
HAL Id: hal-02347991
https://hal.science/hal-02347991

Submitted on 10 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vibrational circular dichroism of a 2,5-diketopiperazine
(DKP) peptide: Evidence for dimer formation in cyclo

LL or LD diphenylalanine in the solid state
Ariel Pérez-Mellor, Anne Zehnacker

To cite this version:
Ariel Pérez-Mellor, Anne Zehnacker. Vibrational circular dichroism of a 2,5-diketopiperazine (DKP)
peptide: Evidence for dimer formation in cyclo LL or LD diphenylalanine in the solid state. Chirality,
2017, 29 (2), pp.89-96. �10.1002/chir.22674�. �hal-02347991�

https://hal.science/hal-02347991
https://hal.archives-ouvertes.fr


Chirality 

 1 

Vibrational Circular Dichroism of a 2,5-Diketopiperazine (DKP) Peptide: 
Evidence for Dimer Formation in cyclo LL or LD diphenylalanine in the 
solid state 

 Ariel F. Pérez -Mellor,[a] Anne Zehnacker*[a] 
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Introduction 

Homochirality is pervasive in life chemistry. It plays a major role in 
the structure of biomolecules, which are, for most of them, 
composed of elementary blocks of the same handedness. 
Cornerstone examples are peptides and proteins, which are built 
from naturally-occurring L amino-acids. Exceptions to 
homochirality, resulting for example from post translational 
modifications,1,2 have important consequences in the function of 
biomolecules, due to a change in both intra and intermolecular 
interactions, for example in protein folding3 or activity.4 These 
changes are often related to a change in the biopolymer structure, 
as observed in the Trp-cage mini-protein, the structure of which is 
strongly modified by the change of chirality of a single amino-
acid.5   
The effects of modifying the handedness of one monomer in a 
biopolymer have been studied at the molecular level in model 
systems, both neutral molecules as well as protonated or sodiated 
species.6-10 Although often weak in short neutral or protonated 
peptides, the effects are more pronounced in long protonated 
poly-alanine strands whose helical shape is disrupted when 
reverting the chirality of one residue,11 in sodiated peptides,10,12,13 
or in cyclically constrained β-peptides with chirality-dependent 
intramolecular hydrogen bonding pattern.9 Solution-phase studies 
of the way diastereomerism impinges the structure of peptides 
rely on various structure-sensitive techniques such as NMR,14 and 
vibrational spectroscopy.15,16 Of special interest are the chiroptical 
methods like Vibrational Circular Dichroism (VCD)17-22 or Raman 
Optical Activity (ROA).23-25 VCD is indeed very sensitive to minute 
conformational changes,26,27 hence a very good probe of 
molecular conformation.28,29 It has been widely applied to peptides, 
as a powerful tool for determining their secondary structure, in 
particular in the Amide I (C=O stretch) region.30-36 37-39 β-sheets 
and coils have for example different amide I spectra from that of 
the α-helix.40 VCD is also very sensitive to the aggregation state 
and allows the characterisation of various size entities ranging 
from dimers 41 to β-sheets or fibrils formation,42 as well as self-
assemblies in solution or in the solid state.43  

Diketopyperazine (DKP) peptides are an important class 
of dipeptides with applications in pharmacology as HIV antiviral 
drugs, or anticancer therapy.44-47 The DKP ring also is a 
decomposition product of the well-known sweetener aspartame or 
dipeptide drugs.48-50 These cyclic dipeptides result from the 
intramolecular peptide coupling of a linear α dipeptide, with 

concomitant dehydration.51-53 They have been the subject of many 
conformational studies, since the first elucidation of their crystal 
structure.54 The DKP ring may indeed adopt several 
conformations depending on the nature of the residues, with either 
planar, boat, or chair conformation of the ring. While it remains 
planar for very small residues like glycine, it undergoes an out of 
plane distortion for those that are bulkier, with pseudo axial or 
pseudo equatorial position of the substituents.55 Bulky residues 
like phenylalanine or tyrosine often adopt a so-called flagpole 
position,56,57 unless steric hindrance decides otherwise. Indeed, 
when the DKP peptide contains two bulky substituents, it also 
appears that one of them is folded over the ring while the second 
one is extended.58 DKP dipeptides have restricted conformational 
freedom, a fact that provides useful model systems for the study 
of electronic or vibrational coupling between the two residues. 
Indeed, the question has been raised as to whether the electronic 
transitions located on the two residues are coupled, if this coupling 
depends on the ring geometry, and if it can be evidenced in 
electronic circular dichroism using the so-called exciton coupling 
model.59 60,61 From a vibrational point of view as well, DKP 
dipeptides allow probing the coupling between the Amide I and II 
modes in a system of well-defined geometries. This will allow  
shedding light on the factors that defines the band shapes in IR 

absorption and VCD in systems that show several amide modes 
potentially coupled.38 62-65 Like in electronic circular dichroism, 
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Abstract: The diastereomer diketopyperazine (DKP) peptides 

built on phenylalanine, namely, cyclo diphenylalanine LPhe-

LPhe and LPhe-DPhe, have been studied in the solid phase 

by Vibrational Circular Dichroism (VCD) coupled to quantum 

chemical calculations. The unit structure of cyclo LPhe-LPhe 

in KBr pellets is a dimer bridged by two strong NH…O 

hydrogen bonds. The intense bisignate signature in the CO 

stretch region is interpreted in terms of two contributions 

arising from the free COs of the dimer and the antisymmetrical 

combination of the bound COs. In contrast, cyclo LPhe-DPhe 

shows no VCD signal in relation with its symmetric nature. 
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coupling between two vibration modes has been proposed to 
interpret the bisignate signature observed, which consists of two 
bands of opposite sign.62 However, bisignate band shapes can 
also be accounted for by the presence of several conformers, with 
close-lying absorption bands with opposite VCD.64 A generalised 
coupled oscillator (GCO) model has been recently proposed to 
interpret the shape of VCD spectra in both symmetrical and 
asymmetric molecules.66 
We have undertaken the study of dipeptides with identical or 
opposite chirality, both in the gas phase and in the condensed 
phase, with the aim of understanding how homo or heterochirality 
of the residues impinges their structure and can be identified by 
its spectroscopic signature.10,67 We shall focus here on cyclo 
diphenylalanine, denoted cyclo Phe-Phe hereafter, which has 
attracted special attention due to its spontaneous formation by 
heating the parent Phe-Phe linear dipeptide.68,69  Both cyclo LPhe-
LPhe and cyclo LPhe-DPhe will be studied in the solid phase. The 
presence of bulky aromatic rings is expected to introduce steric 
constraints and to increase stabilizing dispersive interactions 
within the peptide.70,71 Last, the Phe aromatic rings can act as 
weak hydrogen bond acceptors. The molecules under study are 
shown in Figure 1.

 
FIGURE 1 Molecules under study. Left: cyclo LPhe-LPhe. Right: cyclo 
LPhe-DPhe. 

Materials and Methods 

EXPERIMENTAL SET-UP 

The vibrational IR absorption and VCD spectra were 
measured using a FTIR spectrometer (Vertex 70 Bruker) 
equipped with a VCD module (PMA 50 Bruker). The signal was 
measured by a MCT IR detector with a BaF2 window, cooled with 
liquid nitrogen. A spectral resolution of 4 cm-1 was used for both 
absorption and VCD spectra in the fingerprint region. The 
absorption spectra were repeated over the whole 800–3700 cm-1 
range at a 1 cm-1 resolution. The IR radiation was first polarized 
with a linear polarizer then modulated by a 50 kHz ZnSe 
photoelastic modulator (Hinds). A low-pass filter cutting at 2000 
cm-1 was added before the linear polarizer to increase the 
dynamical response of the detector when measuring the 
fingerprint region. The signal of the MCT detector was 
demodulated using a lock-in amplifier (Stanford Research 
Systems SR 830). The alignment of the spectrometer was 
carefully checked by checking the mirror-image relation between 
the VCD spectra of the two enantiomers of camphor (0.3M in 
CCl4). The samples were prepared by grinding 10mg of molecule 
and 3.5g of KBr in a mixer mill (MM 400 Retsch) at 20Hz during 
1hr. The samples were then gently heated at 80°C to eliminate 
most of the water. The artefacts due to the birefringence of the 
KBr pellets were eliminated by following the procedure proposed 
by Merten,72 derived from that introduced by Buffeteau.73 It 
consists in rotating the sample in the plane perpendicular to the 
light propagation axis for each side (front F or back B) of the pellet 
and averaging the spectra obtained for each position of the pellet 
at 0° and 90°. For the sake of better averaging and artefact control, 
the procedure has been extended to 180° and 270°. The measure 
was obtained by adding 4200 scans for each sample position. 

IVCD(ν̃) =
1

8
∑IVCD(ν̃; n ⋅ 90°; F) + IVCD(ν̃; n ⋅ 90°; B)

3

n=0

 

The dipeptides were purchased from GeneCust-Luxembourg 
(98% purity) and used without further purification. 

THEORETICAL METHODS 

A first exploration of the potential energy surface was 
performed for both diastereomers using the Macromodel program 
included in the Maestro suite.74 The conformational mobility is 
limited by the cyclic nature of the system, and only ~10 different 
monomers were calculated with energy within 21kJ/mol with the 
OPLS_2005 force field used. They were further optimized at the 
B3LYP/6-311++g(d,p) level of theory, including the D3 empirical 
dispersion factor, using Gaussian 09.75,76 The vibrational IR 
absorption and circular dichroism spectra were simulated by 
calculating the harmonic frequencies at the same level of theory 
and convoluting the scaled frequencies by a Lorentzian line shape 
of 8 cm-1 FWMH, chosen to reproduce the experimental 
bandwidth. The calculated frequencies were scaled by 0.952. This 
scaling factor gives indeed a good agreement between the 
experimental and calculated amide stretch A of cyclo Phe-Phe in 
the gas phase.67 The stability of the monomer is given in terms of 
Gibbs energy ΔG at 298.15 K (in kcal/mol) relative to the most 
stable conformation.  

No significant change was observed in the relative 
stability nor in the calculated IR and VCD spectra of the monomers 
when using the smaller basis set 6-31g(d,p), as shown in Table 
S1 and Figure S1 of the supporting information. The 6-31g(d,p) 
basis set was therefore used for the dimers; the same procedure 
was followed, using the same scaling factor as for the monomers. 

Results and Discussion 

EXPERIMENTAL RESULTS 
 

The IR absorption spectra of the two diastereomers are 
shown in Figure 2. They display a similar pattern in the Amide I 
and II region, with an intense feature centred around 1670 cm-1, 
readily assignable to the C=O stretch. This feature is composed 
of a doublet in cyclo LPhe-LPhe at 1663-1677 cm-1 while it is a 
single band located at 1677 cm-1 in cyclo LPhe-DPhe, with 
however a shoulder in the low-energy side that shows that it 
corresponds to the superposition of two bands. The Amide II 
(β(NH) bend) region of cyclo LPhe-LPhe displays a broad feature 
with two maxima at 1462 cm-1 and 1454 cm-1, and a side band at 
1498 cm-1. In cyclo LPhe-DPhe, similar features are observed. 
However, the cyclo LPhe-DPhe spectrum extends slightly more, 
with additional side bands at 1440 and 1486 cm-1. The hydride 
stretch region shows a complicated pattern resulting from the 
superposition of the 14 ν(CH) stretches, and two bands assigned 
to the ν(NH) stretches at 3205 / 3316 cm-1 and 3189 /3326 cm-1 
for cyclo LPhe-LPhe and cyclo LPhe-DPhe, respectively. One can 
deduce from the similitude between the absorption spectra that 
similar structures exist for cyclo LPhe-LPhe and cyclo LPhe-DPhe. 
Their shape, in particular the presence of two ν(NH) bands with 
different frequencies, indicates that the sample contains NH 
groups in two sorts of local environment. Similarly, the doublet 
observed in the ν(CO) stretch region of cyclo LPhe-LPhe indicates 
that the cyclo LPhe-LPhe sample contains CO groups in at least 
two distinct local environments. 

The experimental VCD spectra recorded in the fingerprint 
region are shown in Figure 3. They totally differ from each other. 
While cyclo LPhe-LPhe shows intense VCD signal in the ν(CO) 
stretch region, of the order of 3.5∙10-4, and weaker bands in the 
β(NH) bend region, no signal is detected for cyclo LPhe-DPhe in 
the same experimental conditions, which easily allow detecting 
signals down to 10-5. The absence of signal for cyclo LPhe-DPhe 
might arise from different possibilities, including centrosymmetric 
structures, which will be discussed later. 
The cyclo LPhe-LPhe spectrum is characterised by a bisignate 
signature in the ν(CO) region, with an intense positive peak at low 
energy followed by a negative peak of similar intensity, a point to 
which we shall return in the discussion. The broad β(NH) band at 
1454/1462 cm-1 also shows a bisignate signature, although of 
opposite sign and much weaker intensity than that due to the 
ν(CO) stretches. 
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FIGURE 2 Experimental infrared absorption spectra, recorded 

at a resolution of 1 cm-1. Top: cyclo LPhe-LPhe. Bottom: cyclo LPhe-
DPhe. The intensity in the region of the hydride stretch has been 
multiplied by 4. 

 

  
FIGURE 3 Experimental VCD spectra in the fingerprint region, 

recorded at a resolution of 4 cm-1. Top: cyclo LPhe-LPhe. Bottom: 
cyclo Lphe-DPhe. 

 
 
THEORETICAL RESULTS 
Calculated structures and assignment for cyclo LPhe-LPhe 

The experimental IR spectrum of cyclo LPhe-LPhe has been 
compared first to that simulated for the most stable calculated 
structure cLL-A, which is the conformer observed in the gas phase 
in jet-cooled conditions.67 This structure is very close to that 
observed in the cyclo LPhe-LPhe crystal, with one Phe folded over 
the DKP ring and the other one extended.77 Only a mild agreement 
is obtained for the IR spectrum, as shown in Figure 4. In particular, 
the energy gap between the amide I and II bands is by far too 
large in the calculated spectrum; this is the case for all the 
calculated monomers. Moreover, the calculated VCD spectrum of 
the most stable structure fails to reproduce the bisignate 
signature. A bisignate signature is only obtained in symmetrical 
structures such as cLL-D and cLL-E, shown in Figure 4, with 
however the wrong sign.  

The existence of dimers could explain the observation of two 
different ν(CO) and two different ν(NH) bands. The most stable 
calculated (cLL)2-I dimer satisfactorily reproduces the 
experimental spectroscopic results (see Figure 5). The most 
stable (cLL)2-I dimer displays two strong hydrogen bonds bridging 
the CO and NH groups of the two subunits, with CO∙∙∙HN 
distances as short as 1.81 Å. Due to the steric hindrance induced 
by the aromatic rings, the double hydrogen bridge shows a small 
deviation from planarity (ONON dihedral of 8°). The DKP 
geometry in both monomers consists in a flattened boat with the 
Cβ atoms in pseudoaxial positions. The deviation from planarity of 
the DKP ring is weak. The calculated CCNC dihedral amounts 
indeed to -14° in the dimer vs. -12° in the gas phase monomer. 
This value is very close to that measured in the crystal (-11°).67,77 
The small difference between the monomer and the dimer is not 
significant and might result from differences in the methods used. 
Interestingly, the two subunits are not totally identical to each 
other, which results to a slightly asymmetric hydrogen bond bridge 
with one hydrogen bond farther to linearity (165°) than the other 
(175°). One of the two moieties is similar to that observed in the 
gas phase and in the crystal, with one aromatic ring bent over the 

DKP ring in a “flag pole” position while the other one is in an 
extended position.77 This structure corresponds to NCCC dihedral 
angles of -58° for the extended Phe and 65° for the folded one. 
The second subunit is much more symmetrical with Phe 
substituents located on the same side of the DKP ring, as often 
observed when the two residues interact with each other.78 The 
corresponding dihedral angles are 73° and 59°, respectively. 
Such a structure allows Phe-Phe stacking interaction to take 
place, similar to what is observed in cyclo LArg-LTrp.30 This 
contrasts with what is observed in the neat crystal, in which all the 
monomers have an identical structure.77 It should be noted that 
attempts at reproducing the VCD spectrum with a symmetrical 
structure identical to the crystal sub-unit and optimised in the gas 
phase failed, as shown in Figure S2 of the supporting information. 

 
FIGURE 4 Comparison between experimental and simulated 

IR and VCD spectra in the fingerprint region for the most stable 
monomers of cyclo LPhe-LPhe at the DFT-D3/B3LYP/6-311++G(d,p) 
level of theory. The simulated spectra were obtained by convoluting 
the harmonic frequencies by a Lorentzian shape with a FWHM=8 cm-

1. 

 
As both free and bound ν(CO) and ν(NH) stretching modes 

appear in the experimental spectrum, its interpretation in terms of 
trimers, tetramers, or larger oligomers of cyclo LPhe-LPhe cannot 
be ruled out. Information can be gained however from the 
comparison between the relative intensity of the doublet 
experimentally observed in the ν(CO) stretch region and the 
shape of the spectrum calculated for clusters of different sizes. 
For the sake of computational efficiency, we have optimised the 
structures of monomers, dimers, trimers and tetramers of the 
model system (LL) cyclo Ala-Ala, at the B3LYP/6-31g(d,p) level of 
theory. The simulated spectra, displayed in Figure S3 of the 
supporting information, show that the calculated intensity ratio 
between the high-energy and low-energy components of the 
doublet decreases when the cluster size increases. This ratio 
reflects indeed the ratio between free (high energy band) and 
bound (low energy band) CO groups, which scale like (n-1), n 
being the number of units in the oligomer. The best agreement 
with the experiment is clearly obtained with the dimer structure, 
which shows similar intensities for the two components of the 
doublet as experimentally observed. This observation allows 
ruling out the existence of a long oligomeric chain of cyclo LPhe-
LPhe. 

FIGURE 5 Comparison between experimental and simulated IR 
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spectra of the most stable dimer c(LL)2-I of cyclo LPhe-LPhe. Bottom: 
Comparison between experimental and simulated VCD spectra of 
c(LL)2-I. Most stable calculated structure c(LL)2-I. The simulated 
spectra were obtained by convoluting the harmonic frequencies by a 
Lorentzian line shape with a 8 cm-1 FWHM.  

 
Frequency analysis for the cyclo LPhe-LPhe dimer 
The main observed vibrational bands are collected in Table 

1, together with the calculated frequencies, IR absorption 
intensities, oscillator strengths, and proposed assignment. In the 
calculated (cLL)2-I dimer, the free ν(NH) stretches are not coupled 
to each other, nor are the free ν(CO) stretches, which appear as 
the high-energy component of the doublet experimentally 
observed at 1662-1678 cm-1. The two free ν(CO)s have a negative 
VCD signal that both contribute to the observed negative 
component of the bisignate doublet. The bound CO stretches are 
strongly coupled together, which results in a strongly allowed 
asymmetric combination and an almost completely forbidden, 
symmetric, one. The allowed ν(CO) has a strong positive VCD 
signal while that of the forbidden ν(CO) is zero. The bisignate 
signature observed in the ν(CO) region is therefore not due to 
exciton coupling but to superimposed contributions of different 
ν(CO)s. Like the bound ν(CO) stretches, the bound β(NH) bends 
are strongly coupled to each other. They appear however weakly 
in the spectrum due to limited oscillator strength. In contrast to the 
free stretches, the free β(NH) bends are strongly coupled to each 
other and to the β(CH) or β(CH2) bends. They appear as a 
bisignate doublet in the VCD spectrum at 1452 and 1462 cm-1. In 
conclusion, the two bisignate doublets which appear in the VCD 
spectrum of cyclo LPhe-LPhe have completely different origins: 
while the weak-intensity bisignate signature around 1450 cm-1 is 
due to exciton coupling, the strong one around 1670 cm-1 is due 
to ν(CO)s in different environments, which show contributions of 
opposite sign. 

 
TABLE 1 Frequencies assignment for cyclo LPhe-LPhe. ( * ) The 
theoretical frequencies are not scaled. The position of experimental 
frequencies was determined using the second derivative criterion. 
 

Calculated structures and assignment for cyclo LPhe-
DPhe  

The case of cyclo LPhe-DPhe is more delicate to interpret 
as no VCD signal is observed. The presence of a single feature in 
the ν(CO) stretch region might suggest the presence of 
monomers. However, the calculated monomer structures do not 
reproduce the experimental IR spectrum, in particular in the region 
of the ν(NH) stretch, where both free and bound NH appear. 
Moreover, all of them display non zero VCD spectrum (see Figure 
S4 of the supporting information). We therefore calculated the 
cyclo LPhe-DPhe dimers, as we did for cyclo LPhe-LPhe. There 
are two possibilities for obtaining a system with no optical activity. 
The first one is the co-existence of two enantiomers with opposite 
VCD spectra that cancel out, a point to which we shall return later. 

The second possibility is the formation of a centrosymmetric 
dimer, for example the calculated (cLD)2-sym dimer shown in 
Figure 6a). It displays the same double hydrogen bridge pattern 
as the cyclo LPhe-LPhe dimer. However, the stereochemistry of 
cyclo LPhe-DPhe allows for the formation of a centrosymmetric 
dimer with no optical activity. This is an example of what is called 
“la coupe du roi”, a non-chiral system built from two chiral moieties 
of opposite chirality,79 a phenomenon also observed in a jet-
cooled isolated dimer.80  

 
FIGURE 6 a) Centrosymmetric structure c(LD)2-sym of the cyclo 

LPhe-DPhe dimer. b) Most stable structure c(LD)2-I of the cyclo LPhe-
DPhe dimer. 

 
This centrosymmetric dimer is however not the most stable 

one; its relative energy amounts to 1.77 kcal/mol relative to the 
most stable form. The most stable dimers obtained after the 
exploration and optimization steps belong to the C1 symmetry point 
group, due to the position of the Phenylalanine residues. As seen for 
the most stable of them ((cLD)2-I shown in Figure 6b), a weak CH-π 
interaction takes place between the CαH of one of the residues and 
the benzene ring of the other, which breaks the symmetry of the 
system. As cyclo LPhe-DPhe contains identical Phe residues, which 
differ by nothing but their chirality, it is not possible to distinguish which 
of LPhe or DPhe aromatic ring acts as a hydrogen bond acceptor and 
which is “free”. For this reason two transient enantiomers are expected 

for cyclo LPhe-DPhe, namely cyclo LPhe(donor)-DPhe(acceptor) 
and cyclo DPhe(donor)-LPhe(acceptor). They show equal 
populations hence contributions to the IR absorption spectrum, shown 

in Figure S5, and opposite contributions to the VCD spectrum. 
Switching from one of the transient enantiomers to the other 
corresponds to a switch between “free” and “H-bonded” aromatic 
rings. The enantiomers can formally be seen as cyclo 
LPhe(donor)-DPhe(acceptor) and cyclo DPhe(donor)-
LPhe(acceptor), but the asymmetric carbons themselves of 
course do not change chirality. What physically happens is that 
LPhe(donor) changes to LPhe(acceptor). This process does not 
involve cleavage and formation of chemical bonds but inversion 
of the DKP ring and rotation of the phenethyl substituents. A 
possible reaction path has been calculated between the two 
transient enantiomers of the lower-energy cyclo LPhe-DPhe 
monomer and is shown in Figure S6. The calculated transition 
state is centrosymmetric and corresponds to a barrier of 2.1 
kcal/mol only. Although these calculations are carried out in the 
gas phase, we expect that interconversion between the two 
transient enantiomers also happens during the sample 
preparation. 

On the basis of the experimental finding, it is not possible to 
decide between the two possibilities, either centrosymmetric 
dimer, or two transient enantiomers. We tend to favour the second 
one because the calculated structure is lower in energy in the gas 
phase. However, the energy ordering could be modified in the 
condensed phase. 

Conclusion 

The two diastereomers of cyclo diphenylalanine has 
been studied in the solid state, in order to shed light on its 
aggregation state when embedded in KBr pellets. To this end, 
samples of finely grinded cyclo LPhe-LPhe and cyclo LPhe-DPhe 
in KBr have been studied by IRTF as well as VCD spectroscopy, 
combined with quantum chemical calculations. For simple 
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aromatic molecules like 1H-indazoles, it has been proposed that 
calculations resting on a description of the system in terms of a 
small cluster that reflects the elementary cell give satisfactory 
agreement with the experimental VCD spectrum, for both band 
position and sign.43 In the cyclo LPhe-LPhe studied here however, 
the sample does not exist in the form it possesses in crystals, 
namely, infinite chains involving molecular units bridged by two 
NH…O hydrogen bonds. Here, the unit cell is the dimer, as can 
be deduced from the observation of both bound and free ν(CO) 
and ν(NH) stretches. The DKP geometry in both monomers 
consists in a flattened boat with the Cβ atoms in pseudoaxial 
positions, with a deviation from planarity of the DKP ring of the 
same order as in the gas phase or the crystal.67,77 The two 
moieties of the dimer are not equivalent in terms of phenyl ring 
arrangement, which contrasts to the neat solid. Such a 
dissymmetry has been observed already for supramolecular 
structures in solution; for example the tetramer of a chiral 
dicarboxylic acid is composed of three identical monomers plus 
one.81 This structure accounts well for the bisignate signatures 
observed in the ν(CO) and β(NH) regions of the VCD spectrum. 
The higher-energy positive component of the intense doublet 
observed in the ν(CO) region has been assigned to the 
superimposed contribution of the two free ν(CO) stretches while 
the lower-energy negative component has been assigned to the 
antisymmetric combination of the bound ν(CO) stretches. In 
contrast, the two components of the much weaker bisignate 
signature observed in the β(NH) range are due to the symmetric 
and asymmetric combinations of the bound β(NH) bends, 
respectively. Dimers of rigid DKP peptides provide therefore 
interesting systems for studying the effects of mode coupling due 
to transition dipole coupling (TDC) as well as through-bond effects, 
including hydrogen bonds. Other DKP dipeptides are currently 
under study both in the gas and in the solid phases. 
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Tables 

 

 

Experimental Calculated  Dipole strengths ×10-40 / Angle between electric  

Assignment  frequency frequency 
Rotational strengths 

×10-44 
and magnetic dipole 

transition 

( cm-1 ) ( cm-1 )* ( esu2∙cm2 )  moments (degree) 

1092 1123 93 / 2 89 
Aromatic β(CH) bends 

  1129 87 / 0 90 

1326 1295 101/ -36 98  

1340 1347 248 / 40 86 
Aliphatic (DKP ring) β(CH)  

1350 1350 136 / -3 91 

 1366 71 /  21 83  

1452 1464 689 / 59 88 Free β(NH) bends mixed with DKP 
ring β(CH) bend carbon in α 1462 1482 378 / -150 99 

  1569 98 / 8 86 Symmetric bound β(NH) bend 

 1580 15 / -17 94 Antisymmetric bound β(NH) bend 

1650 1733 17 / 39  79 
Symmetric bound ν(CO) stretch 

(coupled to symmetric β (NH) bend) 

1663 1762 1930 / 296 86 
Antisymmetric bound ν(CO) stretch 
(coupled to antisymmetric β (NH) 

bend) 

1677 

1787.7 606 / -104 93 
Free ν(CO) stretches coupled to 

adjacent free β (NH) bend  1788.3 592 / -171 97 

3152 3227 284 / -35  91 Symmetric bound ν(NH) stretch 

3205 3291 1724 / 427 87 Antisymmetric bound ν(NH) stretch 

3314 
3586 39 / 14  86 

Free ν(NH) stretches 

3597 27 / -23  104 

 
Table I: Frequencies assignment for cyclo LPhe-LPhe. ( * ) The theoretical frequencies are not scaled. The position of experimental 

frequencies were calculated using second derivative criterion. 
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