
HAL Id: hal-02348159
https://hal.science/hal-02348159

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards schema-independent querying on document
data stores

Hamdi Ben Hamadou, Faïza Ghozzi Jedidi, André Péninou, Olivier Teste

To cite this version:
Hamdi Ben Hamadou, Faïza Ghozzi Jedidi, André Péninou, Olivier Teste. Towards schema-
independent querying on document data stores. 20th International Workshop On Design, Optimiza-
tion, Languages and Analytical Processing of Big Data (DOLAP 2018), Mar 2018, Vienna, Austria.
pp.1-10. �hal-02348159�

https://hal.science/hal-02348159
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22348

Official URL

http://ceur-ws.org/Vol-2062/paper01.pdf

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Ben Hamadou, Hamdi and Ghozzi, Faiza
and Péninou, André and Teste, Olivier Towards schema-
independent querying on document data stores. (2018) In: 20th
International Workshop On Design, Optimization, Languages and
Analytical Processing of Big Data (DOLAP 2018), 26 March 2018 -
26 March 2018 (Vienna, Austria).

Towards schema-independent querying on document data
stores

Hamdi Ben Hamadou
Université de Toulouse, UT3, IRIT, (CNRS/UMR 5505)

Toulouse, France
hamdi.ben-hamadou@irit.fr

Faiza Ghozzi
Université de Sfax, ISIMS, MIRACL

Sfax, Tunisia
faiza.ghozzi@isims.usf.tn

André Péninou
Université de Toulouse, UT2J, IRIT, (CNRS/UMR 5505)

Toulouse, France
andre.peninou@irit.fr

Olivier Teste
Université de Toulouse, UT2J, IRIT, (CNRS/UMR 5505)

Toulouse, France
olivier.teste@irit.fr

ABSTRACT
Document is a pervasive semi-structured data model in today’s
Web and the Internet of Things (IoT) applications where the
data structure is rapidly evolving over time. NoSQL document-
oriented databases are well-tailored to efficiently load and man-
age massive collections of heterogeneous documents without any
prior structural validations. However, this flexibility becomes a
serious challenge while querying a heterogeneous collection of
documents. Hence, it is mandatory for users to reformulate origi-
nal query or to formulate new ones when more structures arrive
in the collection. In this paper, we propose a novel approach to
build schema-independent queries designed for querying multi-
structured documents. We introduce a query enrichment mech-
anism that consults a pre-materialized dictionary defining all
possible underlying document structures. We automate the pro-
cess of query enrichment via an algorithm that rewrites select
and project operators to support multi-structured documents. To
study the performances of our proposed approach we conduct ex-
periments on synthetic dataset. First results are promising when
compared to the normal execution of queries on homogeneous
dataset.

1 INTRODUCTION
The popularity of NoSQL systems is growing in the database
community thanks to their ability to store and query schema-
free data in flexible and efficient ways [8, 21]. The document data
model is pervasive in the most Web and the Internet of Things
(IoT) applications [13], and several database systems support this
data model in an efficient way [1, 4, 5]. Furthermore, in such ap-
plications, the structures of documents representing same entity
are subject to structural changes [7]. An application may face the
problem of dealing with multi-structured data [2]. To formulate
relevant queries, there is a need to have a precise knowledge of
data structures because document stores do not provide native
support for querying multi-structured data. Thus, it is manda-
tory to manually include all possible navigational paths for the
attributes of interest to formulate relevant query. The structural
changes require users to reformulate original query which is a
time-consuming and prone to error task. The challenge addressed
in this paper is how to support querying upon future structural
heterogeneity without affecting the application code.

In the context of document-oriented databases and due to the
flexible nature of documents, it is possible to create a collection

© 2018 Copyright held by the owner/author(s). Published in the Workshop
Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, Vienna,
Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.

of documents describing a single entity with multiple structures.
This characteristic points to several kinds of heterogeneity [20].
The structural heterogeneity refers to diverse representation of
documents, (e.g.: nested or flat structures, nesting levels, etc.)
as shown in Figure 2. The syntactic heterogeneity is a result
of differences in representation of data, (e.g. “movie_title” or
“movieTitle”). Moreover, the semantic heterogeneity is presented
when the same fields may rely on distinct concepts in separate
documents. The aim of this paper is to focus on structural het-
erogeneity.

The problem of schema-independent querying is a hot topic
in the study of document-oriented databases for both industry
and academia [6, 22, 23]. Previous work from the literature re-
solved this issue with the following two approaches: (i) performs
physical integration of data by mapping integrated document
structures into a unified structure [22] and (ii) performs a virtual
integration by introducing a custom interface that proposes new
virtual schema to be learned by the users while querying hetero-
geneous data [23]. The first approach modifies the underlying
data structure, which is not possible while supporting legacy ap-
plications designed to run over original data structures. Moreover,
this approach implies to define the mapping for any original data
structure. The second one requires more efforts from the user to
learn new global structures. This approach is a time-consuming
task and possibly prone to be error when there is a need to query
new documents with new structures since all queries are subject
to revisions.

In this paper, we propose a novel approach to build schema-
independent queries designed for querying multi-structured doc-
uments. We propose a virtual integration that runs in a trans-
parent way, hides the complexity to build expected queries, and
supports structural heterogeneity evolution. Always, we rewrite
the queries during the execution time to guarantee the usage of
the latest structures of documents as defined in the dictionary.

The problem of structural heterogeneity refers to the possi-
bility to find different navigational paths that lead to the same
attribute. The attributes are not located at the same position
inside documents, and having a limited knowledge of naviga-
tional paths is insufficient to retrieve the required information.
In Figure 1, the attribute “country” in documents describing films
may not be relevant to differentiate between “actor .country” or
“director .country.” Some sub-paths may help to resolve the ambi-
guity such as “actors .country” and “director .country” anywhere
in the document. Therefore, some sub-paths may be used rather
than attributes names. In all cases, we hypothesise that there ex-
ist some navigational paths to differentiate the different entities
contained in the document.

{
"movie_title":"Fast and Furious",
"country": "USA",
"actors": [{ "name": "Vin Diesel",

"country": "USA"
}, ...],

"director" : { "name": "F. Gray Gray",
"country": "USA"
}

}

Figure 1: Descriptive fields ambiguity

We introduce the EasyQ, that stands for “Easy Query, ” as
a tool to validate our approach. We give particular interest to
MongoDB for the implementation and evaluation. The primary
contribution of our work is to reformulate users original queries
formulated based on simple knowledge of the descriptive field
or sub-paths that contains the desired information. The users’
queries are formulated based on a schema-independent fashion,
i.e. users can formulate an initial query based on a subset of
possible schemas without carrying about all available structures.
Query rewriting engine is responsible to transparently reformu-
late the initial query to match with all existing schemas returning
a relevant result. To deal with document schema heterogeneity,
we define a dictionary that contains all possible paths for all ex-
isting fields. The query rewriting engine enriches the user query
with all possible paths found in the dictionary for each field used
in the user query. In this paper, we use interchangeably the terms
field, descriptive field and attribute.

The rest of our paper is structured as follows: In section 2, we
illustrate the paper issue. Section 3 reviews the most relevant
works, providing support to query multi-structured documents.
Section 4 describes in details our approach. Section 5 presents our
first experiments and the performances of our approach while
changing the size and the number of schemas per collection. In
Section 6, we summarize our findings.

2 QUERYING DOCUMENT STORES WITH
MULTIPLE SCHEMA ISSUES

As discussed earlier, querying multi-structured data is a complex
task. The problem is which structure to use while formulating
queries and how this choice affects the results. In the following,
we present a simple illustrating example.

Let C = {d1, d2, d3, d4} be a set of four films as documented
in Figure 2. In this example we represent documents using JSON
(JavaScript Object Notation). Most of the NoSQL systems support
this notation of representing semi-structured data. A document
di is defined by a key-value pair (i,vi) where i is the key and vi
is the value described with JSON.

Let us consider that we want to retrieve information related
to available languages for each presented movie. We formulate
a projection query with the fields “movie_title” and “lanдuaдe .”
using MongoDB syntax as follows:

db .C . f ind({}, {“movie_title” : 1, “lanдuaдe” : 1}).

In this query, the field “movie_title” does not cause any dif-
ficulty since it is always at the same structural level in the four
documents.Therefore, the query engine is able to locate all in-
formation related to the field “movie_title .” However, the field
“lanдuaдe” may cause some information loss since it is founded

d1: {
"movie_title":"Fast and furious",
"year":2017,
"language":"English"

},
d2: {

"movie_title": "Titanic",
"details":

{"year":1997,"language":"English"}
},

d3: {
"movie_title": "Despicable Me 3",
"year":2017

},
d4: {

"movie_title": "The Hobbit",
"versions":
[{"year":2012, "language":"English"},
{"year":2013, "language":"French"}]

}

Figure 2: Four documents of films collection

at several positions across documents. Thus, assuming that we
formulate a query with limited knowledge of the structure s2
from d2, we build a query with the fields “movie_title” and
“details .lanдuaдe .”

db .C . f ind({}, {“movie_title” : 1, “details .lanдuaдe” : 1})

Executing such query in MongoDB leads to an incomplete
result since “details .lanдuaдe” field is not available in docu-
ments d1, d3, and d4. The problem comes from the structural
heterogeneity due to the different structural position of the field
“lanдuaдe, ” i.e. “lanдuaдe” in document d1, “details .lanдuaдe”
in document d2, and “versions .lanдuaдe” in document d4. Hence,
we may include all these paths in the query using specific and
often complex syntax.

Moreover, we can try to formulate two different queries. The
first one is formulated over schema s1 of the document d1 in
order to retrieve the list of titles and “lanдuaдe” for each film.
We use the following MongoDB query:

db .C . f ind({}, {“movie_title” : 1, “lanдuaдe” : 1})
We than get the following result:

C1 = [
{“movie_title” : “Fast and f urious”, “lanдuaдe” : Enдlish},
{“movie_title” : “Titanic”},
{“movie_title” : “Despicable Me 3”},
{“movie_title” : “The Hobbit”}]

We formulate the second using the schema s4 of document d4:

db .C . f ind({}, {”movie_title” : 1, ”versions .lanдuaдe” : 1})

We get the following result:

C2 = [
{“movie_title” : “Fast and f urious”},
{“movie_title” : “Titanic”},
{“movie_title” : “Despicable Me 3”},
{“movie_title” : “The Hobbit”, “versions” :
[{“lanдuaдe” : “Enдlish”}, {“lanдuaдe” : “French”}]

]

When executing both queries, the query engine returns two
results. As expected, all possible information related to the field
“movie_title” is returned for all documents as it is located on
document’s root. For the first query, only first document matches
with the field containing “lanдuaдe” information. The second
query succeeded to retrieve “lanдuaдe” information only from
the fourth document. The challenge is how to formulate a single
query and retrieve all information related to the field “lanдuaдe”
without any redundancy. For instance, the same information
related to the field “movie_title” is obtained twice in the resulted
collections C1 & C2.

To solve this we introduce a transparent way to build relevant
schema-independent queries that bypass structural heterogene-
ity in documents stores. A simple knowledge of the required
attributes allows users to retrieve adequate documents regardless
the structural heterogeneity in the collection. This ease simpli-
fies the task for end-users and provides them an efficient way
to retrieve information of interest. In case of there-above ex-
ample, we enrich the original user query by adding all possi-
ble navigational paths to retrieve relevant documents. For in-
stance, we formulate the query db .C . f ind({}, {“movie_title” :
1, “lanдuaдe” : 1, “details .lanдuaдe” : 1, “versions .lanдuaдe”})
in MongoDB syntax. It can bypass the structural heterogeneity
in the current state of the collection and it projects all desired
values.

3 STATE OF THE ART
The widespread use of semi-structured data gives increased inter-
est to build solutions enabling queries over semi-structured data.
We distinguish existing solutions systems on the basis of the
proposed querying approach: 1) schema-dependent querying ap-
proach that requires knowledge of the schema in a similar way as
conventional relational database systems, 2) schema-independent
querying approach that does not need any prior schema knowl-
edge from the user and is able to extract the schemas at querying
time.

The first category of systems is designed to enable queries
based on reliable knowledge about the schema or the navigational
paths for desired values when dealing with nested data. Such
systems offer complicated querying language such as regular
expressions with XQuery or Xpath [17] when dealing with XML
data. XQuery works with the structure to retrieve precisely the
desired results. However, if the user does not know the structure,
it is impossible to write the relevant query. Moreover, a single
query is generally not able to retrieve data when several schemas
are to be considered simultaneously. We can notice the same con-
siderations with JSONiq [9], the extension of XQuery, designed
to deal with large-scale data such as JSON data. Other systems
suggest JavaScript queries API, the case of MongoDB [5], to build
a query by specifying a document with properties expected to
match with the results. It offers a broad range of querying capabil-
ities, in particular data processing pipelines. The API requires a
complex syntax and it is necessary that queries explicitly include
all the various schema structures within documents to access
data. Otherwise, the query engine returns only documents that
match the supplied criteria even if the fields with the desired
information exist but under other paths than those existing in
the query. Another kind of works is SQL++ [19] relies on the
rich SQL querying interface. In this case, it is also mandatory to
express all exact navigational paths in order to obtain the desired
results.

The above-studied systems are designed to support queries
over semi-structured data with known schemas. To formulate
queries user needs to know the exact underlying data structures.
Also, they neglect the fact that user may have limited knowledge
about the data structure and hence may be unable to formulate
correct queries over the heterogeneous dataset.

To overcome these limitations, recent works were conducted
to enable schema-independent querying; the second category
underlined at the beginning of this section. Thus, the schema is
not mandatory to be known in advance at loading time. We clas-
sify the studied works according to two approaches: (i) performs
physical integration by refactoring integrated data structures
into an unified structure; and (ii) adopts virtual integration by in-
troducing either a custom interface and/or a new query language
[23].

In the first direction, several works were designed to deal
with semi-structured data. Those works share the idea of the
schema-on-read. There is no need to define schemas before load-
ing data, they infer the implicit schema later from stored datasets
on query time. They expose for the users a relational view over
the data to help them to build SQL queries. Sinew[22], is able to
infer schemas from semi-structured data. It defines for the user
a logical view on the inferred schema, and it flattens data into
columns to be stored into relational database system (RDBMS).
Drill[12] enables schema-independent querying via SQL over het-
erogeneous data without first defining a schema. It gives support
for nested data. Tenzing[18] infers a relational schema from the
underlying data but can only do so for flat structures that can be
trivially mapped to a relational schema.

The principle of the previous solutions suggests heavy physi-
cal refactorization that requires flattening the underlying data
structures into a relational format using complex encoding tech-
niques. Hence, the refactorization requires additional resources
such as the need for external relational database and extra efforts
to learn the unified inferred relational schema. Besides, some
solutions do not support the flexible nature of semi-structured
data [18] for instance they cannot handle nested data. User deal-
ing with those systems has to learn new schemas every time the
workload changes, or new data comes because there is a need
to re-generate the relational view and the stored columns after
every change.

Virtual integration gets also attention from researchers [14, 23].
Works are inspired by the data lake approach [11] where data
is collected in their original format for later use. We consider
two major classes: i) schema-oriented queries; and ii) keyword
querying.

Works from the first class infer the schema from a collection
of data and offer for the users the possibility to query the inferred
schema and to check whether a field or sub-schema exists or not
to guide them while developing their applications. In [23] the
authors propose to summarize all the document schema under
a skeleton to discover the existence of fields or sub-schemas
inside the collection. In [14] the authors suggest extracting all
the schema that are present in the collection to help final users to
be aware of the schemas and all fields in the integrated collection
of documents. These solutions are limited only to type and field
identification and are not used to determine the different paths
to access a field in the collection.

Keyword querying has been adopted in the context of XML
[10, 24]. The process of answering a keyword query on XML
data starts by identifying the existence of the keywords within
the documents (possibly through some free-text search). They

take as input the searched keywords and return a subset from
the document that matches with the query keywords. A score is
computed based on the structure of sub-documents, and accord-
ing to this score, the respective XML documents containing all
the keywords are returned.

Works in Keyword querying suggest doing a pairwise com-
parison or binary search to identify the possible positions for
queried keywords. This concept is not well tailored for a large
number of documents with complex structures (different nested
elements, numerous attributes, etc.).

From state of the art, we build our approach in the idea of offer-
ing virtual integration to enable schema-independent querying
via the usage of keyword based on the attributes and to support
native semi-structured features such as nested attributes and
support for heterogeneous collections of documents.

Our work relates in some way to previous attempts with XML
keyword querying[16]. The most important contribution of these
earlier efforts is to prevent users from learning complex under-
lying schemas as well as a complex query language to manage
paths. We adopt this idea that the user may not be aware of
all existing schemas and cannot manage too complex queries
in order to enable schema-independent querying based on only
knowledge about the field with the desired information. Themain
difference between our works and the keywords querying is that
we require from the user some simple details about the queried
data. For instance, if we execute a keyword query “Enдlish”. It
is possible to have as result “lanдuaдe” : “Enдlish” and also
“movie_title” : “Johnny Enдlish.” With our approach, we will
specify that we give interest to the field “lanдuaдe” = “Enдlish”
or to the field “movie_title” contains “Enдlish.”

4 QUERYING HETEROGENEOUS
COLLECTION OF DOCUMENTS

In our proposal, we want to enable queries over multi-structured
documents by automatically handling the underlying structural
heterogeneity. Thus, our query rewriting engine will give trans-
parent support for the heterogeneity on both stored and future
new data.

Figure 3: An overview of EasyQ

To give an overview of our approach, let us consider the fol-
lowing selection query (selection operation is defined later in
this section):

σ(“year ”=1997)(C)

We refer to the collection presented in Figure 2 in which we
notice that it exists three distinct navigational paths leading
to the attribute “year , ” i.e. “details .year” “versions .year” and
“year .” For each document, at least one path can lead to the
attribute “year .” It is possible to express the selection predicate
in disjunctive form of navigational paths.

X =

(
(“year” = 1997) ∨ (“details .year” = 1997)

∨ (“versions .year” = 1997)
)

We rewrite the initial query into σ(X)(C). Two conditions have
to be satisfied to select one document, (i) it does exist at least
one navigational path from the sub-conditions of X inside the
document and (ii) the result of evaluating at least one of these
sub-conditions is equal to true. Otherwise, X is equal to false and
the document is not returned in the result.

The challenges are how to enable schema-independent query-
ing in transparent ways and how to support future new structures
without revising the application code.

Figure 3 gives a high-level illustration of our query rewriting
engine called EasyQ. EasyQ is designed to be used early in data
loading phase to materialize a dictionary that tracks the differ-
ent navigational paths, for all attributes. EasyQ is also used at
querying time to enrich the query Q of the user and to bypass
the structural heterogeneity. It takes as input the user query for-
mulated over final fields or sub-paths, and the desired collection.
The query rewriting engine produces one extended query Qext
that will be executed by the underlying document store system.
The result of this extended query is a collection containing rel-
evant information. An important result of such architecture is
that the same user query, evaluated at different moment, will be
rewritten each time. So, if new documents with new structures
have been inserted in the collection (or existing documents are
updated), these new structures are automatically handled and
results remain relevant with the query.

In the rest of this section, we describe the formal model of
multi-structured documents, dictionary, and the querying oper-
ators across multi-structured documents. Finally, we formally
define how we rewrite the queries.

4.1 Multi-structured data modeling
Definition 4.1 (Collection). A collection C is defined as a set of

documents
C = {d1, . . . , d |C |}

Each document di is considered as a (key-value) pair where
the value takes the form: vi = {ai,1 : vi,1, . . . ,ai,n : vi,n }

Definition 4.2 (Document). A document di , ∀i ∈ [1, c], is de-
fined as a (key,value) pair

di = (kdi ,vdi)

• kdi is a key that identifies the document (by abusive nota-
tion we noted i the key kdi in section 1 and 2;
• vdi = {adi ,1 : vdi ,1, . . . ,adi ,n : vdi ,n } is the document
value. The document valuevdi is defined as an object com-
posed by a set of (adi , j , vdi , j) pairs, where each adi , j , is
a string called attribute and each vdi , j , is the value that
can be atomic (numeric, string, boolean, null) or complex
(object, array). A value vdi , j is defined below.

An atomic value is defined as follows ∀j ∈ [1..n]:
• vdi , j = n if n ∈ N∗, the set of numeric values (integer,
float);
• vdi , j = “s” if “s” is a string formulated inUnicodeA∗;
• vdi , j = b if b ∈ B, the set of boolean {true, f alse};
• vdi , j = ⊥ is a null value;

A complex value is defined as follows ∀j ∈ [1..n]:

• vdi , j = {adi , j,1 : vdi , j,1, . . . , adi , j,m : vdi , j,m } is an
object value where vdi , j,k ,∀k ∈ [1..m] are values, and
adi , j,k , ∀k ∈ [1..m] are Strings in A∗ called attributes.
This is a recursive definition identical to document value;
• vdi , j = [vdi , j,l , . . . , vdi , j,l] represents an array of values
vdi , j,k , ∀k ∈ [1..l], l =∥ vdi , j ∥ ;

In case of having document values vdi , j as object or array,
their inner values vdi , j,k can be complex values too allowing
to have different nesting levels. To cope with nested documents
and navigate through schemas, we adopt the navigational path
notations [3, 15].

Definition 4.3 (Schema). The schema, called sdi , is inferred
from the document value vdi = {adi ,1 : vdi ,1, . . . ,adi ,n : vdi ,n }
is defined as

sdi = {p1, . . . ,pmi }

where pj , ∀j ∈ [1..mi], is a path of each attribute of vdi , or
navigational path for nested values such as vdi , j,k . For multiple
nesting levels, the navigational path is extracted recursively to
find the path from the root to the final atomic value that can be
found in the document hierarchy.

A schema svdi of value vdi from document di is formally
defined as:
• if vdi , j is atomic, sdi = sdi ∪ {ai, j };
• if vdi , j is object, sdi = sdi ∪ {adi , j } ∪ {∪p∈sdi , jadi , j .p}

where sdi , j is the schema of vdi , j ;

• if vdi , j is an array, sdi = sdi ∪ {adi , j } ∪
∥vdi , j ∥
j=1(

{ adi , j .k} ∪ {∪p∈sdi , j,k adi , j .k .p}

)
where sdi , j,k is the

schema of the kth value from the array vdi , j ;

Example. Let us consider the documents d1 and d2 of Figure 2
. The underlying schema for both documents is described as
follows:

svd1 = {“movie_title”, “year”, “lanдuaдe”}
svd2 = {“movie_title”, “details”, “details .year”, “details .lanдuaдe”}

We notice that the attribute “details” from document d2 is
a complex one in which are nested the attributes “year” and
“lanдuaдe” which leads to have two different navigational paths
“details .year” and “details .lanдuaдe”.

Definition 4.4 (Collection Schema). The schema SC is inferred
from collection C is defined by

SC =
c⋃
i=1

svdi

Definition 4.5 (Dictionary). The dictionarydictC of a collection
C is defined by

∀pk ∈ SC , dictC = {(pk , △k)}
• pk ∈ SC is a path for an attribute which is present at least
in one document of the collection;
• △k = {ppk,1 , . . . , ppk,q } ⊆ SC is a set of navigational
paths leading to pk ;

For the rest of this paper, we will call equally any path pk as
attribute . We will use dictionary paths and dictionary attributes
accordingly.

Example. The dictionary dictC constructed from the collec-
tionC is defined below, each dictionary entry pk refers to the set
of all extracted navigational paths.

dictC = {
(movie_title, {movie_title}),
(year, {year, details.year, versions.1.year, versions.2.year}),
(lanдuaдe, {lanдuaдe, details .lanдuaдe,

versions .1.lanдuaдe,versions .2.lanдuaдe}),
(details, {details}),
(details .year , {details .year }),
(details .lanдuaдe, {details .lanдuaдe}),
(versions, {versions}),
(versions .1, {version.1}),
(versions .1.year , {versions .1.year }),
(versions .1.lanдuaдe, {versions .1.lanдuaдe}),
(versions .2, {versions .2}),
(versions .2.year , {versions .2.year }),
(versions .2.lanдuaдe, {versions .2.lanдuaдe})
}

For example, the entry
(year , {year , details .year , versions .1.year ,

versions .2.year }) gives all navigational paths leading to
the attribute “year”.

4.2 Querying multi-structured data
Querying multi-structured data is possible via a combination of
a set of unary operators. In this paper, we limit the querying
process to projection and selection operators expressed by native
MongoDB operators “f ind” and “aддreдate”.

4.2.1 Minimal closed kernel of unary operators. We define a
minimal closed kernel of unary operators. We callCin the queried
collection, and Cout the resulting collection.

Definition 4.6 (Projection). The project operator helps to reduce
initial schemas of documents from the collection to a finite sub-
set of attributes as;

πA(Cin) = Cout

whereA ⊆ Sin is a sub-set of attributes from SCin (the schema
of the input collection Cin

Definition 4.7 (Selection). The select operator runs to retrieve
only documents that match some predicates; we call

σp (Cin) = Cout

where p refers to the predicate (or condition) for the selection
operator. A simple predicate is expressed byak ωk vk whereak ⊆
SCin is an attribute, ωk ∈ {= ;> ;< ;, ; ≥ ; ≤ } is a comparison
operator, andvki is a value. It is possible to combine predicates by
these operator from Ω = { ∨, ∧, ¬} and this leads to a complex
predicate.

We call Normp the normal conjunctive form of the predicates
p defined as follows:

Normp =
∧
i

(∨
j
ai ,j ϖi ,j vi, j

)
We consider that all predicates in selection operators as in

normal conjunctive form.

Definition 4.8 (Query). A query Q can be formulated by com-
posing operators.

Q = q1 ◦ · · · ◦ qr (C)

where ∀i ∈ [1, r] qi ∈ {π ,σ }

Example. Let us consider the collection presented in Figure
2.

q1 : σ(“lanдuaдe”=“Enдlish”)(C) = [
{“movie_title” : “Fast and f urious”, “year” : 2017,
“lanдuaдe” : “Enдlish”}

]
q2 : π(“movie_t it le”,“year ”)(C) = [
{“movie_title” : “Fast and f urious”, year : 2017}
{“movie_title” : “Titanic”}
{“movie_title” : “Despicable Me 3”, year : 2017}
{“movie_title” : “The Hobbit”}

]

q3 : π(“movie_t it le”,“year ”)(σ(“lanдuaдe”=“Enдlish”)(C)) = [
{“movie_title” : “Fast and f urious”, “year” : 2017}

]

Here, the query q3 is constructed by combining select and
project operators.

4.2.2 Query extension for multi-structured data. In this sec-
tion, we introduce a new query extension algorithm that au-
tomatically enriches the user query. The native query engine
of document-oriented stores such as MongoDB can efficiently
execute our rewritten queries. Then, it is possible to find out
all desired information regardless the structural heterogeneity
inside the collection.

Algorithm 1: Automatic extension for the initial user
query
input: Q
output: Qext
Qext ← id // identity

foreach qi ∈ Q do
switch qi do

case πAi : // projection

do
Aext ←

⋃
∀ak ∈Ai △k

Qext ← Qext ◦ πAext
end
case σp : // selection

do

Pext ←
∧
i

(∨
j
∨
ak ∈△i, j , ak ϖi, j vi, j

)
Qext ← Qext ◦ σPext

end
end

end

Our approach aims to enable transparent querying on a multi-
structured collection of documents via automatic query rewriting.
This process employs the materialized dictionary to enrich the
original query by including the different navigational paths that
lead to desired attributes. The algorithm 1 describes the query
extension process as:
• In case of projection operation, the algorithm extends the
list of attributesAi by uniting different navigational paths
△k for each projected ak .
• In case of the selection operation, the algorithm enriches
the predicate p, expressed in the normal conjunctive form,
with the set of extended dis-junctions built from the navi-
gational paths △i, j for each attribute ai, j .

Example. Let us consider the query q3 from the previous
example. First, the query rewriting engine starts by extending
the project operator. (line “projection” in Algorithm 1)

π(“movie_t it le”,“year ”)(C)

For each projected field, the process consults the dictionary
and extracts all the possible navigational paths. The dictionary
entry, for the field movie_title, corresponds to:

(movie_title, {movie_title})
So, Aext = {movie_title}
The dictionary entry, for the field year, corresponds to:
(year , {year , details .year , versions .1.year ,

versions .2.year })
So, Aext = {movie_title,year ,details .year ,versions .1.year ,

versions .2.year }
The projection query is then rewritten as:

π(“movie_t it le”, “year ”, “details .year ”, “versions .1.year ”,
“versions .2.year ”)(C)

Next, the process continues with the selection query (line
"selection" in Algorithm 1)

σ(“lanдuaдe”=”Enдlish”)(C)

The dictionary entry for the field “language" corresponds to:
(lanдuaдe, {lanдuaдe,details .lanдuaдe,versions .1.lanдuaдe,

versions .2.lanдuaдe})
So, Pext = {

“lanдuaдe” = “Enдlish”
∨ “details .lanдuaдe” = “Enдlish”
∨ “versions .1.lanдuaдe” = “Enдlish”
∨ “versions .2.lanдuaдe” = “Enдlish”}

The selection is then rewritten as:

σ(“lanдuaдe”=”Enдlish”∨“details .lanдuaдe”=“Enдlish”∨“versions .
1.lanдuaдe”=“Enдlish” ∨ “versions .2.lanдuaдe”=“Enдlish”)(C)

Finally, the query rewriting engine generates the final query
by combining the generated queries:

π(“movie_t it le”,“year ”,“details .year ”,“versions .1.year ”,“versions .2.year ”)
(σ(“lanдuaдe”=“Enдlish”∨“details .lanдuaдe”=“Enдlish” ∨“versions
.1.lanдuaдe”=“Enдlish”∨“versions .2.lanдuaдe”=“Enдlish”))(C))
= [

{“movie_title” : “Fast and f urious”, “year” : 2017},
{“movie_title” : “Titanic”, ”details” : {“year” : 2017}},
{“movie_title” : “The Hobbit”, “versions” : [
{“year” : 2017}]}

]

The query rewriting process injects additional complexity to
the original user’s queries.

5 EXPERIMENTS
In this section, we conduct a series of experiments to study the
aforementioned points:
• Which are the effects on the execution time of the rewrit-
ten queries while varying the size of the collection and is
this cost acceptable or not?
• Is the time to build the dictionary acceptable and what
about the size of the dictionary according to structural
variability?

Next, we explain the experimental protocol, then we study
the queries execution cost, and finally we evaluate the dictionary
generation time and its size.

5.1 Experimental protocol
We choose to run all the queries on synthetic datasets loaded
into the document store MongoDB. In this section, we introduce
the details of the experimental setup, the process of generating
the synthetic datasets and the evaluation queries set. Later on,
we present the results of executing the evaluation set in three
separate contexts. The goal is to compare the cost of executing
the rewritten queries; (i) the cost of executing the original queries
on homogeneous documents, (ii) the execution time of several
distinct queries that we build manually based on each schema.
Then, we study the effects of the heterogeneity on the dictio-
nary in terms of size and construction time. Finally, we evaluate
the scale of the heterogeneity and its impact on generating the
rewritten queries.

We conducted our experiments on MongoDB v3.4. We used
an I5 3.4GHZ machine coupled with 16GB of RAM with 4 TB of
storage space that runs CentOS7.

5.1.1 Dataset. To study the structural heterogeneity, we gen-
erate a custom synthetic datasets. First, we collected a JSON
collection of documents from imdb1 that describe movies. The
original dataset has only flat documents with 28 attributes in
each document. Then, we reuse this flat collection to produce
documents with structural heterogeneity. For each generated
dataset, we can define several parameters such as the number
of schemas to produce in the collection, the percentage of the
presence of every generated schema. For each schema, we can
adjust the number of grouping objects. We mean by grouping ob-
ject, a compound field in which we nest a subset of the document
attributes. In other words, we cannot find the same grouping
objects inside two structures. To make sure about the heterogene-
ity within documents, the grouping objects are unique in every
schema. Only the original fields from the flat dataset are common
to all documents. The values of those fields are randomly chosen
from the original film collection. To add more complexity, we can
set the nesting level used for each structure. For the rest of the
experiments, we built our dataset based on the characteristics
that we describe in the Table 1. We generate collections of 10, 25,
50 and 100 GB of data.

Setting Value
of schema 10
of grouping objects per schema {5,6,1,3,4,2,7,2,1,3}
Nesting levels per schema {4,2,6,1,5,7,2,8,3,4}
Percentage of schema presence 10%
of attributes per schema Random
of attributes per grouping objects Random

Table 1: Settings of the generated dataset

We generate a flat collection with same leaf attributes and their
corresponding values as found in the heterogeneous datasets.
This new collection helps us to have a proper environment and
to compare; the execution time of the rewritten query on the
heterogeneous datasets, versus the execution time of the original
query on homogeneous datasets. Therefore, we ensure that every
1imdb.com

query returns the identical results from both heterogeneous or
flat datasets. The same result implies: i) the same number of
documents, and -0ii) the same values for their attributes (leaf
fields).

5.1.2 Queries. we choose to build a synthetic set of queries
based on the different comparison operators supported by Mon-
goDB. We employed the classical comparison operators, i.e {<
, >, ≤, ≥,=,,} for numerical values as well as classical logical
operators, i.e {and,or } between query predicates. Also, we em-
ployed a regular expression to deal with string values. We select
8 attributes of different types and under different levels inside
the documents in heterogeneous datasets. The Table 2 shows
that for each attribute its type and the selection operator that we
used later while formulating the synthetic queries. In addition,
we present for each attribute the number of possible paths as
found in the synthetic heterogeneous collection, the different
nesting levels and the selectivity of the predicate.

Predicate Attribute Type Operator Paths Depths selectivity
p1 DirectorName String Regex{^A} 8 {8,2,3,9,6,5,4,7} 0,06 %
p2 Gross Int > 100 k 7 {7,8,2,3,9,6,4} 66 %
p3 Language String = "English" 7 {7,8,3,9,6,5,4} 0,018%
p4 Imdb_score Float <4,7 8 {8,7,2,3,4,5,6,9} 29 %
p5 Duration Int ≤ 200 7 {7,8,2,3,6,5,4} 77%
p6 Country String , Null 6 {7,2,3,9,5,4} 100 %
p7 year Int < 1950 7 {7,8,2,3,6,5,4} 23 %
p8 FB_likes Int ≥ 500 7 {6,2,3,8,5,4,3} 83 %

Table 2: Query predicates

We formulate the following 6 queries:

• Q1 : p1 ∧ p2
• Q2 : p1 ∨ p2

With the queries Q1&Q2 the rewritten queries contain 15
predicates unlike the original queries that contains 2 predicates.
15 predicates are due to the 8 existing paths for DirectorName in
p1 plus 7 paths for Gross in p2 that are included in a disjunctive
form as described in rewriting algorithm.

• Q3 : p1 ∧ p2 ∧ p5 ∧ p7
• Q4 : p1 ∨ p2 ∨ p5 ∨ p7

The rewritten versions of Q3 & Q4 contain 29 predicates unlike
the original queries that contain 4 predicates.

• Q5 : p1 ∧ p2 ∧ p5 ∧ p7 ∧ p6 ∧ p3 ∧ p4 ∧ p8
• Q6 : p1 ∨ p2 ∨ p5 ∨ p7 ∨ p6 ∨ p3 ∨ p4 ∨ p8

Finally, the rewritten versions of the queries Q5&Q6 contain 57
predicates unlike the original queries that contain 8 predicates.

The Table 3 presents for each dataset: i) the number of doc-
uments inside the collection, ii) the number of expected results
regarding each executed query.

Collection
size in GB

of
documents Q1 Q2 Q3 Q4 Q5 Q6

10 GB 12 M 520 K 8,4 M 87,2 K 11,8 M 340 12 M
25 GB 30 M 1,3 M 21 M 218 K 29,5 M 850 30 M
50 GB 60 M 2.6 M 42 M 436 K 59 M 1,7 K 60 M
100 GB 120 M 5,2 M 84 M 872 K 118 M 3,4 K 120 M
Table 3: Number of extracted documents per query

Figure 4: Query rewriting evaluations

Collection Query Usage
Homogeneous
Flat documents

QBase
user query Baseline

Heterogeneous
documents

QRewritten Our solution
QAccumulated
the sum of
the ten separated
queries each one based
on a specific schema.

"By hand" query context
Used as a maximum cost line

Table 4: Evaluations context

5.2 Queries evaluation
5.2.1 Queries execution time. We define three contexts on

which we run the above-defined queries. For each context, we
measure the average of execution time after executing each query
at least five times. The order of query execution is set to be
random.

In the following, we present the details of the three evaluations
contexts:
• We call “QBase ” the query that refers to the initial user
query (one of the above-defined queries), and it is executed
over the homogeneous versions of the datasets. The pur-
pose of this first context is to study the native behavior of
the document store. We use this first context as a baseline
for our experimentation.
• The “QRewrit ten” refers to the query “QBase ” rewritten
by our approach. It is executed over the heterogeneous
versions of the datasets.
• The “QAccumulated ” refers to the set of equivalent queries
formulated on each possible schema from the collection.
In our case, it is mad of 10 separated queries since we
are dealing with collections having ten schemas. These
queries are build "by hand" as should have done any user
without any assisting tool. We do not consider the time
necessary to merge the results of each query as the goal
is to compare the time to find the set of result documents.
“QAccumulated ” is obviously executed over the heteroge-
neous versions of the datasets.

Table 4 synthesizes our execution contexts.
As shown in Figure 4, we can notice that our rewritten query,

QRewrit ten , outperforms the accumulated one, QAccumulated .
The difference between the two execution scenarios come from
the capabilities of our rewritten query to include automatically
all navigational paths extracted from the collection. Hence, the
query is executed only once when the accumulated query may
require several passes through the stored collection. This solution

requires more CPU loads and more intensive disk I/O operations.
We move now to study the efficiency of the rewritten query when
compared to the baseline query QBase . We can notice that the
overhead of our solution is up to two times (e.g., disjunctive form)
when compared to the native execution of the baseline query on
the homogeneous dataset. Moreover, we score an overall over-
head that does not exceed 1,5 times in all six queries. We believe
that this overhead is acceptable since we bypass the needed costs
for refactoring the underlying data structures. Unlike the base-
line, our synthetic dataset contains different grouping objects
with varying nesting levels. Then, the rewritten query include
several navigational paths which will be processed by the na-
tive query engine of MongoDB to find matches in each visited
document among the collection.

5.2.2 Dictionary and query rewriting engine at the scale. With
this series of experiments, we try to push the dictionary and the
query rewriting engine to their limits. To this end, we generated
a heterogeneous synthetic collection of 1 GB. We use the primary
28 attributes from the IMDB flat films collection. The custom
collections are generated in a way that each schema inside a
document is composed of two grouping objects with no further
nesting levels. We generated collection having 10, 100, 1k, 3k and
5k schemas. For this experiment, we keep on the use of the query
Q6 introduced earlier in this section.

of schemas rewriting time Dictionary size
10 0.0005s 40 KB
100 0.0025s 74 KB
1 K 0.139s 2 MB
3 K 0.6s 7.2 MB
5 K 1.52s 12 MB

Table 5: Scale effects on query rewriting and dictionary
size

We present the time needed to build the rewritten query in the
Table 5. It is notable that the time to build the rewritten query is
very low, less than two seconds. Also, it is possible to construct
a dictionary over a heterogeneous collection of documents, here
our dictionary can support up to 5 k of distinct schemas. The
resulting size of the materialized dictionary is very encouraging
since it does not require significant storage space. Furthermore,
we also believe that the time spent to build the rewritten query
is really interesting and represent another advantage of our solu-
tion. In this series of experiments, on each time we try to find
distinct navigational paths for eight predicates. Each rewritten

query is composed by numerous disjunctive forms for each pred-
icate. We notice 80 disjunctive forms while dealing with dataset
having 10 schemas, 800 with 100 schemas, 8 k with 1 k schemas,
24 k with 3 k schemas and 40 k with 5k schemas. We believe
that dictionary and the query rewriting engine scale well while
dealing with heterogeneous collection of documents having an
important number of schemas.

5.3 Dictionary construction time
In this part, we give the interest to the study of the dictionary
constructions process. EasyQ offers the possibility to build the
dictionary over existing dataset or during data loading phase.
The dictionary contains the latest version of the data once all
document are inserted. So, the query rewriting engine enrich the
queries based on the new dictionary, otherwise if the process of
data loading is in progress, it may do not take into account the
recent changes. In the following, we study both configurations.
First, we start by the evaluation of the time required to build the
dictionary among pre-loaded five collections of 100 GB having 2,
4, 6, 8 and 10 schemas respectively.

We notice from the results in the Table 6 that the time elapsed
to build the dictionary increases when we start to deal with col-
lections having more heterogeneity. In case of the collection with
10 structures, the time does not exceed 40% when we compare
it to a collection with 2 structures. We can again notice in the
Table 6 the negligible size of the generated dictionaries when
compared to the 100 GB of the collection.

of schema 2 4 6 8 10
Required time (minutes) 96 108 127 143 156
Size of the resulting
dictionary (KB) 4,154 9,458 13,587 17,478 22,997
Table 6: Time to build the dictionary of pre-loaded data

Afterwards, we give the interest to evaluate the overhead
that causes the generation of the dictionary at loading time. We
generate five collections of 1GB having the same structures from
the last experiment (2, 4, 6, 8 and 10 schemas respectively). We
present two measurements in Table 7. First, we measure the time
to simply load each collection (without the dictionary building).
Second, we measure the overall time to build the dictionary while
loading the collection.

#of schemas Load (s) Load and dict. (s) Overhead
2 201s 269s 33%
4 205s 277s 35%
6 207s 285s 37%
8 208s 300s 44%
10 210s 309s 47%
Table 7: Study of the overhead added during load time

In this experiments, we find that the overhead measure does
not exceed 0.5 the time required to only load data. The evolution
of the time while adding more heterogeneity is linear and not
exponential which is encouraging. Many factors may affects the
query construction phase. The number of attributes, the nesting
levels may increase or decrease the overhead. The advantage our
solutions is once the data is loaded and the dictionary is built
or updated, the rewritten query takes automatically all changes
into account.

6 CONCLUSION
NoSQL databases are often called schemaless because they may
contain variable schemas among stored data. Nowadays, this
variability is becoming a common standard in many applications
as for example web applications, social media applications or
internet of things world. Nevertheless, the existence of such
structural heterogeneity makes it very hard for users to formulate
queries to find out relevant and coherent results.

In this paper, to deal with structural heterogeneity, we suggest
a novel approach for querying heterogeneous documents describ-
ing a given entity over NoSQL document stores. The developed
tool is called EasyQ . Our objective is to allow users to perform
their queries using a minimal knowledge about data schemas.
EasyQ is based on two pillars. The first one is a dictionary that
contains all possible paths for any existing field. The second one
is a rewriting module that modifies the user query to match all
field paths existing in the dictionary. Our approach is a syntac-
tic manipulation of queries. So, it is grounded on an important
assumption: the collection describes homogeneous entities, i.e.,
a field has the same meaning in all document schemas. In case
of ambiguity, the user should specify some sub-path in order to
overcome the ambiguity. If this assumption is not guaranteed,
users may face with irrelevant or incoherent results. Nevertheless
this assumption may be acceptable in many applications, such as
legacy collections, web applications or internet of things data.

In our first experiments, the evaluation consists in comparing
the execution time cost of basic MongoDB queries and rewritten
queries proposed by our approach. We conduct a set of tests by
changing two primary parameters, the size of the dataset and
the structural heterogeneity inside a collection (number of differ-
ent schemas). Results show that the cost of executing rewritten
queries proposed in this paper is higher when compared to the
execution of basic user queries, but always less than twice. The
overhead added to the performance of our query is due to the
combination of multiple access paths to a queried field. Never-
theless, this time overhead is neglectful when compared to the
execution of separated “by hand” queries for each schema while
heterogeneity issues are automatically managed.

These first results are very encouraging to continue this re-
search way and need to be strengthened. Short term perspectives
are to continue evaluations and to identify the limitations re-
garding the number of paths and fields in the same query and
regarding time cost. More experiments still to be performed on
larger datasets and real case datasets. Another perspective is to
enhance the current queries possibilities to introduce all existing
classical operators of query languages (contains, etc .). It is also
necessary to deal with other querying operators, particularly the
aggregation operator.

The first long-term perspective consists in studying the real-
time building of the dictionary when integrating data in order to
take into account all possible queries: insert but also delete and
update. It’s likely the current simple structure of the dictionary
will be transformed in depth to support more complex updates
such as update and delete operations. The second long-term
perspective consists in managing multi-store databases. The goal
would be to extend the proposed approach to query data stored
in different types of databases in a way independent from the
various data schemas and stores. The final goal would be: how to
query “transparently” any data store meanwhile being unaware
of schemas or real fields names?

REFERENCES
[1] J Chris Anderson, Jan Lehnardt, and Noah Slater. 2010. CouchDB: The Definitive

Guide: Time to Relax. " O’Reilly Media, Inc.".
[2] Mohamed-Amine Baazizi, Houssem Ben Lahmar, Dario Colazzo, Giorgio

Ghelli, and Carlo Sartiani. 2017. Schema inference for massive json datasets.
In Extending Database Technology (EDBT).

[3] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. 2017.
JSON: data model, query languages and schema specification. In Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. ACM, 123–135.

[4] Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, and Ronan
Tournier. 2015. Implementation of multidimensional databases in column-
orientedNoSQL systems. In East European Conference on Advances in Databases
and Information Systems. Springer, 79–91.

[5] Kristina Chodorow and Michael Dirolf. 2010. MongoDB: The Definitive Guide
O’Reilly Media. (2010).

[6] Mohamed Lamine Chouder, Stefano Rizzi, and Rachid Chalal. 2017. Enabling
Self-Service BI on Document Stores.. In EDBT/ICDT Workshops.

[7] Alejandro Corbellini, Cristian Mateos, Alejandro Zunino, Daniela Godoy, and
Silvia Schiaffino. 2017. Persisting big-data: The NoSQL landscape. Information
Systems 63 (2017), 1–23.

[8] Avrilia Floratou, Nikhil Teletia, David J DeWitt, Jignesh M Patel, and Donghui
Zhang. 2012. Can the elephants handle the nosql onslaught? Proceedings of
the VLDB Endowment 5, 12 (2012), 1712–1723.

[9] Daniela Florescu and Ghislain Fourny. 2013. JSONiq: The history of a query
language. IEEE internet computing 17, 5 (2013), 86–90.

[10] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. 2003.
XRANK: Ranked keyword search over XML documents. In Proceedings of the
2003 ACM SIGMOD international conference on Management of data. ACM,
16–27.

[11] Rihan Hai, Sandra Geisler, and Christoph Quix. 2016. Constance: An intelli-
gent data lake system. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 2097–2100.

[12] Michael Hausenblas and Jacques Nadeau. 2013. Apache drill: interactive
ad-hoc analysis at scale. Big Data 1, 2 (2013), 100–104.

[13] Robin Hecht and Stefan Jablonski. 2011. NoSQL evaluation: A use case oriented
survey. In Cloud and Service Computing (CSC), 2011 International Conference
on. IEEE, 336–341.

[14] Victor Herrero, Alberto Abelló, and Oscar Romero. 2016. NOSQL design for
analytical workloads: variability matters. In Conceptual Modeling: 35th Inter-
national Conference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings
35. Springer, 50–64.

[15] Jan Hidders, Jan Paredaens, and Jan Van den Bussche. 2017. J-Logic: Logical
Foundations for JSON Querying. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems. ACM, 137–149.

[16] Prashant R Lambole and Prashant N Chatur. 2017. A review on XML keyword
query processing. In Innovative Mechanisms for Industry Applications (ICIMIA),
2017 International Conference on. IEEE, 238–241.

[17] Yunyao Li, Cong Yu, and HV Jagadish. 2004. Schema-free xquery. In Proceed-
ings of the Thirtieth international conference on Very large data bases-Volume
30. VLDB Endowment, 72–83.

[18] Liang Lin, Vera Lychagina, Weiran Liu, Younghee Kwon, Sagar Mittal, and
Michael Wong. 2011. Tenzing a sql implementation on the mapreduce frame-
work. (2011).

[19] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. 2014. The
SQL++ query language: Configurable, unifying and semi-structured. arXiv
preprint arXiv:1405.3631 (2014).

[20] Pavel Shvaiko and Jérôme Euzenat. 2005. A survey of schema-based matching
approaches. Journal on data semantics IV (2005), 146–171.

[21] M. Stonebraker. 2012. New opportunities for New SQL. Commun. ACM 5, 11
(2012), 10–11.

[22] Daniel Tahara, Thaddeus Diamond, and Daniel J Abadi. 2014. Sinew: a SQL
system for multi-structured data. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 815–826.

[23] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao, Oktie Hassanzadeh, Jia Zou,
and ChenWangz. 2015. Schema management for document stores. Proceedings
of the VLDB Endowment 8, 9 (2015), 922–933.

[24] Rui Zhou, Chengfei Liu, and Jianxin Li. 2010. Fast ELCA computation for key-
word queries on XML data. In Proceedings of the 13th International Conference
on Extending Database Technology. ACM, 549–560.

