after θ*p. Consequently, in the worst case scenario, intervals

of type 2 may only occur between β* and θ*p. Thus, the
sum of the lengths of type 2 intervals is limited by θ*p − β*.
Therefore, the smallest sum of lengths of type 2 intervals
requires the largest β* and the shortest θ*p.

The largest β* implies the largest amount of time, after ω*,
in which no P-frame is transmitted. Three effects may delay
the transmission of P-frames and define the value β*: idle
time, blocking and interference.

The store and forward characteristic of AFDX switches leads
to idle time during the arrival of the first competing frame.
This idle time, in turn, delays the transmission of all com-
peting frames. Blocking and interference occur when the
delay on the transmission of a frame is caused by frames of
lower and higher priority, respectively.

In the worst case scenario, the largest sum of those effects
occur and results in the value for β*:

β
* = max idlev +max interfv +max blockv (6)

Because of the initial idle time caused by store and forward,
the larger the first ingress frame, the larger the initial idle
time (and consequently the larger α*). [3] has proven that
there exists no scenario in which the sum of idle times on
the output link is larger than the length of the largest frame
(assuming no idle time on the input links). Therefore, the
largest idle time occurs when the first arriving frame is the
largest (see Figure 2 from ω* until α*), i.e.:

max idlev = α
* = t(s(fmax)) (7)

The largest possible interference occurs when all HP-frames
delay the transmission of P-frames stored in the P-buffer.
Therefore, in the worst case scenario, all HP-frames arrive
from their respective input links and are transmitted before
the first P-frame starts transmission. Equation 8 computes
the maximum interference.

max interfv = t(σhp
ALL) (8)

To ensure that no P-frame is transmitted before β*, we
assume that the largest HP-frame is the first transmitted
frame.

Two categories of frames might be blocked: HP-frames (by
LP-frames and P-frames) and P-frames (by LP-frames). Nev-
ertheless, in the worst case scenario, we account for block-
ing caused only by LP-frames. For a P-frame to block a
HP-frame, this P-frame must arrive before the transmission
of the HP-frame, and consequently, before β*. However, no
P-frame is transmitted before β* (Theorem 1 properties ii
and iii) and consequently not before the latest HP-frame.
Therefore, we do not consider the blocking caused by P-
frames.

A LP-frame can only egress when no P-frame or HP-frame
is stored in their respective buffers at the moment when the
output port is not transmitting any frame. Blocking oc-
curs when a P-frame or a HP-frame is completely stored in
its respective buffer while the LP-frame egresses, i.e. if an
LP-frame is the first arriving frame and starts transmission
just before the complete arrival of the blocked frame. In the
worst case scenario, the largest LP-frame is the first arriving
frame and the blocked frame arrives a short amount of time

(ǫ) later. The impact of both blocking and interference on
the analysis of the P-buffer backlog is the same: they post-
pone the transmission of P-frames and consequently lead to
an increase on the backlog in the P-buffer. Therefore, we
assume that in the worst case scenario, the transmission of
the first HP-frame is blocked by the largest P-frame, which
in turn delays the start of the transmission of P-frames (see
Figure 2). Equation (9) computes the largest blocking time:

max blockv = t(s(f lp,max)) (9)

For the analysis of virtual links with the highest priority
among all competing frames, no HP-frames exists and con-
sequently max interfv = 0. Similarly, for the analysis of
virtual links with the lowest priority among all competing
frames, no LP-frames exists and consequently max blockv =
0.

In order to compute the smallest value for θ*p, we define θ*pi
as the arrival time of the latest P-frame of each input link
i . Consequently, the arrival time of the last P-frame among
all input links is:

θ
*p = max

∀ī∈Io
θ
*p

ī

We use the term “sequence” (seqi) to define the set of com-
peting frames that ingress from the same input link i . Equa-
tion (10) computes the size of a sequence:

s(seqi) =
∑

∀fk
∈CF

v̄,o,∀v̄∈V
o,p,i

∀p̄∈P
o

s(fk) (10)

For a scenario with no idle time on the input links, Equa-
tion (11) computes the arrival time of the last frame on an

input link (θ*pi) by adding the size of the sequence on this
input link (s(seqi)) to time when the first frame of this input
link (f1

i) starts transmission (s(gapi)):

θ
*p
i = t(s(gapi) + s(seqi)) (11)

According to Equation (11), the only term on the compu-

tation of θ*pi that depends on the arrival order of frames is
s(gapi). Consequently, the smallest value of s(gapi) leads to

the smallest value of θ*pi . We recall that, in order to ensure
the largest idle time, the largest frame is transmitted first,
which per definition arrives at α*. Consequently no other
frame arrives before α*. We assume that, if more than one
frame arrives at the same time, the tie break rule always
favors the largest backlog accrual (see Section 6). The value
of s(gapi) is equal to:

s(gapi) = d(α*)− s(f1
i) (12)

According to Equation (11) and (12), the larger s(f1
i) the

shorter θ
*p
i . Consequently, in the worst case scenario, the

largest frame of each input link is the first frame to arrive
on this input link. At any output port, the maximum inter-
ference time for the highest priority virtual links is equal to
zero.

5.1.2 Mutually Exclusive Characteristics

Depending on the set of the competing frames, some char-
acteristics used to describe the worst case scenario in the

previous section become mutually exclusive, i.e. they do
not occur in the same scenario. Next, we list all these char-
acteristics (three) and show that they do not result in any
optimistic computation of the upper bound for the P-buffer
backlog.
i) The earliest arriving frame is the largest among
all frames and is a P-frame
In order for the largest idle time to occur, the largest LP-
frame must be the first arriving frame. Additionally, for the
blocking time to be the largest, the largest frame among
all competing frames must be the first arriving frame. For
some sets of competing frames, the largest frame is not a
LP-frame. If the largest LP-frame and the largest frame
among all competing frames do not ingress from the same
input link, we assume that these two frames arrive at the
same time and the LP-frame is transmitted first (tie break-
ing rule favors the worst case scenario). Consequently, both
the largest idle and blocking time occur and no optimism or
pessimism results from this assumption. If these two frames
ingress from the same input link, we assume a hypothet-
ical scenario in which the largest frame is the first ingress
frame and immediately after its complete arrival, the largest
LP-frame starts transmission. Therefore, in this hypotheti-
cal scenario, both the largest idle and blocking time occur.
This assumption imposes a pessimism no larger than the
difference of the size of the largest LP-frame and the largest
of all competing frames.
ii) Idle time occurs before the arrival of last arriving
frame and no idle time occurs on the input links
We assume, for the computation of θ

*p
i that no idle time

occurs on the input links. However, some methods used to
compute the competing frames, e.g. trajectory approach,
require a frame of the virtual link under analysis to be the
latest arriving frame. If the sequence in which the virtual
link under analysis ingress is not the one with the maximum
θ
*p
i , we assume that some idle time occurs on this input
link. This idle time occurs just before the arrival of the lat-
est frame of this virtual link to postpone the arrival of this
frame to θ*p. This assumption does not lead to any opti-
mism or pessimism.
iii) A frame of the virtual link under analysis is the
last and the earliest arriving frame
For the blocking time to be the largest, the largest frame
among all competing frames must be the first arriving frame.
However, as previously mentioned, some methods used to
compute the competing frames, e.g. trajectory approach,
require a frame of the virtual link under analysis to be the
latest arriving frame. If the set of competing frames is such
that there exists only one frame of the virtual link under
analysis and this is the largest among all frames, we assume
that this frame is the latest to arrive. We assume further
that the second largest frame“grows” to the same size of the
latest ingress frame and becomes the earliest arriving frame.
This assumption adds a pessimism to the computation of the
upper bound for the backlog of P-buffer not larger than the
difference between the size of the frame of the virtual link
under analysis and the size of the second largest frame.

5.2 Buffer Backlog Upper Bound encountered
by the Virtual Link Under Analysis

Recall that ∆*p = d(θ*p − β*). The computation of the

P-buffer backlog upper bound can be split into two cases.
If ∆*p ≤ 0, then there exists a scenario in which at a given
point in time all competing P-frames are stored in the buffer.
Consequently, the backlog upper bound is equal to the sum
of the sizes of all competing P-frames. If ∆*p > 0, then ∆*p

represents the length of the single type 2 interval that occurs
from ω* until θ*p. Therefore, the backlog upper bound is
equal to sum of the sizes of all competing P-frames minus
∆*p.

Considering (∆*p)+ = max(0,∆*p), we compute the upper
bound for the P-buffer backlog encountered by a frame of
the virtual link under analysis (line 5 of Algorithm 1) as:

B
o,p,v,max = σ

p
ALL − (∆*p)+ (13)

5.3 Backlog Upper Bound for the Buffer Un-
der Analysis

The computations presented in previous sections refer to
the upper bound for the backlog encountered by a frame
of a virtual link with the same priority as the buffer under
analysis (line 5 of Algorithm 1). After considering the upper
bounds encountered by each egress virtual link with priority
P, Equation (14) computes the upper bound for the P-buffer
backlog on a switch output port (line 7 of Algorithm 1):

B
o,p,max = max

∀v∈V
o,p,i

∀ī∈I
o

(Bo,p,v,max) (14)

6. DISCUSSION
The analysis presented in this paper assumes a switch im-
plementation in which data transfers from and to output
buffers occur bit-wise, i.e. frames are copied to the output
buffers as they ingress and removed from the buffer as they
egress bit by bit. We name this implementation Design 1.
Next we consider two other possible implementation designs
(Design 2 and 3), w.r.t. buffer management, and show how
the backlog upper bound in these implementations relates
with the results presented in Section 5.

We assume, for Design 2, that ingress frames are first com-
pletely stored into an input buffer and then copied “at once”
to the respective output buffer. The output buffer memory
allocated to a frame is only freed after the complete trans-
mission of this frame.

For Design 3, we assume that the amount of data required
to store the complete frame is reserved on the output buffer
as soon as the first bit of the frame ingresses the switch.
Similar to Design 2, we assume that the memory allocated
to a frame is only freed after the complete transmission of
this frame.

The buffer backlog accrual for switches implemented accord-
ing to Design 3 is, in comparison to design 1, larger both
during ingress and egress of frames. During the ingress of a
frame, the pessimism of Design 3 is not larger than the size
of this frame. Considering that frames ingress from multiple
input links, the total pessimism due to ingress of frames is
less than the sum of the largest competing frame of each
input link. Similarly, during the egress of any frame, the
pessimism is not larger than the size of this frame. Thus,
we can compute an upper bound for the buffer backlog of

switches implemented according to Design 3 by adding the
result from Equation (14) to the sum of the size of largest
competing frame of each input link plus the size of the largest
competing frame among all frames.

For Design 2 switches, the buffer backlog accrual due to the
ingress of frames is less than or equal to the one presented
in our paper. The optimism w.r.t. our method is not larger
than the sum of the largest competing frame of each input
link. During the egress of frames, Design 2 switches lead to
more pessimistic backlog accrual then the one presented in
our paper. This pessimism is not larger than the size of the
largest competing frame. Considering that not more than
one frame egresses at the same time, we can compute an
upper bound for the buffer backlog of Design 2 switches by
adding the size of the largest competing frame to the result
from Equation (14).

7. CONCLUSION AND FUTURE WORK
AFDX allows for bandwidth reservation guarantees by means
of virtual links. The current ARINC 664-P7 standard per-
mits the classification of virtual links in one out of two prior-
ity levels: high or low. Recent commercial AFDX solutions,
however allow virtual links to be classified with more prior-
ity levels. Because AFDX nodes are not synchronized, data
contention on switches might occur, and according to the
AFDX standard, this data contention issue is resolved by
means of buffering.

In this paper we propose a novel method to compute an
upper bound for the backlog of each priority buffer of each
output port on a AFDX network with multiple priority lev-
els traffic. The main contribution of this paper is twofold:
first, we present the arrival order of frames that leads to
the largest buffer backlog per priority level and prove its
correctness; second, we present a simple set of equations to
compute an upper bound for the backlog of the buffer of
each priority level on each output port providing a method
to dimension AFDX buffers for multiple priority traffic.

As future work, we will run two types of experiments: first,
to compare the backlog upper bound computed with our
method against the results from the exact analysis (for a
small network) and from network calculus; second, to com-
pare the theoretical and practical time and space complexi-
ties of our method.

8. REFERENCES
[1] ARINC specification 664 P7-1. Aircraft Data Network

Part-7 Avionics Full-Duplex Switched Ethernet
Network, September 2009.

[2] M. Adnan, J. Scharbarg, J. Ermont, and C. Fraboul.
An improved timed automata approach for computing
exact worst-case delays of AFDX sporadic flows. In
Proceedings of 2012 IEEE 17th International
Conference on Emerging Technologies & Factory
Automation, ETFA 2012, Krakow, Poland, September
17-21, 2012, pages 1–8, 2012.

[3] H. Bauer, J.-L. Scharbarg, and C. Fraboul. Worst-case
backlog evaluation of avionics switched ethernet
networks with the trajectory approach. In ECRTS,
pages 78 –87, July 2012.

[4] R. Coelho, G. Fohler, and J. L. Scharbarg.
Dimensioning buffers for AFDX networks with
multiple priorities virtual links. In 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC).

[5] R. F. Coelho, G. Fohler, and J.-L. Scharbarg.
Worst-case backlog for afdx network with n-priorities.
In 13th Workshop on Real-time Networks (RTN’14) in
conjuction with 26th ECRTS, July 2014.

[6] N. R. Garikiparthi, R. F. Coelho, and G. Fohler.
Calculation of worst case backlog for afdx buffers with
two priority levels using trajectory approach. In 12th
Workshop on Real-time Networks (RTN’13) in
conjuction with 25th ECRTS, July 2013.

[7] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard. A
forward end-to-end delays analysis for packet switched
networks. In 22Nd International Conference on
Real-Time Networks and Systems, RTNS ’14. ACM.

[8] G. Kemayo, F. Ridouard, H. Bauer, and P. Richard.
Optimistic problems in the trajectory approach in
FIFO context. In 18th Conference on Emerging
Technologies & Factory Automation, ETFA 2013,
2013.

[9] X. Li, O. Cros, and L. George. The trajectory
approach for AFDX FIFO networks revisited and
corrected. In 2014 IEEE 20th Intl. Conf. on Embedded
and Real-Time Computing Systems and Applications,
pages 1–10, 2014.

[10] TTTech. AFDX Switch 3U VPX Rugged.
https://www.tttech.com/products/aerospace/flight-
rugged-hardware/switches/afdx-switch-3u-vpx-
rugged/.

APPENDIX

This appendix proves that Equation (5) is larger than or
equal to zero for any value of τ such that ω’ ≤ τ ≤ θ’p.

The amount of transmitted P-data from τ until θ*p in the
worst case scenario, is represented by T

*p

(θ*p−τ)
and computed

by Equation (15).

T
*p

(θ*p−τ)
=∆*p − T

*p
τ (15)

In the worst case scenario, no P-data is transmitted before
β*. Thus, for τ ≥ β*, the amount of data transmitted until
τ is equal to (τ−β*); otherwise it is equal to zero. Therefore:

T
*p
τ =d(τ − β

*)+ (16)

And, consequently:

T
*p

(θ*p−τ)
=∆*p − d(τ − β

*)+

Let T
’p

θ’p
be the total amount of P-data transmitted until

θ’p in scenario ’. Considering that the worst case scenario
is the scenario in which less P-data is transmitted until the
transmission of the latest P-frame, we have:

∆*p =T
’p

θ’p
−K | K ≥ 0

Thus:

T
*p

(θ*p−τ)
=T

’p

θ’p
−K − d(τ − β

*)+ (17)

After combining with Equations (3), (16) and (17), Equa-
tion (5) becomes:

B
*p

θ*p
−B

’p
τ =R

’p

(θ’p−τ)
− T

’p

θ’p
+K

+d(τ − β
*)+ + T

’L
τ − d(τ − β

*)+

B
*p

θ*p
−B

’p
τ =R

’p

(θ’p−τ)
− T

’p

(θ’p−τ)
+K (18)

For β’ ≤ τ ≤ θ’pβ’ ≤ τ ≤ θ’pβ’ ≤ τ ≤ θ’p, the interval [τ, θ’p] is of type 2. Per defi-
nition, the amount of ingress P-data is larger or equal than
the egress P-data in this interval (see Section 4). Thus
Equation (18) and consequently Equation (5) are positive
for β’ ≤ τ ≤ θ’p.

For ω’ ≤ τ < β’ω’ ≤ τ < β’ω’ ≤ τ < β’, we analyze the termsR’p

(θ’p−τ)
and T

’p

(θ’p−τ)
:

R
’p

(θ’p−τ)
=R

’p

(θ’p−β’)
+R

’p

(β’−τ)

T
’p

(θ’p−τ)
=T

’p

(θ’p−β’)
+ T

’p

(β’−τ)

and:

R
’p

(θ’p−τ)
− T

’p

(θ’p−τ)
=R

’p

(θ’p−β’)
− T

’p

(θ’p−β’)

+R
’p

(β’−τ)
− T

’p

(β’−τ)

Per definition R
’p

(θ’p−β’)
− T

’p

(θ’p−β’)
≥ 0 (interval of type 2).

To prove that R’p

(β’−τ)
−T

’p

(β’−τ)
≥ 0, we analyze the interval

[τ, β’[. The transmission of all frames with priorities other
than P, obviously including those that arrive in the interval
[τ, β’[, ends at β’. We can draw two conclusions from this
observation: first, the amount of HP-data and LP-data re-
ceived in this interval is less than or equal to the length of
the interval; second, this amount is less than the sum of HP-
data plus LP-data transmitted in this interval. We express
these two conclusions in the next inequations:

R
’hp

(β’−τ)
+R

’lp

(β’−τ)
<d(β’ − τ)

R
’hp

(β’−τ)
+R

’lp

(β’−τ)
≤T

’hp

(β’−τ)
+ T

’lp

(β’−τ)
(19)

Due to possible arrival of P-frames from multiple virtual
links, the amount of P-data arriving between τ and β’ is
larger than the length of this interval minus the sum of HP-
data and LP-data that ingress in this interval, i.e.:

R
’p

(β’−τ)
≥ d(β’ − τ)− (R’hp

(β’−τ)
+R

’lp

(β’−τ)
) (20)

Since there is no idle time on the output link between τ and
β’, the amount of transmitted P-data in this interval is:

T
’p

(θ’p−β’)
= d(β’ − τ)− (T ’hp

(β’−τ)
+ T

’lp

(β’−τ)
) (21)

Subtracting (21) from (20) we have:

R
’p

(β’−τ)
− T

’p

(β’−τ)
≥ (T ’hp

(β’−τ)
+ T

’lp

(β’−τ)
)− (R’hp

(β’−τ)
+R

’lp

(β’−τ)
)

According to (19):

(T ’hp

(β’−τ)
+ T

’lp

(β’−τ)
)− (R’hp

(β’−τ)
+R

’lp

(β’−τ)
) ≥ 0

thus:

R
’p

(β’−τ)
− T

’p

(β’−τ)
≥ 0

Consequently, Equation (18) and Equation (5) are positive
for ω’ ≤ τ < β’.

