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Introduction

Coherent streamwise streaks, i.e. spanwise alternated high-and low-velocity regions elongated in the streamwise direction, account for most of the fluctuating energy in wall-bounded turbulent shear flows. Their ubiquity in transitional and turbulent flows has been related to the 'lift-up' effect where low-energy quasi-streamwise vortices immersed in a shear flow lead to high-energy streamwise streaks. Much attention has been given to the computation of optimal energy amplifications associated to the lift-up effect and of the associated optimal inputs and outputs for the linear initial-value problem and the response to harmonic and stochastic forcing.

In the case of turbulent flows, two distinct approaches have been followed to the definition of the linear operator used for the computation of optimal energy amplifications. In the first approach the Navier-Stokes equations are rewritten in terms of perturbations to the turbulent mean velocity; the instantaneous and averaged (Reynolds stresses) perturbation nonlinear terms are accounted for as an external input which forces the response via the linear operator (see e.g. [START_REF] Malkus | Outline of a theory of turbulent shear flow[END_REF][START_REF] Butler | Optimal perturbations and streak spacing in wall-bounded turbulent shear flow[END_REF][START_REF] Farrell | Optimal excitation of three-dimensional perturbations in viscous constant shear flow[END_REF][START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF] among others and [START_REF] Mckeon | The engine behind (wall) turbulence: Perspectives on scale interactions[END_REF] for a review). In the second approach the 'incoherent' part of turbulent Reynolds stresses is included in the linear operator with an eddy-viscosity (ν t ) model (see [START_REF] Reynolds | Stability of turbulent channel flow, with application to Malkus's theory[END_REF][START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments[END_REF][START_REF] Bottaro | Formation of secondary vortices in a turbulent square-duct flow[END_REF][START_REF] Del Álamo | Linear energy amplification in turbulent channels[END_REF][START_REF] Cossu | Optimal transient growth and very large scale structures in turbulent boundary layers[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent channel flows[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette flow: an inputoutput analysis at low Reynolds number[END_REF][START_REF] Hwang | Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow[END_REF] among others and [START_REF] Cossu | Self-sustaining processes at all scales in wall-bounded turbulent shear flows[END_REF] for a review). We will refer to the former approach as 'ν-model' and to the latter as 'ν t -model'.

Most of the comparisons between statistics of real turbulent flows and the predictions based on the two mentioned linear models, and in particular those where the resolvent modes are computed, are, however, either qualitative or concern integrated energy densities and (integrated) spatial spectra (the Fourier transform of the second-order velocity spatial correlations). Also, most of these analyses, with the notable exception of [START_REF] Illingworth | Estimating large-scale structures in wall turbulence using linear models[END_REF], lack a detailed quantitative comparison of the performance of the ν and ν t models.

A major source of difficulty for the comparison of turbulent statistics to predictions of linear models resides in the presence of a wide range of temporal frequencies involved in turbulent processes, even at selected spatial scales which can not be separated when considering spatial correlations tensors. In the context of Karhunen-Loève decompositions (proper orthogonal decompositions, POD) the use of the spatio-temporal correlation tensor R(x, x + ∆x, t, t + τ ) and of its Fourier-transform where the effect of different frequencies can be separated has led a direct connection between the spectral-POD modes and resolvent modes (see e.g. [START_REF] Picard | Pressure velocity coupling in a subsonic round jet[END_REF][START_REF] Semeraro | Stochastic and harmonic optimal forcing in subsonic jets[END_REF][START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF]) based on the ν-model.

The scope of this investigation is, inspired by this recent progress, to evaluate the respective performance of the ν-model and the ν t -model in the estimation of the velocity spatio-temporal power spectral density and power cross-spectral density. The turbulent channel flow at Re τ = 1007 is used as a testbed for this analysis because of the large inhomogeneity of ν t in this flow which enhances potential differences of the two models.

Background

We consider the dynamics of coherent perturbations in a turbulent flow of an incompressible fluid of kinematic viscosity ν in the channl between two infinite parallel walls located at y = ±h. We denote the streamwise, wall-normal and spanwise coordinates by x, y and z, respectively.

In the 'ν t -model', the evolution of small coherent perturbations to the turbulent mean flow is modelled with linearised equations which include the effect of the turbulent Reynolds stresses by means of an eddy viscosity ν t corresponding to the turbulent mean flow profile U = (U (y), 0, 0) [START_REF] Reynolds | Stability of turbulent channel flow, with application to Malkus's theory[END_REF][START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments[END_REF][START_REF] Del Álamo | Linear energy amplification in turbulent channels[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent channel flows[END_REF]. Considering dimensionless variables based on the reference length h and the reference velocity (3/2)U bulk , where U bulk is the constant mass-averaged streamwise velocity, this model reads:

∂u ∂t + ∇u • U + ∇U • u = -∇p + ∇ • ν T ∇u + ∇u T + f , (1) 
where u = (u, v, w) and p are the coherent perturbation velocity and pressure, ν T (y) = ν + ν t (y) is the total effective viscosity and f is the forcing term (note that in dimensionless units ν T = (1 + ν t /ν)/Re, where Re = (3/2)U bulk h/ν ). The incompressibility condition ∇ • u = 0 completes these equations. The eddy viscosity is modelled with the semi-empirical expression proposed by Cess [START_REF] Cess | A survey of the literature on heat transfer in turbulent tube flow[END_REF], as reported in [START_REF] Reynolds | Stability of turbulent channel flow, with application to Malkus's theory[END_REF]:

ν t ν = 1 2 1+ κ 2 Re τ 2 9 (1-y 2 ) 2 (1+2y 2 ) 2 (1-e y + /A ) 2 1/2 - 1 2 ,
(2) where y ∈ [-1, 1], y + = Re τ (1 -|y|) and Re τ = u τ h/ν is the Reynolds number based on the friction velocity u τ . The von Kármán constant is set to κ = 0.426 and the constant A = 25.4 as in [START_REF] Pujals | A note on optimal transient growth in turbulent channel flows[END_REF][START_REF] Hwang | Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow[END_REF].

In the 'ν-model' (a.k.a. 'quasi-laminar model'), turbulent Reynolds stresses and nonlinear terms are both included in the forcing term f so that the linear model reduces to Eq. ( 1) but now only including the molecular kinematic viscosity ν T = ν [START_REF] Butler | Optimal perturbations and streak spacing in wall-bounded turbulent shear flow[END_REF][START_REF] Farrell | Stochastic forcing of the linearized Navier-Stokes equation[END_REF][START_REF] Mckeon | A critical-layer framework for turbulent pipe flow[END_REF].

The system invariance to translations in wallparallel directions leads to consider the Fourier-modes û(α, y, β, t)e i(αx+βz) and f (α, y, β, t)e i(αx+βz) of streamwise and spanwise wavenumbers α = 2π/λ x and β = 2π/λ z . Eq. ( 1) can be reduced to the following linear system, expressed in terms of the state vector q = [v, ωy ] T formed with the wall-normal components of the velocity and vorticity Fourier modes:

∂ q ∂t = Aq + B f , (3) 
where û = Cq and q = Dû (the explicit expressions of the operators A, B, C and D can be found e.g. in [START_REF] Hwang | Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow[END_REF]). As the system is linearly stable, the to deterministic can be analysed in the frequency domain considering the harmonic forcing f = f e -iωt with the harmonic response ue -iωt related by:

u = H f ; H = -C(iωI + A) -1 B ( 4 
)
where H is the resolvent operator (or transfer function). When the forcing is stochastic so is the response and one has to consider velocity second-order spatio-temporal correlation tensor

R(ξ, y, y , ζ, τ ) = u(x, y, z, t)u * (x + ξ, y , z + ζ, t + τ ) , (5) 
where denotes ensemble averaging and * denotes complex conjugate transpose. The (spatio-temporal) power cross-spectral density tensor S(α, y, y , β, ω) is obtained through Fourier transform of R in ξ, ζ and τ .

The tensor S can also be obtained directly as the average of the Fourier transform u of the velocity [START_REF] Bendat | Random data: analysis and measurement procedures[END_REF] and the stochastic forcing power cross-spectral density tensor P can be defined similarly:

S(α, y, y , β, ω) = u(α, y, β, ω) u * (α, y , β, ω) (6) P(α, y, y , β, ω) = f (α, y, β, ω) f * (α, y , β, ω) . ( 7 
)
An estimation S (est) = HPH * of the velocity power cross-spectral density tensor is obtained by replacing the linear expression of Eq. ( 4) in Eq. [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments[END_REF]. Further assuming that P = p(α, β, ω) I (where I is the identity operator), as e.g. in [START_REF] Farrell | Optimal excitation of three-dimensional perturbations in viscous constant shear flow[END_REF][START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette flow: an inputoutput analysis at low Reynolds number[END_REF][START_REF] Hwang | Linear non-normal energy amplification of harmonic and stochastic forcing in turbulent channel flow[END_REF], then S (est) reduces to:

S (res) = pHH * (8)
which is the basic expression used in resolvent analyses.

The scope of this study is to determined the accuracy of the estimation provided by Eq. ( 8). 3 Direct numerical simulation and statistics

The velocity correlations have been estimated trough a direct numerical simulation of the turbulent channel flow at Re τ = 1007 in a domain of extension L x = 3 and L z = 1.5 corresponding to the size of the most energetic large-scale motions (LSM) in the channel [START_REF] Del Álamo | Scaling of the energy spectra of turbulent channels[END_REF] and representing the minimum flow unit for the self-sustainment of coherent LSM [START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF]. The simulations have been performed using the pseudospectral SIMSON code which uses Fourier expansions in the streamwise and spanwise directions, where periodicity is enforced, and Chebyshev expansions in the wallnormal direction to solve the three-dimensional timedependent incompressible Navier-Stokes equations in the channel [START_REF] Chevalier | A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows[END_REF]. A total of N x = 128, N y = 129, N z = 128 points have been used with a uniformly spaced grid in x and z and Gauss-Lobatto points in y. This corresponds to a grid spacing ∆x + = 23, ∆z + = 12 and to ∆y + min = 0.3 near the wall and ∆y + max = 24 at the channel centre. This chosen grid is coarser than those typically used in DNS at this Reynolds number to keep the data analysis manageable.

As shown in Figure [START_REF] Malkus | Outline of a theory of turbulent shear flow[END_REF], despite the moderate extension of the domain and the relatively coarse grid, the computed mean flow and the rms fluctuation profiles are in reasonable agreement with those of [START_REF] Lee | Direct numerical simulation of turbulent channel flow up to Re τ ≈5200[END_REF] obtained in the much larger domain L x = 25, L z = 9.5 with a finer grid (∆x + = 11, ∆z + = 5) We have further verified Cess's analytic fit by comparing the mean flow profile and the corresponding eddy viscosity to the ones issued by DNS data.

The analysis of the premultiplied streamwise kinetic energy spectral density αβE uu (α, y, β) = αβ ∞ -∞ S uu (α, y, y, β, ω)dω, evaluated in the y + = 15 and y = 0.5 planes (not shown here) shows that the most energetic structures at y = 0.5 have spatial scales corresponding to the dimensions of the LSM flow unit λ x = L x = 3, λ z = L z = 1.5 (corresponding to α ≈ 2, β ≈ 4) while the most energetic structures at y + = 15 have spatial scales λ +

x ≈ 450 and λ + z ≈ 100 (corresponding to α ≈ 14, β ≈ 63 at Re τ = 1007) typical of the near-wall self-sustained process. We will therefore focus on these two sets of (α, β), corresponding to (λ x = 3, λ z = 1.5) and (λ + x = 450, λ + z = 100), which represent the dynamics of large-scale and near-wall The power cross-spectral density tensor has therefore been computed for the two considered (α, β) pairs. The initial transient of the simulation is discarded and statistics and samples are accumulated starting from t = 95000. Welch's method with Hamming windowing and 75% overlap is then used to compute the velocity power cross-spectral density S using a total of N s = 8001 snapshots of the DNS solutions with sampling interval (∆t) s = 0.25 for a total acquisition time T max = 2000 for the small scales, and using N s = 20001 snapshots sampled every (∆t) s = 0.5 for a total acquisition time T max = 10000 for the large scales. The average temporal step of the DNS during the acquisition time is ∆t = 0.0106, i.e. ∆t + = 0.35. Data have also been averaged between the two walls.

The streamwise velocity power spectral density profiles S uu (α, y, y, β, ω) = u(α, y, β, ω) u * (α, y, β, ω) are reported in Figure (2) as a function of the phase speed c = ω/α, expressed in wall units, and of the wall normal coordinate for the considered (α, β) pairs. The peaks of these distributions are found at ω max = 4.3 and ω max = 1.4 for the near-wall and large-scale peaks, respectively. These peaks correspond to the two phase velocities c + max ≈ 10 and c + max ≈ 20 and their wall-normal locations (y + max ≈ 15 and y max ≈ 0.4 -0.5) approximatively correspond to the wall-normal position where

U + = c + .

Estimations from resolvents

The capacity of the ν t and the ν linear models to reproduce statistics of the turbulent flow via the estimation S (res) = pHH * given by Eq. ( 8) is tested by first assuming a (temporal) white noise forcing where p = p does not depend on ω and p is chosen such that the estimated total spectral power of the streamwise velocity matches the one issued from direct numerical simulations, i.e. uu (α, y, y = y, β, ω)) estimated with the ν t -model on the wall-normal coordinate and the phase speed c + with (white-noise) flatspectrum stochastic forcing (top panels) and colourednoise stochastic forcing (bottom panels) for the near-wall structures with λ + x = 450, λ + z = 100 (left panels) and the large-scale structures with λ x = 3, λ z = 1.5 (right panels). The mean velocity profile U + is reported as a dashed black line. The colour-scale is the same as the one used to represent direct numerical simulations data in Figure [START_REF] Butler | Optimal perturbations and streak spacing in wall-bounded turbulent shear flow[END_REF] noise forcing (top panels), the ν-model does not select the correct values and locations of the power spectral density peaks, which are predicted at too large c + values (and therefore too large ω values) and are located near the channel center (out of view in the top left panel). The power spectral density appears also to be too narrowly concentrated near the line U + = c + when compared to the DNS data of Figure ( 2) both for near-wall and large-scale structures. The estimation improves for the case of colored noise (bottom panels), where the selective (in ω) forcing is able to drive the response peaks nearer their DNS values. Even in this case, however, the power spectral density remains too narrowly concentrated and therefore too large near the U + = c + curve (the uniform dark red regions in bottom and right panels which are strongly offscale).

The use of the ν t model leads to a significant improvement, as shown in Figure ( 4), of the response near the channel centre because the effective eddy diffusivity dampens (where the eddy viscosity is high) and smoothens the critical layer peaks. The ν t -model is able to select a reasonable y + max -c + max location of the crossspectral peak for buffer-layer structures even with whitenoise stochastic forcing (top panels). For large-scale structures (top right panel), however, the amplitude of the response is still over-predicted near the channel centre and near the wall. The estimation based on the ν t model is further improved when the coloured-spectrum forcing is used (bottom panels), in particular for the large-scale case (bottom right panel)

Conclusions

In this study the 'measured' spatio-temporal power cross-spectral density S (dns) = u(α, y, β, ω) u * (α, y , β, ω) obtained by direct numerical simulation of plane channel flow at Re τ = 1007, has been compared to the estimation S (res) = pHH * based on the resolvent operator H which implicitly assumes that the spatio-temporal power cross-spectral density of the forcing is of the form P = p I. In this type of analysis the contribution of each temporal frequency ω to the spatial energy spectral density can be analysed separately. The comparison has been performed for structures with spatial scales typical of buffer-layer structures (λ + z = 100, λ + x = 450) and of large-scale motions (λ z = 1.5, λ x = 3).

Two distinct linear models have been considered for the evaluation of H, respectively including ('ν t model') or not (the quasi-laminar model or 'ν model') an eddy viscosity modeling the turbulent Reynolds stresses. Two types of forcing power spectra p(ω) have been considered: white noise (flat forcing power spectrum p = p) and 'coloured' noise (power spectrum where p(ω) is chosen so as to match the power spectrum of the estimated streamwise velocity power spectral density to the measured one).

Qualitatively correct estimations of power crossspectral density distributions and of the dependence of the power spectral density wall-normal distributions on the frequency (or, equivalently, the phase speed) are found when using the ν t model resolvent. On the contrary, generally overestimated values of the streamwise velocity power spectral density which are (too) narrowly concentrated near the critical layer are found when using the ν model which is also unable to even qualitatively reproduce the c + max -y + max values of the peak amplitude of the power spectral density for buffer-layer structures. It is also found that in all cases, as expected, estimations are improved by using the appropriately coloured input power spectrum p(ω) instead of white noise as already observed in [START_REF] Zare | Colour of turbulence[END_REF] using a different methodology.

The interpretation of these results is as follows: in the ν model the effect of turbulent Reynolds stresses resides only in the forcing and the associated power crossspectral density P while in the ν t model the effect of turbulent Reynolds stresses is included in the resolvent H. As a consequence, when no accurate information on P is available, which is the rule at high Reynolds numbers, and it is therefore assumed that P = pI, the ν t model performs much better than the ν-model because the effect of the turbulent Reynolds stresses is embedded in H. It is, however, likely that the ν model could perform equally well in the case where a realistic modelling of the forcing cross-spectral tensor P could be obtained leading to the estimation S (res) = HPH * . In this second case the scale selection would be dictated by P instead of H.

The similarity of resolvent modes computed with the ν-model and experimental SPOD modes previously observed in in turbulent jets [START_REF] Semeraro | Stochastic and harmonic optimal forcing in subsonic jets[END_REF][START_REF] Schmidt | Spectral analysis of jet turbulence[END_REF][START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF] can be understood by recalling that in free shear-flows the turbulent eddy viscosity usually only weakly depends on the radial coordinate and therefore the resolvent based on the ν-model coincides with the one based on the ν t -model except for a rescaling by ν/ν T of the Reynolds number and provided that the solution domain is not too long in the streamwise direction.

Further progress in the estimation of S (dns) could certainly come from a better modelling of the Reynolds stress tensor in the linear operator and from the modelling of P related to the regeneration mechanism of the vortices in the self-sustained processes [START_REF] Waleffe | Hydrodynamic stability and turbulence: Beyond transients to a self-sustaining process[END_REF][START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustained processes in the logarithmic layer of turbulent channel flows[END_REF][START_REF] Cossu | Self-sustaining processes at all scales in wall-bounded turbulent shear flows[END_REF]. These research directions are currently actively pursued.
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 1 Figure 1: Comparison of direct numerical simulations in the LSM flow unit (DNS-LSM) at Re τ = 1007 to those in [22] (L&M) and to Cess's model at Re τ = 1000 in terms of mean flow profiles (left panel) and rms velocity profiles (right panel) from the DNS-LSM (lines with symbols) compared to those of L&M (lines)
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 2 Figure 2: Dependence of the power spectral density S (dns) uu (α, y, y = y, β, ω)) issued from DNS data on the phase speed c + = ω + /α + and the wall-normal coordinate for buffer-layer structures with λ + x = 450, λ + z = 100 (left panel) and large-scale structures with λ x = 3, λ z = 1.5 (right panel). The mean velocity profile U + is reported as a dashed black line. Data from the direct numerical simulation in the LSM flow unit at Re τ = 1007
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 11111111 S uu (est) (α, y, y, β, ω)dydω = ∞ -∞ S uu (dns) (α, y, y, β, ω)dydω. As a second case, colored noise is assumed with p(ω) such that at each selected frequency ω: S uu (est) (α, y, y, β, ω)dy = S uu (dns) (α, y, y, β, ω)dy. The results obtained with the ν-model are reported in Figure (3) where the y-profiles of the estimated streamwise velocity power spectral density versus the phase speed c + are shown analogously to Figure (2). For white-
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 3 Figure 3: Dependence of S (est) uu (α, y, y = y, β, ω)) estimated with the ν-model on the wall-normal coordinate and the phase speed c + with (white-noise) flatspectrum stochastic forcing (top panels) and colourednoise stochastic forcing (bottom panels) for the near-wall structures with λ + x = 450, λ + z = 100 (left panels) and the large-scale structures with λ x = 3, λ z = 1.5 (right panels). The mean velocity profile U + is reported as a dashed black line. The colour-scale is the same as the one used to represent direct numerical simulations data in Figure (2).
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 4 Figure 4: Dependence of S (est)
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