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Abstract 

Global insights into cellular organization and function require comprehensive 

understanding of interactome networks. Similar to how a reference genome sequence 

revolutionized human genetics, a reference map of the human interactome network is 

critical to fully understand genotype-phenotype relationships. Here we present the first 

human “all-by-all” binary reference interactome map, or “HuRI”. With ~53,000 high-

quality protein-protein interactions (PPIs), HuRI is approximately four times larger than 

the information curated from small-scale studies available in the literature. Integrating 

HuRI with genome, transcriptome and proteome data enables the study of cellular 

function within essentially any physiological or pathological cellular context. We 

demonstrate the use of HuRI in identifying specific subcellular roles of PPIs and protein 

function modulation via splicing during brain development. Inferred tissue-specific 

networks reveal general principles for the formation of cellular context-specific functions 

and elucidate potential molecular mechanisms underlying tissue-specific phenotypes of 

Mendelian diseases. HuRI thus represents an unprecedented, systematic reference 

linking genomic variation to phenotypic outcomes.  
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The reference human genome sequence has enabled systematic study of genetic1 and 

expression2 variability at the organism1, tissue2, cell type3 and single cell level4. Despite 

advances in sequencing genomes, transcriptomes and proteomes, we still understand little of 

the cellular mechanisms that mediate phenotypic and tissue or cell type variability. A 

mechanistic understanding of cellular function and organization emerges from studying how 

genes and their products, primarily proteins, interact with each other, forming a dynamic 

interactome that drives biological function. Analogous to the reference human genome 

sequence5,6, a reference map of the human protein interactome, generated systematically and 

comprehensively, would provide an unprecedented scaffold for the unbiased proteome-wide 

study of biological mechanisms, generally and within specific cellular contexts. Almost 20 years 

after the publication of a first draft of the reference human genome sequence5,6, a reference 

protein interactome map is yet to be reported. 

Proteins are biochemically more complex than DNA, the interactome is much more dynamic 

than the genome, and the search space for interactions requires testing all-by-all pairwise 

combinations, making interactome mapping extremely challenging. Approaches to human 

proteome-wide protein-protein interaction (PPI) mapping either aim to identify protein complex 

assemblies using mass spectrometry7–9 or direct PPIs using binary screening methods such as 

yeast two-hybrid (Y2H) followed by empirical validation using orthogonal assays10–12. In contrast 

to protein complex mapping, binary interactome mapping is based on interrogating pairs of 

proteins for interaction independently from any particular endogenous cellular context, thereby 

generating relatively unbiased systematic PPI datasets. For example, our most recent human 

protein interactome map (HI-II-14) described ~14,000 PPIs involving 4,000 proteins from 

screening ~40% of the genome-by-genome search space10 and in striking contrast to literature-

curated and protein complex interactome maps, HI-II-14 uniformly covered the proteome, free of 

study and expression bias. 

To increase interactome coverage and generate a first human reference interactome map, 

we have expanded the ORFeome collection to encompass ~90% of the protein-coding genome 

and screened this search space a total of nine times with a panel of assays using an enhanced 

screening platform. The resulting human binary PPI map doubles HI-II-14's coverage of the 

proteome and quadruples its interactome coverage. Integrating this PPI network with genome, 

transcriptome and proteome resources, we infer cellular context-specific views of the protein 

interactome, which are predictive of cellular context-specific gene function, at the level of 

individual subcellular compartments, cell types and tissues, across developmental stages and in 

disease (Fig. 1a). With its comprehensive view of the protein interactome, the resulting network 
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enables biological discovery across any cellular context, thus representing the first reference 

map of the human protein interactome. 

 
Generation and biophysical characterization of HI-III-19 
Our previously published human protein interactome map, HI-II-1410, covered less than half of 

the possible search space. To generate a more complete map, we established human 

ORFeome v9.1. This expanded ORFeome covers 17,408 protein-coding genes, on par with the 

number of genes found to be expressed in three comprehensive individual transcriptome 

sequencing studies2,3,13 (Fig. 1b) and includes 94% of the genes with robust evidence of 

expression in all three (Fig. 1c, Supplementary Table 1). The search space formed by 

hORFeome v9.1 (Space III), encompassing over 150 million binary combinations, more than 

doubles the space screened to generate HI-II-14 and represents the most comprehensive 

search space to be systematically screened for human PPIs. 

Limitations in PPI assay sensitivity can be overcome by employing different PPI assays14 or 

different versions of the same PPI assay15,16. To maximize sensitivity while maintaining high-

throughput screening capabilities, we employed three Y2H assay versions (Fig. 1d), which, 

when benchmarked against a gold standard positive and random reference set (PRSv1 and 

RRSv1)17, showed good sensitivity and low false positive rates while detecting complementary 

sets of PPIs (Extended Data Fig. 1a, b, Supplementary Table 2). We further assessed Y2H 

assay version quality, complementarity and screening behavior on a test space of ~2,000 by 

~2,000 human genes10. After verification by pairwise Y2H retesting and sequence confirmation, 

PPIs from each version were evaluated using MAPPIT18, an orthogonal assay. For each Y2H 

assay version, the recovery rate of PPIs was comparable or exceeded that of a set of PPIs from 

the literature with ≥ 2 pieces of experimental evidence, of which at least one comes from a 

binary assay type (Lit-BM)10 (Extended Data Fig. 1c, Supplementary Table 3). The Y2H assay 

versions were complementary, in that performing three screens with each version doubled the 

number of PPIs and proteins detected relative to performing the equivalent number of screens 

using a single assay version (Extended Data Fig. 1d, Supplementary Table 4). 

To construct the reference interactome, we performed nine screens of Space III, three with 

each Y2H assay version, followed by pairwise testing in quadruplicate, sequence confirmation, 

and validation using two orthogonal assays, MAPPIT18 and GPCA19. Screen PPIs were 

recovered at rates that were similar or superior to Lit-BM over a large range of score thresholds 

(Fig. 1e, Extended Data Fig. 1e-g, Supplementary Table 5), confirming the high quality of the 

interactome dataset. Each additional screen identified novel PPIs and proteins, with the largest 
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gains obtained by switching assay versions (Fig. 1f, g, Extended Data Fig. 1d), highlighting the 

importance of performing multiple screens and using several assay versions. The dataset, 

versioned HI-III-19 (Human Interactome obtained from screening Space III, published in 2019), 

contains 52,569 verified PPIs involving 8,275 proteins (Supplementary Table 6). Given its 

systematic nature, completeness and scale, we consider HI-III-19 to be the first draft of the 

Human Reference Interactome (HuRI).  

To assess whether assay complementarity can partially stem from different steric constraints 

in the protein fusions, we integrated HuRI with protein structure data20 and observed that the 

dataset is depleted for PPIs where the interaction interface is a short spatial distance (< 20Å) 

from the protein terminus fused to the AD domain (Extended Data Fig. 2a, b, Supplementary 

Table 7). These results provide the first systematic investigation into the impact of protein tags 

on PPI detection. 

Molecular mechanisms can be more readily inferred from direct PPIs, yet, the fraction of 

direct versus indirect PPIs reported in various human protein interactome maps is unknown. 

Using three-dimensional structural information from protein complexes with at least three 

subunits20,21, we show that the vast majority of PPIs in HuRI (90%) correspond to direct 

biophysical contacts, significantly higher than in Lit-BM (81%, P = 0.019, two-sided Fisher’s 

exact test, n = 121 (HuRI), 410 (Lit-BM)) or in protein complex interactome maps (less than 

50%, P < 0.001 for all, two-sided Fisher’s exact test) (Fig. 1h, Supplementary Table 8), 

demonstrating that HuRI represents a unique dataset of direct PPIs. Combining HuRI with all 

previously published systematic screening efforts at CCSB yields 64,006 binary PPIs involving 

9,094 proteins (HI-union) (Supplementary Table 9), which is approximately five-fold more PPIs 

than the entirety of high-quality binary PPIs curated from the literature (Fig. 1i). The union of Lit-

BM and HI-union represent the most complete collection of high quality direct PPI data available 

to date (http://interactome.dfci.harvard.edu/huri/). 

PPIs in HuRI vary by the number of screens and assay versions in which they were 

detected (Extended Data Fig. 2c, d). To investigate any potential relationship between these 

factors and PPI false discovery rate, we compared MAPPIT recovery rates of HuRI and Lit-BM 

PPIs found in different numbers of screens. Interestingly, both sets of PPIs show that MAPPIT 

recovery rates increase with the number of screens in which an interaction was detected 

(Extended Data Fig. 2e, Supplementary Table 10). This trend persists even when titrating Lit-

BM to higher numbers of experimental evidence (Extended Data Fig. 2f), suggesting that 

differences in PPI recovery rates are driven by factors other than veracity of a PPI. In HuRI the 

number of screens in which an interaction is detected is weakly correlated with both the size of 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/605451doi: bioRxiv preprint first posted online Apr. 10, 2019; 

http://dx.doi.org/10.1101/605451
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

the molecular interfacial area (ρ = 0.15, P = 0.026, two-sided permutation test, n = 234) 

(Extended Data Fig. 2g) and the number of atomic contacts (ρ = 0.14, P = 0.038, two-sided 

permutation test, n = 234) (Extended Data Fig. 2h, Supplementary Table 11), suggesting that 

identification of a PPI in a screen is impacted by interaction strength and may therefore be 

reflecting ‘detectability’ rather than accuracy. Indeed, PPIs in HuRI found in at least two screens 

corresponded more often to direct PPIs within rather than between well-described stable protein 

complexes22,23 (P = 3 × 10-18, two-sided Fisher’s exact test, n = 1817) (Extended Data Fig. 2i, 3, 

Supplementary Table 12). Because the majority of PPIs in HuRI were found in only one screen, 

our data further reinforces previous observations7,24 that the protein interactome might be 

dominated by weak, more transient PPIs, that are harder to detect. PPI detectability may impact 

previous assessments of overlap between PPI datasets, as well as estimates of interactome 

size. 

 
Multiple layers of functional relationships between proteins in HuRI 
Based on the observation that HuRI is enriched in direct PPIs, we hypothesize that proteins in 

HuRI with similar interaction interfaces should share a significant number of their interaction 

partners. For example, retinoic acid receptors RXR-γ and -β (Fig. 2a, left panel) share 

previously reported interaction partners involving binding to retinoic acid receptor RAR types25 

and oxysterol receptors26. We derived a profile similarity network (PSN) from HuRI 

(Supplementary Table 13), and found that the number of pairs of proteins in HuRI with similar 

interaction profiles is significantly higher than random (P < 0.01, one-sided empirical test) 

(Extended Data Fig. 4a) and proteins of overall higher sequence identity tend to exhibit higher 

interaction profile similarities (P < 0.01, one-sided empirical test) (Extended Data Fig. 4b). 

However, proteins with a tendency to share interaction partners often have interaction interfaces 

that are similar, as opposed to complementary, and therefore tend not to interact, unless both 

proteins originate from the same ancestral protein that was able to self-interact27 (Extended 

Data Fig. 4c). Indeed, only 5% of the proteins found to interact in HuRI share more than 10% of 

their interaction partners. HuRI and the PSN display significant enrichment to link proteins of 

similar function (P < 0.01, one-sided empirical test) (Fig. 2b, Extended Data Fig. 4d, e) and both 

contain much higher numbers of functional modules28 compared to our previously published 

interactome maps10,11 (Fig. 2c). Because HuRI and the PSN display little link overlap but both 

are functionally enriched, this suggests that HuRI and the PSN complement each other in 

revealing functional relationships between proteins.  
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As shown above, global sequence identity between two proteins is indicative of shared 

interaction interfaces, however, it likely fails to identify pairs of proteins whose shared interaction 

interface is small. Indeed, 50% (502) of all pairs of proteins in HuRI with interaction profile 

similarities ≥ 0.5 exhibit less than 20% sequence identity, showing that the functional 

relationships between proteins cannot necessarily be identified by sequence identity. One such 

pair of proteins is the endoplasmic reticulum (ER) transmembrane protein TMEM258 and the 

uncharacterized protein C19ORF18, which display a sequence identity of only 10% but share 

80% of their interactors (Fig. 2a, right panel). TMEM258 catalyzes the first step in N-

glycosylation of proteins in the ER and might play a role in protein translocation across the ER29. 

Roles in protein transport and ER function have also been ascribed to two of the four shared 

interaction partners, ARL6IP130 and IER3IP131, suggesting that C19ORF18 as well as the other 

two shared yet unstudied interaction partners MFSD6 and AC012254.2 might contribute to ER-

related functions of protein maturation and transport. 

 
Uncharted network neighborhoods of disease-related genes 
Unlike Lit-BM, HuRI was generated by systematically testing pairs of proteins for interaction. 

While Lit-BM is highly biased towards the most highly studied genes10, HuRI covers the 

genome-by-genome space, as ranked by number of publications, more uniformly and at 

increased depth compared to Lit-BM and our previous screening efforts (Fig. 3a). Considering 

these differences in interactome space coverage, we find that among the best-studied genes, 

where Lit-BM is most complete, the agreement between Lit-BM and HuRI is highest, with ~40% 

of the PPIs in HuRI being previously identified (Fig. 3b). Because of its uniform coverage, HuRI 

substantially expands the set of genes of biomedical interest for which high-quality direct PPI 

data is available (Fig. 3c, Extended Data Fig. 4g), and extends their network neighborhood to 

previously uncharted regions of the protein interactome (Fig. 3d, Extended Data Fig. 4g).  

As previously shown10,32, study bias can skew interactome coverage and the assessment of 

systems properties of genes. Using HuRI, we find no evidence of reported correlations between 

a protein’s number of interaction partners (degree) and various gene properties, i.e. lethality33,34, 

loss-of-function intolerance1, fitness effect35, and age36,37 (Fig. 3e-g). Moreover, these 

correlations weaken for protein complex and Lit-BM interactome maps when they are corrected 

for confounding protein expression or study bias, respectively (Fig. 3e-g). These results 

highlight the value of HuRI as a uniformly-mapped reference for the study of systems properties 

of genes and networks. 
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Identification of subcellular compartment-specific roles of PPIs 
Proteins are localized to specific subcellular compartments to exert functions that can depend 

both on the subcellular environment and the local PPI network. Despite available proteome-wide 

datasets on the localization of individual proteins38, experimental determination of cellular 

localization-specific PPI networks remains challenging39. We find that proteins localized to a 

diverse range of subcellular compartments are evenly represented in HuRI (Fig. 4a) suggesting 

that cellular localization-specific PPI networks can be inferred for many different cellular 

compartments via integration of HuRI with available protein localization data.  

One such compartment, extracellular vesicles (EVs), has been intensively studied using 

proteomics approaches40, however, our understanding of the molecular mechanisms that lead 

to protein recruitment into EVs and subsequent secretion, remains limited. The subnetwork of 

interactions between EV proteins (Fig. 4b) shows significantly higher connectivity in HuRI than 

in degree-controlled randomized networks (P < 0.001, one-sided empirical test) (Fig. 4c) 

enabling prediction of EV recruiters using the number of EV interaction partners. Seven of the 

top 20 most connected proteins in this EV network have established roles in EV biogenesis or 

cargo recruitment41,42 (Fig. 4b). SDCBP (syntenin-1) functions in ESCRT-dependent exosome 

generation and its knockout shows reduced EV production43. SDCBP has 48 PPIs with other EV 

proteins and is frequently detected in EVs (Fig. 4b), suggesting that it regulates recruitment of 

interacting proteins to EVs. To test this hypothesis (Fig. 4d), we knocked out SDCBP in the 

U373vIII cell line (Extended Data Fig. 5a) and found that three of six SDCBP partners detected 

in the U373vIII EV proteome, CALM1, CEP55 and HPRT1, displayed significantly reduced (P < 

0.05, one-sided empirical test, fold change < 0.66) (Fig. 4e) protein levels in EVs in the SDCBP 

knockout line. In contrast, only 15% of the non-interaction partners of SDCBP were reduced (P 

< 0.05, one-sided empirical test) (Extended Data Fig. 5b). Thus, SDCBP may play a role in the 

recruitment of proteins into EVs, highlighting the potential value of HuRI in studying protein 

function within specific subcellular contexts. 

Despite a significant tendency for interactions in HuRI to link proteins localized to the same 

compartment (P < 0.01, one-sided empirical test) (Fig. 2b), a considerable number of 

interactions were identified between proteins not reported to co-localize. We find that HuRI PPIs 

between non-colocalized proteins tended to connect proteins from compartments that 

significantly overlapped (P < 0.001, one-sided empirical test) (Extended Data Fig. 5c-e). This 

suggests that the lack of co-localization results from incompleteness of the underlying 

localization annotation and that HuRI could prove useful in predicting additional protein locations 

and dynamics.  
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Principles of tissue-specific cellular function 
Despite recent advances in systematic genome-wide identification of tissue-preferentially 

expressed genes (TiP genes)2,44, we lack a concrete understanding of how the surprisingly 

small set of TiP genes operate together and coordinate their activity with the core housekeeping 

cellular machinery to mediate tissue-specific functions. Insights can be obtained from 

investigating the tissue-specific network context of TiP proteins, inferred from integrating protein 

interactome data with tissue transcriptomes. However, we find that protein complex7–9 and 

literature-curated interactome maps45 as well as our previously published binary PPI 

datasets10,11 are strongly depleted for TiP proteins, whereas they are well-represented in HuRI, 

making it the most suitable interactome map available to study the network context of TiP 

proteins (Fig. 5a, Extended Data Fig. 6a). 

System-wide properties of TiP proteins can be determined by assessing their connectivity 

and centrality in a PPI network compared to “non-TiP” proteins46. In HuRI we observe that TiP 

proteins can engage in as many PPIs and be as central in a PPI network as the more uniformly 

expressed proteins (degree: Spearman ρ = 0.005, centrality: Spearman ρ = -0.008) (Extended 

Data Fig. 6b), contrary to previous observations derived from literature-curated PPI networks47–

49. This result, paired with the fact that PPIs mediated by a TiP protein are effectively also 

tissue-specific, leads to the finding that the protein interactome as characterized by HuRI is 

more tissue-specific than the expressed genome (Fig. 5b). This indicates that substantial 

information on tissue-specific function can only be obtained from the interactome. The opposite 

is observed for Lit-BM, likely owing to its bias against TiP genes (Fig. 5b). 

To investigate the local network neighborhoods of TiP proteins within their respective tissue 

context, we used HuRI to derive protein interactome maps for 35 tissues2,50 (Supplementary 

Table 14). Each contained an average of 25,000 PPIs that link proteins expressed in that tissue 

(Extended Data Fig. 6c, d). Within each tissue PPI network, we focused on the interactions 

involving at least one TiP protein (Fig. 5c). The TiP PPI networks show extensive interactions 

between TiP proteins and non-TiP proteins, with very few TiP-TiP PPIs dispersed through the 

network, as exemplified for brain (Fig. 5c, d). Indeed, TiP-TiP PPIs in brain are not enriched, nor 

is the average shortest path among TiP proteins shorter than in degree-controlled randomized 

networks (P > 0.05, empirical test) (Fig. 5e). Using either metric, TiP proteins were found to be 

significantly close to each other in six of 35 tissues, in four of which signals were dominated by 

clusters of specifically expressed keratins or late-cornified envelope proteins (Extended Data 

Fig. 6e). Overall, these results provide support for a model in which tissue-specific functions 

emerge through interactions between TiP proteins and more uniformly expressed members of 
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the basic cellular machinery, presumably modulating and adapting common cellular processes 

for cellular context-specific needs51. 

To further investigate functional roles of the identified interactions in HuRI between the basic 

cellular machinery and preferentially expressed proteins, we selected apoptosis, a biological 

process with known cell type and developmental stage-specific homeostatic roles52,53. We 

predicted apoptosis-related functions for proteins based on an enrichment of known apoptosis 

regulators in the protein network neighborhood (Supplementary Table 15). Among the ten most 

significant predictions were five proteins with demonstrated roles in apoptosis (BCL2L254, 

BCL2L155, LCN256, BCL2A157 and BCL2L1058) supporting the validity of the approach. Among 

the genes with predicted apoptosis function were C6ORF222, OTUD6A, and NHSL2, three 

uncharacterized and highly specifically expressed genes (Extended Data Fig. 6f, g). To test the 

predicted role of the three genes in apoptosis, we assessed their impact on cell viability upon 

over-expression. Abundance of OTUD6A negatively correlated with time-of-death after addition 

of TRAIL (TNF-related apoptosis-inducing ligand, P = 0.012, two-sided, empirical test, n = 40 

cells) (Extended Data Fig. 6h), contrary to expression of OTUD6A alone (Extended Data Fig. 

6h, Supplementary Table 16). This suggests that OTUD6A participates in the apoptosis 

pathway but is not itself an inducer of cell death. We found OTUD6A to interact with DYNLL1 

and 2 (Extended Data Fig. 6i), two integral members of motor complexes that sequester 

BCL2L11 and BMF, two “BH3-only” proteins, to the cytoskeleton thereby inhibiting their pro-

apoptotic function59,60. OTUD6A expression is generally repressed with low expression in 

eosinophils61–63 (Extended Data Fig. 6f) and significant upregulation in response to Decitabine 

treatment, a drug effective against acute myeloid leukemia63,64. Thus, OTUD6A might exert an 

apoptosis sensitization function via transcriptional activation in a haematopoietic cellular context 

(Extended Data Fig. 6i).  

We were unable to generate a sufficient number of cells expressing C6ORF222 or NHSL2 

to perform the cell death assay. However, C6ORF222 contains a BH3 domain65 that likely 

mediates the binding to BCL2L2 and BCL2L1 identified in HuRI (Extended Data Fig. 6i). The 

interaction between C6ORF222 and the apoptosis regulator MAPK9 identified in HuRI 

(Extended Data Fig. 6i) was also reported in BioPlex (unpublished released BioPlex data8) 

providing further support for a functional role of C6ORF222 in apoptosis, probably in a digestive 

tract-specific cellular context (Extended Data Fig. 6g,i). OTUD6A and C6ORF222 represent two 

examples of specifically expressed genes that might adapt the basic apoptosis machinery to 

cellular context-specific needs. 
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Molecular mechanisms of tissue-specific Mendelian diseases 

Many Mendelian diseases display highly tissue-specific phenotypes, which are rarely explained 

by tissue-specific expression of genes carrying disease-associated mutations66,67 (Fig. 5f, 

Extended Data Fig. 6j). Such mutations have been shown to broadly or specifically affect the 

formation of PPIs involving the mutated protein68. Perturbations of PPIs between uniformly 

expressed disease-associated proteins and TiP proteins in the corresponding affected tissues 

have been suggested to underlie the tissue-specific phenotypes of those diseases67. Searching 

the HuRI-derived tissue PPI networks, we find 130 such PPIs involving 63 distinct non-TiP 

causal proteins and 94 TiP proteins (Fig. 5g). Although we do not observe a significant trend for 

PPIs between causal proteins and TiP proteins to occur more often than in random networks 

(Extended Data Fig. 6k), this does not rule out the possibility that perturbations of some of these 

interactions mediate tissue-specific phenotypes of Mendelian diseases. 

To further explore this hypothesis, we experimentally tested whether pathogenic variants 

associated with the corresponding Mendelian diseases were able to perturb these PPIs. Of ten 

causal proteins tested, seven showed perturbation of PPIs to preferentially expressed 

interaction partners in the corresponding “disease tissues” (Fig. 5g-h, Extended Data Fig. 7, 

Supplementary Table 17). One example is the gene PNKP, mutations in which have been 

associated with microcephaly, seizures and developmental delay69. PNKP, a polynucleotide 

kinase 3’-phosphatase, is involved in DNA damage repair69. The well-established pathogenic 

mutation (Glu326Lys) affects neither the DNA kinase nor DNA phosphatase activity of PNKP, 

rendering the mechanism of pathogenicity unclear70. We observed that Glu326Lys perturbed 

PPIs with two partners preferentially expressed in the brain, SYNGR1 and TRIM37, whereas the 

benign mutation Pro20Ser71 did not affect any of these PPIs (Fig. 5i). Interestingly, TRIM37 is 

known to facilitate DNA repair72 suggesting a potential mechanism through which the 

perturbation of this interaction might affect the brain-specific DNA repair function of PNKP.  

In two other cases, CTNNA3 and SUCLA2, the identified TiP interaction partners TRIM54 

and ARL6IP1, respectively, themselves cause similar diseases with overlapping symptoms73,74, 

reinforcing the likely pathogenic relevance of the interactions. Overall, this study yields 

hypotheses of molecular mechanisms for otherwise unexplained tissue-specific phenotypes of 

seven Mendelian diseases (Fig. 5h) and demonstrates the utility of HuRI as a reference to study 

biological mechanisms within specific disease contexts.  
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Exploration of isoform-specific protein function during development 
Transcripts of most human genes undergo alternative splicing, leading in many cases to altered 

protein sequences. Due to loss or gain of protein interaction-mediating domains or linear motifs, 

alternative isoforms of the same gene have been found to differ in their interaction profiles75,76. 

Modulation of cellular function by alternative splicing is especially prevalent during 

developmental processes and in some select adult tissues such as brain or testis77, yet most 

alternative splice products remain uncharacterized. Although we screened only one isoform per 

gene, HuRI is unique among available human protein interactome maps in providing information 

about the exact full-length protein sequence of each interaction partner. To aid in the functional 

characterization of alternative splice products, we aimed at identifying isoforms of a gene with a 

dominant-negative effect on overall gene function. We combined HuRI with isoform-dependent 

expression data78 to identify genes with isoforms expressed in the same tissue. These genes 

were further filtered to identify those for which an alternative isoform was predicted to lose some 

but not all of its interaction-mediating domains79, thus likely to lose some but not all of its 

interaction partners compared to the isoform screened in HuRI76 (Fig. 6a).  

Of the 192 candidate genes identified (involving known examples of altered alternative 

isoform function, Supplementary Table 18), we further considered NCK2. NCK2 displayed a well 

studied principal (long) isoform80,81 and an uncharacterized alternative (short) isoform in which 

three of four predicted interaction-mediating domains are lost (Fig. 6b). Both isoforms are 

expressed in brain, suggesting specific functional modulation by alternative splicing during brain 

development (Fig. 6c, Extended Data Fig. 8a, Supplementary Table 19). Known brain-specific 

functions of NCK2 include synaptic transmission82, organization of neuronal circuits83, and axon 

guidance84,85. Interestingly, a variant associated with autism was found near a splice site of the 

alternative exon of NCK2 further suggesting a functional implication of alternative splicing of 

NCK2 in brain development86,87. 

Pairwise testing interaction partners of the long isoform of NCK2 with the short isoform 

confirms the loss of some but not all interaction partners (Fig. 6d) consistent with the retention 

of one interaction-mediating domain in the short isoform (Fig. 6b). We used zebrafish as a 

model to test the hypothesized dominant-negative function of the short isoform over the long 

isoform of NCK2 during brain development (Extended Data Fig. 8b-d). We successfully knocked 

down both isoforms of zNCK2B in zebrafish using morpholinos (Extended Data Fig. 8e) to 

measure the impact of loss of zNCK2B on the size of the developing zebrafish brain. While 

expression of the hNCK2 long isoform in zebrafish under knockdown condition of the 

endogenous zNCK2B gene partially rescued the phenotype, expression of the short isoform did 
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not (Fig. 6e, Extended Data Fig. 8f, g). Furthermore, expression of the short isoform of hNCK2 

in zebrafish brain led to a significant decrease in the size of the developing zebrafish brain, an 

effect that was not observed with expression of the long isoform of hNCK2 (Fig. 6e). These 

observations support the predicted dominant negative effect of the short isoform of NCK2 and 

highlight the power of HuRI to serve as a reference to study isoform-specific protein function in 

a developmental cellular context. 

 
Perspectives 
By systematically screening about 90% of the protein-coding genome for binary PPIs using a 

panel of Y2H assays, we generated HuRI, a first reference map of the human protein 

interactome. Via integration of HuRI with contextual genome, transcriptome and proteome data, 

we infer cellular context-specific PPI networks that prove to be powerful resources in delineating 

aspects of cellular context-specific function and organization. Inferred cellular context-specific 

interactome maps will further gain in accuracy from advances in transcriptomics and proteomics 

technologies with increasing sensitivities down to the single cell level4. Transition from discrete 

(presence/absence) towards more continuous network models may be achieved by using 

expression levels to assign weights to interactions88, and further improved with large-scale 

measurements of interaction strengths9. Integration of inferred cellular context-specific networks 

with experimentally-derived cellular context-specific molecular interaction data89 will be critical to 

further refine those models. Future efforts to generate binary protein interactome maps will 

benefit from development of new PPI assays16 capable of identifying PPIs for the proteins still 

absent from HuRI. New cloning and faster screening technologies90,91 are needed to take 

interactome mapping from testing one isoform per gene to the ensemble of proteoforms 

generated within the cell. Although multiple challenges remain to be solved for a complete and 

context-specific map of protein functions, interactions, and higher-level organization, HuRI 

provides an unbiased genome-scale scaffold with which to coordinate this information as it 

emerges. 
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METHODS 

 

Construction of Reference ORFeome and definition of screening space 
(space III)  
 

Selection of existing clones 

We supplemented our human ORFeome collection hORFeome version 7.1 (v7.1) 

(http://horfdb.dfci.harvard.edu/hv7)92 with clones from additional genes from the ORFeome 

Collaboration93 (http://www.orfeomecollaboration.org), DNASU plasmid repository94 

(https://dnasu.org) and other collaborators. All clones are in Gateway compatible entry vectors 

with spectinomycin or kanamycin resistance markers, as appropriate. While native stop codons 

of most clones have been removed, 617 clones contain native stop codons. 

To select a single Open Reading Frame (ORF) for genes with multiple ORFs available, 

for each gene, we aligned the sequences of the corresponding ORFs to human genome 

GRCh37 using BLAT95 (v36x1) and chose the longest ORF with more than 95% of its sequence 

aligned to the genome. If no such ORF was available, we chose the ORF with the highest 

percentage of alignment to the genome. 

 

Cloning of new ORFs 

After collecting available ORFs from different resources, about ~3,000 human protein-coding 

genes remained uncovered (no ORF available). To obtain ORF clones for these missing genes, 

we attempted RT-PCR on a pool of cDNA libraries from brain, heart, and liver ordered from 

Biochain (Human Adult Normal Tissue: Brain, catalog number C1234035, lot number C203351; 

Human Adult Normal Tissue: Heart, catalog number C1234122, lot number B901100; Human 

Adult Normal Tissue: Liver, catalog number C1234149, lot number C203352). We designed 

primers for all the missing genes for which we could find coding sequences from RefSeq96 

(https://www.ncbi.nlm.nih.gov/refseq; downloaded April 13th, 2015). In total, we attempted 2,257 

primer pairs and successfully cloned 481 ORFs into pDONR223 vector, all without native stops. 

The sequences of the clones were verified using Illumina sequencing. We named the combined 

collection hORFeome v9.1. 
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Definition of the human protein-coding genome 

GENCODE97 annotation (ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_27) and 

DNA and protein sequences were filtered for information on transcript entries. After removing 

PseudoAutosomal Regions on the Y chromosome (PAR) genes, all genes of gene_type 

“protein_coding” with annotated transcripts yielded the 19,818 protein-coding genes used in this 

study. External datasets were mapped via gene or protein IDentifiers (IDs) to the Ensembl gene 

ID space, and genes, proteins, or transcripts that did not map were removed. 

 

Mapping of ORFs to GENCODE release 27 

To assign Ensembl gene IDs to ORFs in the hORFeome v9.1 collection, we aligned ORFs to 

protein-coding transcripts in GENCODE97 and determined the best match for each ORF-

transcript pair. Briefly, ORF protein sequences were aligned to all protein sequences of protein-

coding transcripts using BLASTP98 (NCBI BLAST v2.2.30) with default parameters. Alignments 

were further refined using MUSCLE99 (v3.8.31; default parameters). For each Ensembl gene, 

we kept only alignments with identity ≥ 95%, ORF coverage ≥ 50%, transcript coverage either ≥ 

50% or with at least two exons covered. The best match was determined based on the 

combination of ORF coverage, transcript coverage and alignment identity.  

Each ORF could generally be assigned to only one Ensembl gene, but where alignments 

were fully identical among different genes (e.g. histones), the ORF was assigned to multiple 

genes. Finally, we removed 33 ORFs containing known disease mutations based on HGMD100 

v2016 annotation. Using this pipeline, hORFeome v9.1 was matched to 17,408 protein-coding 

genes (Supplementary Table 20). 

 

Generation and benchmarking of Yeast Two-Hybrid (Y2H) assay versions 
 

Vector design 

To generate pDest-AD-AR67 [Activation Domain (AD) at C-terminus (C-term) with yeast 

centromere (CEN)], a fragment encoding an ADH1 promoter, Gateway recombination cassette, 

and C-terminal AD was PCR amplified from pGADCg101 using forward primer AP36 (5’ 

GAAGGCTTTAATTTGCAAAGCTCGGGATCCGGGCCCCCCCTCGAGATCCGcatctattgaagtaat

aataggcgcatg 3’) and reverse primer AP37 (5’ 

CAACCTTGATTGGAGACTTGACCAAACCTCTGGCGAAGAAGTCCAAAGCTctgaataagccctcgt

aatatattttcatg 3’) and cloned into EcoRI (New England Biolabs, NEB) and SalI (NEB) digested 
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pDEST-AD via homologous recombination gap repair in yeast. To generate pDest-AD-AR68 

(AD at Cterm with yeast 2µ), the same fragment encoding the ADH1 promoter, Gateway 

recombination cassette, and C-terminal AD was instead PCR amplified from pGADCg using 

forward primer AP36 and reverse primer AP38 (5’ 

GCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGcatctattgaagtaat

aataggcgcatg 3’) and cloned into NotI- and XmaI-digested (NEB) pDest-AD-QZ213 via 

homologous recombination in yeast. See Supplementary Table 21 for details on vector design 

and Y2H assay versions. 

 

Benchmarking pairwise test performance  

Assay versions were benchmarked by Y2H using a positive reference set of 92 well-

documented interacting human protein pairs (Positive Reference Set; PRS v1) and a set of 92 

random human protein pairs (Random Reference Set; RRS v1), as previously described14. 

Briefly, haploid yeast strains Y8800 and Y8930 carrying plasmids expressing AD and DB 

reference set fusions, respectively, were mated overnight and diploid selection was performed. 

Diploids were spotted onto Synthetic Complete media without Leucine, Tryptophan and 

Histidine with 1 mM 3-Amino-1,2,4-triazole (SC-Leu-Trp-His+1 mM 3AT for assay versions 1 & 

2) or SC-Leu-Trp-His+10 mM 3AT (for assay version 3) solid media, incubated at 30oC for 4 

days, and interactions were scored based on the strength of GAL1::HIS3@LYS2 reporter 

activation. Pairs that displayed AD-independent GAL1::HIS3@LYS2 autoactivation were 

designated as negatives. 

 

Benchmarking screening capabilities of Y2H assay versions on a test space 

For each assay version we performed several screens of a test space10 covering ~1% of the 

total space (~2,000 DB’s against ~2,000 AD’s) to adjust the protocol for high-throughput 

screening. Based on that, we were able to calculate how many screens per assay version are 

needed to reach saturation and how many new pairs are found by screening a space several 

times. For Y2H assay version 1, 2 and 3, we performed 12, 3, and 6 screens, respectively. The 

screens were performed and validated as described below in the Y2H screening, retest, and 

validation sections. 
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Subcloning into Y2H vectors 
 

Preparation of Y2H destination clones by 1-to-1 Gateway cloning 

ORFs from the hORFeome v9.1 collection were transferred by Gateway recombinational cloning 

(Invitrogen) into Y2H destination vectors pDEST-DB and pDEST-AD-CYH2 to generate DB and 

AD-hybrid proteins (DB-ORF and AD-ORF, respectively), as described previously102. In addition, 

all ORFs were transferred into pDest-AD-QZ213 for assay version 2 and all ORFs without a 

stop codon into pDest-AD-AR68 for assay version 3. 

 

Preparation of Y2H destination clones by en masse Gateway cloning 

To increase the throughput and efficiency of the cloning, we transferred the majority of the 

clones into the pDest-AD-AR68 vector en masse. To enable future use in the barcode fusion 

genetics Y2H system90. As described previously90,91, we generated randomly barcoded Y2H 

destination plasmid pools and carried out en masse Gateway LR reactions, bacterial 

transformations, colony pickings, and sequencing to identify ORFs and barcodes. After 

obtaining the raw sequencing reads, we ran Illumina bcl2fastq (v2.20 with options “--no-lane-

splitting -r 3 -p 10 -w 3”) to demultiplex all the reads into different plates according to the i5/i7 

index sequences. Extracting well-tag from each read, identified by locating conserved flank 

sequences, allowed assignment of reads from each plate to the corresponding well of origin. 

Full length (24-26 nt) barcodes within one base-pair mismatch were merged to identify the 

dominant barcode for each well. ORF reads in each well were aligned to reference ORF 

sequences via Bowtie 2103 (v2.2.3). For wells containing more than one clone, we filtered all the 

ORF and barcode pairs found in each well by calculating the percentage of reads aligned to 

each ORF. Only dominant barcoded-ORFs were selected, as defined by the ORF with the 

highest fraction of reads (at least, 20 reads and 20%) and ≥5X more reads than those for the 

second dominant ORF. About 1% of clones were validated by Sanger sequencing with ≥95% 

validation rate. 

 

Primary screening 
 

Yeast strains and transformation 

Competent yeast strains Y8800, mating type MATa, and Y8930, mating type MATa, both 

harboring the genotype leu2-3,112 trp1-901 his3Δ200 ura3-52 gal4Δ gal80Δ GAL2::ADE2 

GAL1::HIS3@LYS2 GAL7::lacZ@MET2cyh2R were transformed with individual AD-ORF and 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/605451doi: bioRxiv preprint first posted online Apr. 10, 2019; 

http://dx.doi.org/10.1101/605451
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

DB-ORF constructs respectively, and plated onto SC-Trp or SC-Leu to select for AD-ORF or 

DB-ORF plasmids102. 

 

Auto-activator identification and removal 

Prior to Y2H screening, haploid DB-ORF yeast strains were tested for auto-activation of the 

GAL1::HIS3 reporter gene in the absence of any AD-ORF plasmid. Individual DB-ORF yeast 

strains showing growth in a spotting assay on SC-His-Leu+3AT media were considered auto-

activators and removed from the collection of strains to be screened. 

 

Y2H screening 

Fresh overnight cultures of individual Y8930:DB-ORF yeast strains (bait) were mated against 

Y8800:AD-ORF libraries containing ~1,000 different Y8800:AD-ORF yeast strains (prey). After 

overnight growth at 30ºC in liquid rich medium (YEPD), mated yeast cells were transferred into 

liquid SC-Leu-Trp media to select for diploids. After overnight incubation at 30ºC diploid yeast 

cells were spotted onto SC-Leu-Trp-His+3AT solid media to select for activation of the 

GAL1::HIS3 reporter gene. In parallel, diploid yeast cells were transferred onto SC-Leu-

His+3AT solid media supplemented with 1 or 10 mg/l CHX for assay version 1 or 2 and 3, 

respectively. All AD-ORF plasmids carry the counter-selectable marker CYH2, which allows 

selection on CHX-containing medium of yeast cells that do not contain any AD-ORF plasmid in 

order to identify spontaneous DB-ORF auto-activators102. After 72h incubation at 30ºC, yeast 

that grew on SC-Leu-Trp-His+3AT media but not on SC-Leu-His+3AT+CHX media were picked 

into SC-Leu-Trp overnight and then processed to determine the identity of the respective bait 

and prey proteins. 

 

Yeast colony PCR and sequencing 

Because each DB-ORF yeast strain was mated against a library of ~1,000 AD-ORF yeast 

strains in the first-pass screens, one bait protein could interact with more than one prey proteins 

per mini-library. To account for this, we picked between three and five colonies (primary 

positives) from each growth spot on SC-Leu-Trp-His+3AT media to 96-well plates. Primary 

positive colonies were processed as described102 to generate lysates for PCR. Three microliters 

of diluted lysate was used as a template for PCR amplification to generate DB-ORF and AD-

ORF PCR amplicons.  

To cost-effectively identify both bait and prey proteins for hundreds of thousands positive 

colonies, we developed a method called SWIM-seq (Shared-well Interaction Mapping by 
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sequencing). Using SWIM-seq, we took advantage of next generation sequencing technology 

and pooled DB-ORF and AD-ORF PCR products that contain well-specific and plate-specific 

nucleotide sequences from tens of thousands colonies together in one sequencing run. Briefly, 

PCR was performed using AD and DB well index primers together with universal primers (see 

table below). All PCR was done using Platinum Taq (Life Technologies). After PCR, the 

products from each PCR plate were pooled into one single well in a 96-well plate (SWIM plate). 

The SWIM plates were purified (Qiagen, PCR Purification Kit) and processed to make an 

Illumina sequencing library, during which Illumina adapter sequences, i7 and i5, were 

incorporated as plate indexes. The library was then paired-end-sequenced using an Illumina 

platform (MiSeq or NextSeq 500). See Supplementary Table 22 for the primers used for the 

different Y2H assay versions.  

 

Identification of pairs of AD-ORF and DB-ORF 

We developed a computational pipeline to process demultiplexed paired-end reads and identify 

the matching ORF pairs corresponding to Y2H-positive colonies. Paired-end reads are in a fastq 

format, with one read, R1, containing a part of the ORF sequence and the other paired read, 

R2, containing the well index. Briefly, we used Bowtie 2103 (v2.2.3) to align all R1 reads to 

reference sequences and extracted the well-identifying indices from the R2 reads. AD-ORFs 

and DB-ORFs that shared the same well indices were paired together. Pairs identified from the 

primary screen were calls FiPPs (First Pass Pairs). To identify likely true interacting pairs, we 

developed a “SWIM score” S that takes into account the AD and DB reads in each well, total 

reads returned from the sequencing run, and other factors.  

 

  
where x and y are read counts of an AD-ORF and DB-ORF in a given well respectively, a and d 

are total read counts of all aligned AD-ORF and DB-ORF in that well, and M and N are pseudo-

counts for AD and DB respectively, which were constant for each sequencing batch but varied 

for different batches. 

  We then selected FiPPs for pairwise test using a cutoff that balances the risk of testing 

too many FiPPs that are not protein-protein interactions (PPIs) versus not testing too many 

FiPPs that are actual PPIs. The cutoff varied for different screens and sequencing runs to 

accommodate slight variations in the screening and sequencing protocol.  
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Pairwise test 
 

Design of pairwise test and scoring 

No FiPP is considered a PPI and released before it has been verified in a pairwise test using 

Y2H. For all FiPPs, each protein was picked from the stock collection and mated with its 

partner. This experiment was done in quadruplicate, with yeast spotted on both SC-Leu-Trp-

His+3AT plates and SC-Leu-His+3AT+CHX to test for spontaneous auto-activation. As positive 

and negative controls in each test batch, 92 pairs from PRS v1, 250 randomly selected Lit-BM 

pairs (literature binary multiple pairs), and 250 pairs of proteins randomly selected from the 

search space were included. Experiments were considered successful if at most 1% of the 

random protein pairs and 10% or more of the Lit-BM or PRS v1 pairs scored positive. Positive 

and negative controls were combined in the same batches with FiPPs and scored blindly. To 

ensure the mating of the corresponding plates with each other (AD-X with DB-Y) and identify 

any potential plate rotations or swaps, each retest plate has a unique pattern of empty wells. We 

developed a pipeline to semi-automate the scoring of growing yeast in 384 or 96 format. 

Growing yeast colonies were first scored automatically by software that uses the python library 

Colonyzer104 to process the images. The scores were then manually checked prior to saving 

and pixel intensities were used to estimate the strength of growth. Both retest plates and CHX 

control plates were independently scored and scores combined to produce a final score of each 

well. A pair was scored invalid (NA) for 96-well format if the well was unscorable (contaminated, 

not spotted, etc.); or, if in 384 format, if at least 2 of the 4 quadruplicates were unscorable on the 

retest plate; or, if the corresponding well on the CHX plate was unscorable. If a pair was not 

scored as NA but grew at least as strongly on the CHX plate compared to the growth on the 

retest plate (average of quadruplicates), then it was scored as a spontaneous auto-activator. If a 

pair was neither NA nor an auto-activator and showed growth in at least 3 of 4 replicates on the 

retest plate, then it was scored as positive; otherwise, negative.  

 

Treatment of pairs scored as spontaneous auto-activators 

Because validation data has suggested that the CHX control is over-sensitive for 2µ vectors and 

removes many actual PPIs, we performed one more pairwise test for pairs that scored as 

spontaneous auto-activators in the pairwise test in assay versions 2 and 3. For these retests, 

the DB-ORF was separately mated with an “AD-nul” plasmid without any ORF in the cloning 

site. If a yeast colony grew more strongly when mated to the corresponding AD-ORF than the 

AD-null strain, we “rescued” this PPI and added it to the dataset after sequence confirmation. 
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Sequence confirmation of positive pairs from pairwise test 

To guide the picking of all positive pairs for sequence confirmation, a “picking map” with all 

positive pairs was generated by the scoring software and printed. Picked pairs were lysed and 

SWIM-PCR was performed as described in the above section. Illumina reads were processed 

via the computational pipeline described above. Only pairs identified from the pipeline that 

matched the tested ORF pairs previously scored as positive were considered PPIs. 
 

Validation of screens with orthogonal PPI assays 
 

Design of validation experiments 

To validate each of the nine screens of Space III, we randomly selected ~340 positives from 

each screen and tested them in several batches using two assays, MAPPIT (MAmmalian 

Protein-Protein Interaction Trap) and GPCA (Gaussia princeps luciferase protein 

complementation). For each batch, we included ~200 randomly selected PPIs from Lit-BM as 

PRS and ~400 pairs of proteins randomly selected from the search space as RRS. For each 

pair, a random bait-prey configuration was assigned. All tested pairs and control pairs were 

combined in batches and tested blindly.  

 For the test space validation, unlike in the main screen where we chose PPIs for each 

screen, we randomly chose PPIs from all positive pairs together regardless of which screens 

they were from. All Lit-BM PPIs (~200) and ~400 random pairs of proteins from within the tested 

space were treated as a positive reference set and a random reference set respectively. 

 

MAPPIT assay 

MAPPIT experiments were performed as previously described10. Briefly, HEK293T cells were 

grown in 384-well plates and co-transfected with a luciferase reporter and plasmids for both bait 

and prey fusion proteins. Twenty-four hours post-transfection, cells were either stimulated with 

ligand (erythropoietin) or left untreated, then incubated for an additional 24 hours before 

luciferase activity was measured in duplicate. The MAPPIT validation experiment was deemed 

valid if both bait and prey were successfully cloned into expression vectors and bait expression 

was detected. “Fold-induction” values (signal from stimulated cells divided by signal from 

unstimulated cells) were calculated for each tested pair, and two negative controls (no bait with 

prey and bait with no prey). Each tested pair was assigned a quantitative score: the fold-
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induction value of the pair divided by the maximum of the fold-induction value of the two 

negative controls. 

 

GPCA assay 

As an orthogonal validation assay, GPCA experiments were performed as described 

elsewhere16. Briefly, GPCA N1 and N2 vectors are based on two fragments of the Gaussia 

princeps luciferase with humanized codon usage (herein referred as GLuc)19. Both GLuc 

fragments were linked to the N-terminus of the tested proteins via a flexible linker polypeptide of 

20 amino acid residues, including the Gateway recombinational cloning sites. To normalize 

mRNA translation initiation, a consensus Kozak translation start sequence was added. Both 

constructs were carried by the same CytoMegaloVirus (CMV)-driven mammalian expression 

vector (pCI-neo derived, Promega) and were maintained at high copy number via the presence 

of the SV40 replication origin. 

HEK293T cells were seeded at 6x104 cells per well in 96-well, flat-bottom, cell culture 

microplates (Greiner Bio-One), and cultured in Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal calf serum at 37°C and 5% CO2. 100 ng of purified plasmid DNA 

for each protein of a pair was transfected into HEK293T cells in 96-well, flat bottom, cell culture 

plates (Greiner Bio-One) supplemented with 10% Fetal Bovine Serum (FBS) in DMEM using 

PolyEthylenImine (PEI)19. The DNA/PEI ratio (mass:mass) was 1:3. Cell culture medium was 

removed 24 h after DNA transfection, and cells were gently washed with 150 µL pre-warmed 1x 

PBS (phosphate buffered saline). 40 µL of lysis buffer was added to each well, and cell lysis 

was performed under vigorous plate shaking for 20 min at 900 rpm. Luminescence was 

measured by auto-injecting 50 µL Renilla luciferase substrate (Renilla Luciferase Assay system, 

Promega) in each well and integrating light output for 4 s using a TriStar luminometer (Berthold) 

to obtain quantitative scores. GPCA has not been performed on PPIs of screens 7, 8, and 9 

generated with Y2H assay version 3. 

 

Processing of data and calculation of validation rates 

In MAPPIT and GPCA assays, if a pair is positive or negative was determined by thresholds set 

at the 99th percentile of the RRS scores (equivalent to a 1% false discovery rate). This was 

determined separately for each experimental batch and calculated using the quantile function in 

the Python pandas library. Pairs without valid quantitative scores were dropped, and recovery 

rates were calculated as the number of positive pairs over the sum of the positive and negative 

pairs. The error bars on the recovery rates were calculated using a Bayesian model (a binomial 
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likelihood with a uniform prior), taking the central 68.27% interval of Beta (p + 1, n + 1), where p 

and n are the number of pairs testing positive and negative, respectively.  

 

Testing of PPIs in MAPPIT that were found in multiple screens and analysis of data 

Randomly sampled PPIs were selected for validation assessment from individual screens and 

from additional randomly-sampled pairs from subsets of PPIs that were defined by the number 

of screens in which the PPI was detected. Every pair in HuRI that was also in any of the 

literature curated datasets [Lit-BM / Lit-BS (literature binary singleton pairs) / Lit-NB (literature 

not binary)] was also selected for validation assessment. 

 
Processing of external transcriptome datasets: GTEx, FANTOM and Human 
Protein Atlas 
 

Genotype-Tissue Expression project (GTEx)2 v6 transcriptome data previously processed with 

the R YARN package50 was downloaded from 

http://networkmedicine.org:3838/gtex_data/gtex_portal_normalized.rds on March 15th, 2016 

and processed with R v3.5.1 to extract normalized log read count data for every gene and tissue 

sample. The median expression of every gene across all samples from a given subtype (tissue 

or cell line) was calculated and considered as the expression level of the genes in those tissues. 

A median expression cutoff of >5 was applied to consider a gene being expressed in a given 

tissue. Cell line samples were excluded and genes were restricted to the set of protein-coding 

genes (see above). The YARN package collapses the 16 brain subregions into three brain 

tissues, basal ganglia, cerebellum, and other, which have been used in this study 

(Supplementary Table 23). 

Transcripts Per Kilobase Million (TPM) from Cap Analysis Gene Expression (CAGE) 

peak data was extracted from the hg19.cage_peak_phase1and2combined_tpm.osc.txt file 

(http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/; version November 11th, 2014). 

Entrez gene IDs were mapped to Ensembl gene IDs and the dataset was restricted to protein-

coding genes. For each gene from FANTOM3, we computed the mean of cage peak TPM 

values of all samples associated to any FANTOM primary cell category. Samples were mapped 

to primary cells using FANTOM SSTAR (http://fantom.gsc.riken.jp/5/sstar/). Primary cell 

categories that were considered to be biologically too similar and of close TPM expression were 
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merged. TPM values were log2 transformed and a gene was considered expressed if its value > 

0. 

RNA-seq data from 64 cell lines processed at the gene level with TPM values 

downloaded on December 1st, 2017 from the Human Protein Atlas13 (https://proteinatlas.org). 

Genes with TPM ≥ 1 were considered expressed. 

 

Computing increase of HuRI with more assay versions and screens 
 

To evaluate the number of PPIs and proteins observed as a function of the number and assay 

version of screens used, the mean of the cumulative number of PPIs and proteins across all 

matching screen combinations was used. For example, for five screens with three being assay 

version 1 and two being assay version 2, the mean number of unique PPIs was calculated for all 

combinations of any 3 of the 12 assay version 1 screens and any 2 of the 3 assay version 2 

screens. 
 

Integrative analyses with protein structural information 
 

Analysis of distances between protein termini and interaction interfaces 

We retrieved experimental structures, or either complete or domain-based models (using 

Interactome3D21 version 2018_04) involving any two proteins that have at least one interaction 

in HuRI. For each subunit in a complex structure, we defined its interaction interface as the 

residues for which the Accessible Surface Area (ASA) changed more than 1 Å2 between the 

bound and unbound state. The center of this interaction interface was determined as the Cα 

atom being closest to the center of coordinates of the interaction interface. Next, we calculated 

the distance from the N- and C-terminal Cα atoms to the center of the interaction interface. 

Importantly, we only considered protein structures with complete N- or C-termini depending on 

the analysis performed. In complexes with truncated tails, we searched for monomer structures 

with a minimum of 50% coverage and complete terminal tails. In those cases, we superimposed 

the monomers onto the respective complex subunits and calculated the distance from the 

relevant terminus to the interaction interface center. Finally, we grouped these interactions 

based on the Y2H assay version(s) in which they were detected and performed the analysis 

separately for DB and AD fusions. 
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Analysis of the fraction of PPIs in dataset that are direct 
We queried Interactome3D21 (version 2018_04) for complexes involving three or more proteins 

with experimental structure available. For all combinations of protein pairs within a complex, 

Interactome3D calculated the number of residue-residue contacts by accounting for hydrogen 

bonds, van der Waals interactions, and salt and disulfide bridges. We defined protein pairs with 

five or more contacts as direct, and remaining pairs as indirect. Separately for each given PPI 

dataset, the fraction of direct PPIs was calculated as the number of direct PPIs divided by the 

number of direct and indirect PPIs. 

 

Analysis of correlation between number of screens and interaction strength 

We downloaded from Interactome3D21 (version 2018_04) the experimental structures involving 

any two proteins in HuRI (Human Reference Interactome). For each complex structure, we 

calculated the interaction interface area by subtracting the ASA in the bound state from the total 

ASA of the unbound proteins and by dividing the result by two. Additionally, we calculated the 

number of residue-residue contacts as explained above. Finally, we grouped the protein pairs 

by the number of HuRI screens in which an interaction was detected. 

 

Retrieval and processing of other interactome datasets 
 

Construction of Lit-BM  

Literature curated datasets were derived from the Mentha resource45, which aggregates 

literature-curated PPIs from five source databases: MINT105, IntAct106, DIP107, MatrixDB108 and 

BioGRID109. The data downloaded from Mentha was dated August 28th 2017. Data was filtered 

to have valid IDs for the UniProt accession numbers, Pubmed IDs and PSI-MI terms. Each 

piece of evidence for a protein pair must consist of a Pubmed ID and an interaction detection 

method code in the PSI-MI controlled vocabulary110. Duplicated evidence arises in cases where 

different source databases curate the same paper. We merged duplicated entries for each pair, 

as detected by multiple pieces of evidence with the same Pubmed ID and experimental 

interaction detection codes which are either the same or have an ancestor-descendent 

relationship in the PSI-MI ontology. (In the latter case, the more specific descendent term was 

assigned to the merged evidence.) In order to select the subset of PPIs corresponding to binary 

interactions (as opposed to co-complex associations) we developed a manual classification of 

the PSI-MI interaction detection method110 terms, which define the experimental technique used. 

Our classification has been updated since previous versions, in order to cover new experimental 
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methods which have been added to the controlled vocabulary in the intervening time. The 

methods are classified into three categories; ‘invalid’, ‘binary’ and ‘indirect’. Where ‘invalid’ 

corresponds to terms that are not considered valid experimental protein-protein interaction 

detection methods, ‘binary’ to terms that detect binary protein-protein interactions and ‘indirect’ 

to terms that detect potentially indirect interactions. An example term in the first category is 

“colocalization”. All PPI evidences annotated with “invalid” terms are removed and not 

considered. The other two categories are used to divide the protein pairs in the literature-

curated dataset into three categories, as follows. If a pair has no evidence that correspond to a 

binary method it is classified as Lit-NB, if a pair has only one piece of evidence with a binary 

method it is classified as Lit-BS and if a pair has multiple pieces of evidence, with at least one 

corresponding to a binary method then it is annotated as Lit-BM. The resulting number of PPIs 

in each category is shown in (Extended Data Fig. 9a). 

The interactions that make up the literature come from experiments that span a broad 

range of different sizes. It is possible that there could be a difference in average quality between 

experiments that report just a single or small number of PPIs and those that use high-

throughput techniques to identify large numbers of PPIs. In order to investigate this we divided 

the Lit-BM and Lit-BS into High-Throughput (HT) and Low-Throughput (LT) subsets, based on 

the size of the smallest experiment, that provided a piece of evidence for that pair using a binary 

experimental method. If 50 or more PPIs were reported in that experiment, it was classified as 

HT and otherwise was classified as LT. Random samples of these subsets were pairwise tested 

using Y2H (assay version 1) and MAPPIT (Extended Data Fig. 9b, c, Supplementary Table 24, 

25). We observed no significant difference between the validation rates of the HT and LT 

subsets and so we made the decision not to implement any cutoff in experiment size when 

defining the literature dataset.  

The main differences from the previous literature curated dataset Lit-BM-1310 are the 

databases used. Random samples of Lit-BM-17 pairs show similar recovery rates to random 

samples of Lit-BM-13 pairs in Y2H and MAPPIT (Extended Data Fig. 9d, e). PPIs from Lit-BM-

13 have been used as positive controls in experiments, PPIs from Lit-BM-17 (Supplementary 

Table 26) have been used in all computational analyses. 

 

Processing of co-complex interactome maps BioPlex, QUBIC, CoFrac 

BioPlex8 v2.0 data was downloaded from http://bioplex.hms.harvard.edu on August 1st, 2018, 

and protein IDs were mapped from UniProt to Ensembl gene IDs. QUBIC was downloaded from 

the supplementary table of the previous study9 and protein IDs were mapped from UniProt to 
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Ensembl gene IDs. CoFrac7 was processed by downloading the data from 

http://human.med.utoronto.ca on August 1st, 2018 and mapping from UniProt to Ensembl gene 

IDs. All interatome maps were then filtered to contain interactions only involving Ensembl gene 

IDs corresponding to protein-coding genes. 

 

Processing of previously generated binary interactome maps at CCSB 

To update the previous CCSB (the Center for Cancer Systems Biology) binary interactome 

maps and convert them into Ensembl gene ID pairs, for each map, we retrieved the original 

ORF based IDs stored in our database and mapped the ORF IDs to Ensembl gene IDs as 

described above. PPIs involving ORFs that remained unmapped or were discarded or mapped 

to non-protein-coding genes were removed. 

 

Analysis of HuRI PPIs linking proteins within versus between protein 
complexes 
 

CORUM22 complexes were downloaded from http://mips.helmholtz-muenchen.de on August 1st 

2018 and gene IDs were mapped from UniProt to Ensembl. Complexes with less than three 

subunits were removed as well as complexes that overlapped 90% or more with another 

complex (the smaller complex of both was removed). HuRI PPIs were filtered to remove 

homodimers and were restricted to those linking proteins annotated to be in at least one 

CORUM complex (restriction to common space between HuRI and CORUM). The fraction of 

these HuRI PPIs that link a pair of interacting proteins that were observed to be at least once 

part of the same CORUM complex was determined and these PPIs were further split into PPIs 

found in only one of the 9 HuRI screens versus having been found in at least 2 screens. The 

fractions plotted were 137/1042 and 232/775 for one screens and multiple screens, respectively. 

CORUM complex membership was used to identify all interactions between them from BioPlex8 

or HuRI. py2cytoscape111 was used to generate network models of each complex.  
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Functional enrichment analyses of HuRI and the Profile Similarity Network 
(PSN) of HuRI 
 

Construction of PSN and randomizations 

Jaccard similarity (number of shared interaction partners divided by union of interaction 

partners) was calculated for every pair of proteins of degree ≥ 2 in a given network. Only pairs 

of proteins that shared at least one interaction partner were considered in any further analysis 

using the PSN. Random PSNs were generated in the same way from degree-controlled 

randomized HuRI networks that generated using the degree_sequence() function in the Python 

igraph112 library v0.7.1. 

 

Calculation of pairwise sequence identity and correlation with Jaccard similarity 

To calculate the sequence identity between a pair of proteins in HuRI, we aligned the two 

corresponding ORF protein sequences using MUSCLE99 (v3.8.31) with default parameters. We 

then parsed the MUSCLE alignment file and calculated the sequence identity as the number of 

matched amino acid positions divided by the length of the alignment. To assess whether higher 

Jaccard similarity between two proteins in HuRI correlates with higher overall sequence 

similarity between the two proteins as an indication for similar interaction interfaces while 

controlling for degree biases, we computed for increasing sequence identity cutoffs the sum of 

Jaccard similarities of all edges in the PSN that link two proteins with a sequence identity of or 

above that cutoff. This sum was divided by the mean of the sums calculated in identical ways 

from 100 random PSNs to obtain a fold change that was plotted. The lower and upper bound of 

the 95% confidence interval of the fold change was computed by dividing the actual sum of the 

Jaccard similarities with the 97.5th and 2.5th percentile of the random distribution, respectively, 

and plotted as error bars. 

 

Retrieval and processing of resources for functional annotations 

Co-fitness relationships between human genes were kindly provided by Joshua Pan, calculated 

as a Pearson correlation coefficient between the effects of the separate knockout of two genes 

on the AVANA cancer cell line panel113 as described previously35. Gene IDs were mapped to 

Ensembl gene IDs and restricted to protein-coding genes. Co-expression data on the level of 

correlated expression between two genes was downloaded from the SEEK114 database on June 

13th 2018 and restricted to protein-coding genes. Pathway membership of proteins was 

obtained from Reactome, using a file mapping Ensembl gene IDs to lowest level pathways, 
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downloaded on August 1st 2018. Subcellular compartment membership of proteins was 

obtained from the Human Protein Atlas downloaded on August 1st 2018. Annotations of 

‘Uncertain’ reliability were not used. Protein complex membership of proteins was obtained from 

BioPlex8 2.0 supplementary table 7. Entrez gene IDs were mapped to Ensembl gene IDs and 

restricted to protein-coding genes. 

 

Calculation of significances for a network to link functionally related proteins 

The significance of a given network [HuRI, HuRI 2ev (HuRI with multiple evidences), or the PSN 

of HuRI] to link proteins that are co-expressed or that display similar growth defects on cell lines 

was determined by computing for increasing correlation cutoffs the sum of the edge weights 

(Jaccard similarities for PSN, edge weights = 1 for PPI networks) of all edges in the given 

network that link two proteins with a correlation value of at least that cutoff. This sum was 

divided by the mean of the sums obtained from randomized networks. the 95% confidence 

interval was computed as described above. A single correlation cutoff (Pearson correlation 

coefficient of 0.3 for growth defects and co-expression value of 0.86) was chosen for display 

based on the number of pairs of proteins that met this cutoff. However, consistent trends were 

observed across most cutoffs tested (Extended Data Fig. 4d, e). The significance and 

confidence interval of a given network to link proteins that localize to the same subcellular 

compartment, or work in the same pathway, or associate in the same protein complex was 

computed in identical ways with the exception that no titration was performed to calculate 

significances. 

 

Computation and visualization of functional modules 

We used the SAFE software28 (v1.5) to determine and visualize significant functional modules in 

various networks. The network layouts were generated with Cytoscape115 (v3.4.0) using the 

edge-weighted spring embedded layout. PSNs were drawn using a Jaccard similarity cutoff of 

≥0.1 and using the Jaccard similarity as edge weight for the layout algorithm. Gene Ontology116 

(GO) terms for each gene were extracted from FuncAssociate117 (v3 - GO updated on February 

2018). SAFE analysis was run with the default option except layoutAlgorithm = none (using 

layout generated by Cytoscape), neighborhoodRadius = 200, and neighborhoodRadiusType = 

absolute. 
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Network coverage of genes of interest and correlation with gene properties 
 

Acquisition and Processing of gene properties 

The number of publications for each gene was determined as the number of unique PubMed 

IDs associated with the gene, using the file gene2pubmed from NCBI downloaded on August 

1st 2018, after mapping NCBI gene IDs to Ensembl gene IDs, using the ID mapping file 

provided by NCBI, gene2ensembl, downloaded on August 1st 2018. Disease genes were 

defined as all genes with a disease annotation in OMIM118, using files generated on July 26th 

2018. Pharmacological targets were taken from the IUPHAR/BPS Guide to 

PHARMACOLOGY119 downloaded on July 26th 2018. Cancer genes were the Tier 1 genes of 

the Cancer Gene Census120. Genes with Single Nucleotide Polymorphism (SNP) from Genome-

Wide Association Study (GWAS) were selected using data from the GWAS Catalog121 v1.0.2 

from July 17th 2018. Genes were selected if there was a SNP associated with a trait with P < 5 

x 10-8, associated with the gene that belonged to a class that could affect the protein product. 

Transcription factors (TFs) were all known and likely TFs from The Human Transcription 

Factors122 v1.01 downloaded on July 26th 2018. Cell growth genes were derived from the 

AVANA CRISPR knockout screens113, using a file dated June 21st 2018 containing data for 436 

cell lines. Cell growth genes were selected as those with a median relative growth < -0.5 across 

the cell lines tested. We took the list of genes annotated with “embryonic lethality” from the MGI 

database (v6.13)34. Transcript expression levels of genes were retrieved from GTEx, and 

protein expression levels from HEK293T and HeLa cell lines from these studies9,123. Age 

information was adopted from Protein Historian36 (http://lighthouse.ucsf.edu/ProteinHistorian, 

downloaded on August 2nd 2018). Age time was computed based on OrthoMCL. LoF 

intolerance was adopted from ExAC database1 (release 0.3.1 / updated February 27th 2017). 

Summary and detailed information of gene properties is provided in Supplementary Table 27. 

 

Calculation and plotting of binned adjacency matrices 

The protein-coding genome is ranked by the number of publications of each gene. In the case 

where multiple genes have the same number of publications, the order was randomized. The 

genome was divided into equal-sized bins, dividing the symmetric genome-by-genome space 

into two-dimensional bins. 
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Processing of gene properties for network degree correlation analysis 

We calculated the correlation and the partial correlation between network degree of each 

network and protein properties within the set of proteins with at least one interaction in the 

corresponding network and with the value for the corresponding property, using Matlab (version 

2016a). To calculate the partial correlation based on expression, we used HEK293T proteomic 

data from the BioPlex123 v1.0 study, proteomics data from the HeLa cell line from the QUBIC 

study, GTEx tissue expression data and the number of publications from NCBI (method above) 

for the networks BioPlex, QUBIC, CoFrac and Lit-BM, respectively. 

 

Integrative analyses of HuRI with subcellular compartment data 
 

Calculation of protein coverage of networks by subcellular compartments 

The subcellular localization dataset was retrieved from Cell Atlas38 and processed as described 

above. Any compartments with less than 100 proteins were not considered in this analysis, and 

additional extracellular region and extracellular vesicle annotations from the GO database were 

included. Fisher’s exact test was used to test for an enrichment or depletion of the proteins of 

each network restricted to those that have at least one localization annotation. Odds ratios were 

provided in log scale and colored with gray for non-significant enrichment (P > 0.05). 

 

Calculation of trend between cellular compartment overlap and HuRI 

For pairs of subcellular compartments, A and B, both the odds ratio of proteins to be annotated 

in both A and B and the odds ratio of the density of PPIs between proteins annotated as being 

in A and not B and B and not A, were calculated. The density of PPIs is the number of PPIs 

within a set of proteins, divided by the number of pairwise combinations of those proteins. 

Haldane-Anscombe corrected odds ratios were used. The uncertainties on the log odds ratios 

were calculated using the standard error approximation. Orthogonal distance regression (ODR) 

was used to estimate the relationship between the two log odds ratios. ODR was chosen since 

the subcellular compartments have a large variation in their sizes and so widely varying 

uncertainties on both the x and y variables needed to be accounted for. The z-value of the 

regression slope was used as the test-statistic and compared to a null distribution generated by 

running the same regression analysis on 1,000 degree-preserved randomized networks. All 

possible pairs of compartments were used, with the exclusion of pairs of compartments whose 

annotations partially or fully excluded each other for technical reasons. The excluded pairs 
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were: Nucleoplasm/Nucleus, Nucleoplasm/Nucleoli, Nucleus/Nuclear Speckles, Nucleoli fibrillar 

center/Nucleoli, and Microtubule organizing center/Centrosome.  

 

Analysis of HuRI PPIs about extracellular vesicle function 
 

Acquisition and processing of extracellular vesicle (EV) proteomic data from the EVpedia 

database 

We used EVpedia database40,124,125 (version: April 30th 2018) to define vesicular proteins. In 

EVpedia, there are 487 studies for EV proteomics from human samples and an “Identification 

Count” for each protein, which is the number of EV proteomic studies with the corresponding 

protein detected. If a protein was found in more than 45 different studies (~10% of the studies), 

we defined it as a vesicular protein, resulting in 2,548 proteins in total (about top 10% among all 

the identified EV proteins). The Largest Connected Component (LCC) of this EV network, 

containing 525 proteins, was visualized with Cytoscape115 (v3.4.0). To test the significance of 

this EV protein network, we compared the number of PPIs between EV proteins in this network 

to the number of PPIs between EV proteins obtained in 1,000 degree-controlled randomized 

networks, deriving an empirical P < 0.001. 

 

Design and Transfection of gRNA and selection for KO cells 

We used gRNA shared in TKO database126. U373vIII cells were prepared at 70% confluency 

prior transfection. For each gene to be KO, a pool of plasmids carrying the gRNAs were 

transfected using JetPrime according to the manufacturer’s guidelines (Polyplus Transfection). 

The cells were submitted to Puromycin selection 36h after 48h of transfection. KO of SDCBP 

was confirmed by Western Blot127 with the rabbit anti-SDCBP antibody (ab133267 with lot 

number GR282684-7) purchased from Abcam (Cambridge). 

 

Comparative proteomics 

We performed the EV comparative proteomics as previously described127 with some 

modifications. The conditioned media (CM) was collected from cells grown for 72 h in culture 

media containing 10% EV-depleted FBS (generated by centrifugation at 150,000 g for 18 h at 

4ºC). CM was centrifuged at 400 g and then passed through 0.8 µm pore-size filter. The 

resulting filtrate was concentrated using Amicon Ultra-15 Centrifugal Filter Unit (EMD Millipore) 

with 100,000 nominal molecular weight limit (NMWL) molecular cutoff. The concentrate was 

mixed with 50% of iodixanol solution (Sigma) and processed for density gradient 
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ultracentrifugation at 200,000 g for 2 h. The EV-enriched fraction of iodixanol was collected (at 

the density of ∼1.10 g/mL) and particles were confirmed to carry CD81, an established 

exosome marker. The concentration of EV proteins was quantified using the BCA assay (Pierce 

Biotechnology). For concentration and size distribution of EVs, nanoparticle tracking analysis 

(NTA) was carried out with each collected iodixanol fraction using NanoSight NS500 instrument 

(NanoSight Ltd.). Three recordings of 30 s at 37 ºC were obtained and processed using NTA 

software (v3.0). 

The purified EV protein preparation (9 µg) was desalted with SDS-PAGE loaded onto the 

stacking gel followed by staining and destaining. The in-gel trypsin digestion was carried out 

under reducing conditions afforded by DiThioThreitol (DTT), and alkylation was achieved using 

iodoacetic acid. The lyophilized peptides were re-solubilized in 0.1% aqueous formic acid/2% 

acetonitrile, the peptides were loaded onto a Thermo Acclaim Pepmap (75 µm inner diameter 

with 2 cm length, C18, 3 µm particle size, 100 Å pore size; Thermo Fisher Scientific) pre-column 

and onto an Acclaim Pepmap Easyspray (75 µm inner diameter with 15 cm length, C18, 2 µm 

particle size, 100 Å pore size; Thermo Fisher Scientific) analytical column. Separation was 

achieved using a Dionex Ultimate 3000 uHPLC at 220 nL/min with a gradient of 2-35% organic 

solvents (0.1% formic acid in acetonitrile) over 3 h. Peptides were analyzed using an Orbitrap 

Fusion Tribrid mass spectrometer (Thermo Fisher Scientific) operating at 120,000 resolution 

(FWHM in MS1, 15,000 for MS/MS). All experiments were carried out in three biological 

replicates. The quantification of proteins was done by Maxquant program (v1.5.6.5) with default 

parameters of label-free quantification with UniProt database of human proteins (SwissProt 

release September 2016). To define the decreased proteins after knockout, P-value was 

calculated by fitting a Gaussian kernel density estimation (KDE) to the distribution of t-statistics 

obtained by randomly permuting the WT/KO labels for all proteins, as previously described128. 

Decreased proteins in EV after knockout were defined as the proteins with P < 0.05 and fold 

change < 0.66 (Fig. 4e). The enrichment of decreased proteins among SDCBP interactors were 

tested with empirical testing; among all the EV proteins from U373vIII, we randomly picked 6 

proteins 10,000 times and calculated the fraction of cases with ≥ 50% decrease proteins 

(Extended Data Fig. 5b). 
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Inference and analysis of tissue PPI networks from HuRI 
 

Calculation and assessment of tissue preferential expression 

A z-score related statistic published in Sonawane et al.44 was applied on the sample expression 

data of 35 tissues and testis to calculate a tissue preferential expression (TiP) value for every 

gene-tissue pair (Extended Data Fig. 10a and Supplementary Table 28). However, at a given 

TiP value cutoff, only those genes were considered preferentially expressed in a given tissue, if 

they also showed a level of expression > 5 in that tissue. A unique value of preferential 

expression for every gene was calculated by taking the maximum of all TiP values across the 35 

tissues (Extended Data Fig. 10a). As noted by others2,44, testis by far represents the tissue with 

the largest number of TiP genes increasingly dominating the overall set of TiP genes for 

increasing TiP value cutoffs (Extended Data Fig. 10b). The expression of many genes in testis 

has been hypothesized to be linked to DNA integrity control mechanisms during reproduction129 

suggesting that the majority of testis-specific genes are not related to testis-specific function. 

Therefore, testis was excluded from any analysis involving tissue-preferential expression in this 

study. The impact of that decision on the number of TiP genes defined for all other tissues was 

minimal, leading to a small gain in TiP genes and essentially no loss (Extended Data Fig. 10c, 

d). The number of TiP genes substantially decreases for increasing TiP value cutoffs (Extended 

Data Fig. 10a). At higher TiP value cutoffs, some tissues are left without any TiP gene. At a TiP 

value cutoff of 2, most TiP genes are not exclusively expressed. However, that fraction 

increases with higher TiP value cutoffs and plateaus at about 75% with a cutoff of 8 or 9 

(Extended Data Fig. 10e). Where applicable, analyses were performed without the application of 

a TiP value cutoff to define TiP genes, however, whenever a cutoff was necessary, a cutoff of 2 

(lenient but highly significant preferential expression), 3, and 8 were applied to test for 

dependencies of results on the level of preferential expression considered. 

 
Correlation analysis of network properties with tissue preferential expression 

Networks were processed as described above. A PPI was considered to exist in a tissue, if both 

proteins showed expression (at the transcript level, expression cutoff > 5) in the same sample 

for more than 50% of all samples available for that tissue. For the network property analyses, 

each PPI network was restricted to the PPIs being expressed in at least one tissue and to the 

largest connected component. The degree and betweenness function from the python igraph 

library112 (v0.7.1) were used to calculate the degree and betweenness of every protein in the 

network. Degree and betweenness were assessed for correlation with the max TiP value of 
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every protein using Spearman’s rank correlation in the python scipy library130 (v1.1.0). The 95% 

confidence interval of Spearman’s ρ was calculated using 1,000 bootstrap samples. 

 

Calculation of fraction of genome or network that is tissue-specific 

Networks were processed as described above and restricted to PPIs linking proteins expressed 

in the same tissue. Titrations were performed as described above, by the max TiP value of 

every gene. The fraction of the genome that is tissue-specific at a given max TiP value cutoff 

was calculated by dividing the number of TiP genes at the cutoff with the number of protein-

coding genes in GTEx. The fraction of proteins in a network that are tissue-specific were 

calculated by dividing the number of TiP proteins at a given max TiP value cutoff that are in the 

network with the total number of proteins in the filtered network. Error bars reflect standard error 

of proportion. 

 

Generation and visualization of TiP networks 

TiP networks were drawn for every tissue by taking all TiP proteins for a given tissue with a TiP 

value ≥ 2 and all their interaction partners in HuRI that are expressed in the same tissue. 

Networks were drawn with Cytoscape115 (v3.7.0) and manually adjusted for aesthetic purposes. 

The human body clipart was obtained from smart.servier.com. 

 

Calculation of closeness of TiP proteins in tissue PPI networks 

For every tissue the number of PPIs in HuRI between TiP proteins of that tissue was determined 

defining TiP proteins at a TiP value cutoff ≥ 2. This number was compared to the number of 

PPIs between TiP proteins in 1,000 degree-controlled randomized networks (generated using 

the degree_sequence function in the python igraph112 library) of the corresponding tissue PPI 

network of HuRI (all PPIs linking proteins expressed in this tissue). Tissues were excluded from 

the analysis, if less than two TiP proteins were in the tissue PPI network. The average shortest 

path between TiP proteins in a tissue PPI network was calculated by restricting the tissue PPI 

network to the Largest Connected Component (LCC), determining the shortest path of every TiP 

protein to the closest TiP protein and averaging those shortest paths, and comparing the 

average shortest path to those from 1,000 degree-controlled randomized tissue PPI networks. 

Tissue PPI networks with less than two TiP proteins in the LCC were excluded from the 

analysis. Tissues in which TiP proteins are significantly close to each other were determined by 

calculating the fraction of random networks with a number of TiP-TiP PPIs at least as high as in 

the actual tissue PPI network (or with an average shortest path at least as small or smaller) and 
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requiring that fraction to be ≤ 0.05 × 35 (one-sided empirical p-value corrected for multiple 

testing). 

 

Gene function prediction and experimental testing 
 

Analysis of annotation of TiP genes with tissue-specific GO terms 

Assignment of tissues to GO116 terms was done manually as described in detail elsewhere 

(Basha et al. in preparation). These GO term - tissue annotations were further matched to the 

35 tissues with transcriptome data from GTEx. GO Biological Process terms were downloaded 

from FuncAssociate117 on March 20th 2018 excluding annotations with evidence codes ND and 

IBA. For every tissue all genes with a TiP value ≥ 2 were selected and the fraction of those 

determined with at least one GO term annotation assigned to that tissue. 

 

Prediction of gene functions using guilt-by-association approach 

Finding a new protein annotation can be described as a link prediction problem between a node 

representing the function and the proteins. Initially, we connect the functional node to each of 

the proteins annotated with this function and obtain a link prediction score for each other gene in 

the network based on our recently developed link prediction method27. As the result, the indirect 

score of protein i is obtained as where aik is the connection weight between nodes i and k and 

kj is the degree of node j. Intuitively, the indirect score integrates the amount of network 

similarity of the candidate node to the known proteins involved in this function. 

We then compare the original network-based indirect score (s) to a random benchmark, 

obtained by randomizing the network several times in a degree-preserved way. Calculating the 

z-score z=(s-sR)/sR is the traditional way of such comparison, obtained by standardizing the 

original score with the expectation value (sR) and standard deviation (sR) of the score that 

would be expected by chance. Yet, the z-score is not free from degree biases and prefers low-

degree nodes with an extremely small sR. As described elsewhere in detail (manuscript in 

preparation), we propose to apply a related measure, called the effect size. The effect size s-

sR-αsR is obtained by comparing the original score with the reasonably expected value of the 

random benchmark, estimated as the mean value (sR) and α-times the standard deviation (sR). 

In practice, we use α=2, selecting the same candidates as a traditional z-score threshold of z ≥ 

2, but ordering them based on the amount of signal beyond random expectations to avoid a bias 

towards low-degree nodes. To generate the benchmark distribution for each gene, we perform 
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10,000 degree-preserved randomizations over the human interactome and score each gene in 

each of the random networks. 

Functional annotations of genes with GO Biological Process terms were obtained as 

described above and further restricted to annotations with the evidence codes EXP, IMP, TAS, 

HMP, HEP, IDA, IGI, NAS, HGI, IEP, IC, HDA to avoid circularity introduced from using inferred 

GO annotations based on PPI data to infer more GO annotations using PPI data again. 

 

Cell culture, transfection and cell death assay 

Cell death assay was performed as described previously131. HeLa cells (obtained from American 

Type Culture Collection) were maintained in DMEM supplemented with 10% FBS, 0.2 mM L-

glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen) at 37°C and 5% CO2. 

Cells were plated onto 96-well imaging plates (BD Biosciences) and transient transfection was 

performed using Lipofectamine 3000 according to the manufacturer’s instructions (Invitrogen). 

After 24h in transfection reagent, the cells were imaged on a BD Pathway 855 Bioimager (BD 

Biosciences) with a UAPO/340 20X objective (0.75 NA; Olympus). After 1 hour of imaging, cells 

were treated with 100 ng/ml of recombinant human TRAIL Apo/2L (PeproTech). The 

fluorescence signal and the time of death of transfected cells were calculated using ImageJ 

(NIH) software. 

 To assess the significance of a correlation between levels of OTUD6A expression and 

time of death, a Pearson correlation coefficient was calculated and its significance assessed by 

comparison to the Pearson correlation coefficients of 100,000 shufflings of the cell death and 

fluorescence measurements. 

 

Generation of apoptosis candidate networks 

Networks around OTUD6A and C6ORF222 were drawn with Cytoscape115 (v3.7.0). All 

interaction partners of OTUD6A and C6ORF222 in HuRI were selected as well as indirect 

interaction partners, if they had a known apoptosis GO annotation (restricted to those used in 

the gene function prediction, see above), to visualize the network neighborhood used to obtain 

the apoptosis prediction for the two candidate genes. This reference network was filtered using 

transcript expression data from GTEx for colon_transverse (expression cutoff > 5) and transcript 

expression data from the BLUEPRINT project61,62 for major eosinophils (log2(TPM+1) > 0.3). 

The same expression data was used to adjust the size of the nodes in the network to reflect 

transcript expression levels.  
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Analyses of tissue-specificity of Mendelian diseases 
 

Quantification of tissue-specificity of Mendelian diseases and integration with tissue 

gene expression data 

Tissues affected in Mendelian diseases were manually curated as described in detail elsewhere 

(Basha et al. manuscript in preparation). Briefly, disease information was downloaded from the 

OMIM database118 and tissues were annotated to diseases within phenotypic series. Affected 

tissues were matched to the 35 tissue names from GTEx. If brain was an affected tissue, all 

three brain subregions for which transcriptome data from GTEx was available (see above for 

processing of GTEx data), were assigned to the corresponding disease. Other tissues, such as 

heart, were processed the same way. Annotated causal gene information from OMIM was 

mapped and restricted to the protein-coding gene space.  

The distribution for how many diseases affect how many tissues was calculated by 

restricting the list of annotated Mendelian diseases and tissues to those where causal genes 

showed to be expressed in at least one disease-associated tissue (GTEx tissue expression > 

5). Tissues were grouped into tissue types (e.g. the three brain subregions were grouped into 

brain) and tissue types were counted for each disease. Diseases with at most three tissue types 

where the disease manifests were considered tissue-specific diseases and used in all 

downstream analyses. 

The diseases were split into those where all causal genes are TiP genes, some causal 

genes are TiP genes and no causal gene is a TiP gene as follows. For a given disease, every 

causal gene was assessed for its expression (expression > 5) in at least one of the annotated 

affected tissues of the given disease and whether it is preferentially expressed or not in that 

tissue (TiP value ≥ 2). For each disease, only causal genes that were expressed in at least one 

affected tissue were considered. All these causal genes for a given disease were counted 

based on their preferential expression and diseases grouped accordingly. 

 

Test for significance of connectivity between causal proteins and TiP proteins in HuRI 

To test for the significance of causal proteins of tissue-specific Mendelian diseases to interact 

with preferentially expressed proteins of the corresponding disease-associated diseases 

(hereafter referred to as disease tissues) we only considered those diseases where not a single 

causal proteins was found to be preferentially expressed in any of the corresponding disease 

tissues. Cutoffs were used as described above. For a given tissue only those HuRI PPIs were 

considered that linked proteins both expressed in that tissue. For every tissue, all causal genes 
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are considered that are expressed in that tissue but that are not preferentially expressed in that 

tissue and that are causal to a disease that specifically manifests in that tissue and where the 

disease corresponds to the above mentioned criteria. No causal gene or interaction was 

counted twice for the analysis within each tissue. The number of PPIs between these causal 

proteins and TiP proteins for each tissue as well as the number of causal proteins with at least 

one PPI to a TiP protein was determined for each tissue and compared to the distribution of the 

same counts observed in 1,000 degree-controlled randomized networks that were generated 

with the degree_sequence function in the python igraph library.  

 

Experimental design of pairwise test in Y2H to test perturbation of PPIs between causal 

proteins and TiP proteins by disease mutations 

Causal proteins were selected as follows. Causal proteins from tissue-specific diseases were 

considered, if that causal protein was expressed in a given disease tissue and interacted with a 

TiP protein of that tissue where the causal protein itself was not preferentially expressed (cutoff 

as described above) and the interaction between the causal protein and TiP protein was found 

with the causal protein as DB fusion. For all assay versions in which a valid causal protein - TiP 

protein interaction was found, all interactions from these assay versions found with the 

corresponding causal protein as DB fusion were selected for pairwise test. Interactions involving 

a causal protein with 30 or more interaction partners for a given assay version were removed to 

control the size of the experiment. PRS v1 and RRS v1 pairs17 were tested along as positive 

and negative control. 

 

Cloning of disease mutations 

Within the causal genes described above, we cloned variants that were annotated as 

pathogenic or likely pathogenic in ClinVar71 (May 2015) and disease modifying in HGMD100 

(v2016). Since then, ongoing reannotation efforts by ClinVar have classified some of these 

pathogenic variants as benign, conflicting or variants of uncertain significance (VUS). We 

generated the disease mutants by implementing an advanced high-throughput site-directed 

mutagenesis pipeline68,132,133 with some modifications as described below. For each mutation, 

two “primary PCRs” were performed to generate gene fragments containing the mutation and a 

“stitch PCR” was performed to fuse the two fragments to obtain the mutated ORF. For the 

primary PCRs, two universal primers (E2E forward and E2E reverse) and two ORF-specific 

internal forwards and reverse primers were used. The two ORF-specific primers contained the 

desired nucleotide change. The gene fragments generated by the primary PCRs were fused 
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together by the stitch PCR using the universal primers to generate the mutated ORF. The final 

product was a full length ORF containing the mutation of interest. All the mutated ORFs were 

cloned into Gateway donor vector, pDONR223, by a BP reaction followed by bacterial 

transformation and selection by spectinomycin. Two single colonies were picked per 

transformant. The mutated ORF was sequence confirmed by M13 PCR followed by pooling and 

sequencing the PCR products on the Illumina platform. The reads were aligned to the reference 

ORFs using bowtie 2103 (v2.2.3) and samtools134 (v1.2). Only those colonies with the correct 

mutation, fully covered by the reads, and without other mutations were considered sequence-

confirmed. The confirmed colonies were rearrayed and assembled followed by LR reaction and 

bacterial transformation to transfer the mutated ORFs in pDEST-DB. The plasmids were purified 

and transformed into Y8930 yeast strain for the pairwise test. 

Primers used for the experiment: 

E2E forward: GGCAGACGTGCCTCACTACTACAACTTTGTACAAAAAAGTTGGC 

E2E reverse: CTGAGCTTGACGCATTGCTAACAACTTTGTACAAGAAAGTTGG 

M13-reverse: GTAACATCAGAGATTTTGAGACAC 

M13-forward: CCCAGTCACGACGTTGTAAAACG 

See Supplementary Table 29 for ORF-specific primers used in the mutagenesis.  

 

Pairwise test of disease mutations 

All sequence-confirmed pathogenic, likely pathogenic, and reclassified alleles for all selected 

causal genes (see above) were subject to pairwise test along with the wild-type allele paired 

with all interaction partners in the respective assay versions as described above. Before the 

pairwise test was performed, the yeast strains containing the mutated or wild-type ORFs were 

Sanger sequenced to confirm the presence or absence of the mutations. Considering that all the 

entry clones used in the experiments have been full-length sequence verified, we were less 

stringent to call that a clone is sequence confirmed. Specifically, for ORFs with mutations, if 

either forward or reverse sanger reads confirmed the identity of the ORF and the presence of 

the mutations and there was no contradictory between the two reads, the clone was considered 

as sequence confirmed. Wild-type ORFs required one of the sanger reads confirming the 

identity of the ORF and absence of any of the tested mutations, and no contradictory between 

reads. 

The pairwise test was performed in 96 well format. In all, 50 mutants in 17 genes/ORFs 

were subjected to pairwise test. The ORFs were inoculated in SC-Leu and SC-Trp media 

overnight and mated in YEPD media the following day. After incubation at 30ºC overnight, the 
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mated yeasts were transferred into SC-Leu-Trp media to select for diploids. Next day, the 

diploid yeasts were spotted on SC-Leu-Trp-His+3AT, SC-Leu-His+3AT+CHX and SC-Leu-Trp 

media to control for mating success. In parallel, we made lysates of all SC-Leu-Trp plates to 

perform SWIM PCR as described in the primary screening section. 

 

Sequence confirmation of pairwise test positives and negatives 

SWIM PCR product was sequenced and the sequencing reads were analyzed as described 

above in the primary screening section. Due to the short read length of the Illumina sequencing 

and the design of SWIM-seq, absence or presence of a mutation on the ORF sequence could 

not always be confirmed. Therefore, for a given pair, as long as the identities returned from the 

pipeline matched the tested ORF and its partner, the pair was considered as sequence 

confirmed. Both positives and negatives were sequenced and only combinations of sequence 

confirmed pairs including both wild-type and mutated ORFs with same interacting partners were 

included in the final analysis. 

 

Processing of pairwise test data 

Each spot was scored with a growth score ranging from 0 to 4, 0 being no growth, 1 being one 

or two colonies, 2 being some colonies, 3 being lot’s of colonies, 4 being a big fat spot where no 

individual colonies can be distinguished. Pairs for which the SC-Leu-Trp spot was scored as 3 

or 4 and for which the CHX and the 3AT spot were valid (yeasts were spotted and no 

contamination or other experimental failure) were considered as successfully tested. 

Successfully tested pairs were further classified into auto-activators, if growth on CHX was >2 or 

growth on CHX was = 1 and less than 3 on 3AT, else negatives, if there was no growth (growth 

score = 0) on 3AT or positives if there was growth > 0 on 3AT and no growth on CHX or growth 

> 2 and growth = 1 on CHX. Pairs were scored blindly with respect to their identity. 

 

Analysis of PPI perturbation data 

Only pairs that were successfully tested, classified as positive or negative, for which the wild-

type allele was classified as positive with a growth score ≥ 2, and that were sequence-confirmed 

were considered for all further analysis. An interaction was considered perturbed by an allele, if 

the growth score of the wild-type pair was at least 2 growth scores above the growth score for 

that interaction with the respective allele. If an interaction involving an allele was tested in 

multiple assay versions (because the wild-type PPI has been found in those originally), then a 

final decision on that interaction for being perturbed or not was based on the results from the 
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assay version where the wild-type interaction reached the highest growth score (in case of ties, 

order of priority was given to assay version 1, 2, 6). A causal gene was included in the analyses, 

if first, there was at least one interaction with a TiP interaction partner that was positive with a 

growth score ≥ 2 as wild-type and that was successfully tested (as defined above) for at least 

one of the pathogenic alleles of that causal gene and second, if more than half of all interactions 

of a causal protein subjected to pairwise test were classified as positive with a growth score ≥ 2. 

Network visualizations were drawn with Cytoscape115 (v3.7.0).  
 

Prediction and experimental confirmation of functionally divergent splice 
isoforms 
 

Finding tissue-regulated splicing exon 

For tissue-regulated alternative splicing information, we used a dataset78 previously defined in 

49 tissues, which was kindly shared by members of the Blencowe lab, and is now publicly 

available via vastDB135. For each of the events, we mapped Ensembl exon accession with 

respect to their genome coordinate information. A tissue regulated exon was defined, if there is 

more than 25% difference between maximum Percent Spliced-In (PSI) and minimum PSI (ΔPSI 

> 25) as previously described78. 

 

Finding protein domain regulated by alternative splicing and defining hub protein with 

possible partial loss of protein-protein interactions 

Based on the tissue-regulated exons we defined, we computationally derived the spliced-out 

HuRI ORFs without the corresponding exon. After that, we translated it and mapped domains 

for HuRI ORFs and the spliced-out HuRI ORFs with InterProScan136 (v5.16-55.0) with Pfam137 

(v28.0). We restricted to domains that are previously known to mediate protein-protein 

interactions using information from 3did79 (based on UniProt version 201804). The domains that 

were missing in transcripts with spliced-out exons were defined as domains regulated by the 

alternative splicing. If a spliced-out HuRI ORF partially loses its PPI-mediating domains, we 

define that ORF as a possible candidate for partial PPI loss by tissue-regulated alternative 

splicing (Supplementary Table 18). 

 

Analysis of NCK2 isoform expression in brain samples 

We gained the exon-specific RPKM (Reads Per Kilobase Million) from the Allen Institute for 

Brain Science - BrainSpan Atlas of the Developing Human Brain138 (www.brainspan.org). To 
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estimate the fraction of exon A inclusion, we divided the RPKM of exon A by the average RPKM 

of exon C1 and C2, which are two adjacent exons of exon A (Supplementary Table 19). 

 

Pairwise test of interaction partners of NCK2 with short and long isoform 

We used the orientation and Y2H assay version of the interactions where the corresponding 

protein interactions were found in HuRI. The pairwise test of these interactions was done as 

previously described139. 

 

NCK2 function in Zebrafish 

An antisense morpholino oligonucleotide, as well as a 5 nt-mismatched control morpholino 

oligonucleotide (Gene Tools, Inc.), was designed to knockdown expression of zNCK2B 

(ortholog of human NCK2) via inhibiting the removal of intron 2. Zebrafish embryos at the 1-cell 

stage were microinjected with 5 ng of the antisense zNCK2B or control morpholinos, and 

inhibition of splicing in zNCK2B was confirmed via RT-PCR at 1 dpf (days post fertilization; 

forward exon 2: TACGGCACAACAAGACCAGG, exon3 reverse: 

TTGACTATGGCCGGAGTGTT, intron2 reverse: CGTGTGCGGTCAAATTTATGC). To rescue 

the zNCK2B knockdown, full length and short form zNCK2B and human NCK2 (hNCK2) 

messenger RNA was cloned into the multiple cloning site of pCS2+MT, and transcribed with the 

SP6 mMessage machine kit (ThermoFisher). Purified mRNA was microinjected into 1-cell stage 

zebrafish embryos either alone, or in combination with the above morpholinos at a concentration 

sufficient to yield 0.5 fmol RNA per embryo. zNCK2B knockdown and rescued embryos were 

assayed at 48 hpf (hours post fertilization) for midbrain GFP expression in the zebrafish 

enhancer trap line SAGFF(LF)223A, where GFP was inserted adjacent to lhx9140. Wild-type AB 

embryos were similarly injected with zNCK2B or control morpholino and mRNA, fixed at 48 hpf 

and assayed by whole mount in situ hybridization for lef1 expression as previously described141. 

The midbrain specific lef1 expression domain was imaged and quantified by measuring the 2-

dimensional area with Image-J; the experimental groups were then compared via t-test with 

MicroSoft Excel. 

Data availability 

The PPI data from this publication has been submitted to the IMEx 

(http://www.imexconsortium.org) consortium through IntAct106 and assigned the identifier IM-

25472. HuRI, Lit-BM, and all previously published human interactome maps from CCSB are 
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available at http://interactome.dfci.harvard.edu/huri/ for search and download. All HuRI-related 

networks generated and analyzed in this study are available at NDExbio.org142 

(https://tinyurl.com/networks-HuRI-paper). The raw and analyzed proteomic data were 

deposited in the PRIDE repository143 with the accession number PXD012321. 

Code availability 

Custom code used in this study has been made available as Supplementary Data 1 for the 

reviewers and will be made public on github.com upon acceptance. 
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Fig. 5 | Tissue-specific functions are largely mediated by interactions 
between TiP proteins and uniformly expressed proteins. a, Tissue-
preferentially expressed (TiP) protein coverage by PPI networks for increasing 
levels of tissue-preferential expression. b, Fraction of HuRI and Lit-BM that 
involve TiP proteins compared to fraction of genome that are TiP genes for 
increasing levels of tissue-preferential expression. c, Tissue-preferential sub-
networks with enlarged brain sub-network. *: tissues with TiP proteins being 
significantly close to each other (empirical P < 0.001). d, Fraction of PPIs 
between TiP-TiP proteins in brain. e, Empirical test of closeness of TiP proteins
in the brain sub-network. f, Tissue-specific diseases split by tissue-preferential  

expression levels of causal genes. g, Network neighborhood of uniformly 
expressed causal proteins of tissue-specific diseases found to interact with TiP 
proteins in HuRI, indicating PPI perturbation by mutations. h, Causal genes 
split by mutation found to perturb PPI to TiP protein (dashed) or not (solid). 
i, Expression profile of PNKP and interactors in brain tissues and PPI 
perturbation pattern of disease causing (Glu326Lys) and benign (Pro20Ser)  
mutation. Yeast growth phenotypes on SC-Leu-Trp (upper) or SC-Leu-Trp-His
+3AT media (lower) are shown, green/grey gene symbols: preferentially/not 
expressed.
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Fig. 6 | Distinct function of a long and short uncharacterized isoform of 
NCK2 in brain. a, Workflow for predicting and confirming functionally 
distinct alternative isoforms from the same gene. Rectangles: exons; ovals: 
protein domains. b, Schematic of isoform structure of NCK2. C1, A, C2: 
constitutive and alternative exons; *: alternative stop codon; rectangles: exons; 
ovals: protein domains. c, Relative NCK2 exon A inclusion in different brain

samples. d, Pairwise test of long and short isoform of NCK2 with interaction 
partners in HuRI. Yeast growth phenotypes on SC-Leu-Trp (upper) or SC-Leu
-Trp-His+3AT media (lower) are shown. e, In vivo test of distinct functions of 
NCK2 isoforms. ***, **, *: P < 0.001, 0.01, 0.05; n.s.: not significant by two-
sided t-test with n>10; MO: morpholino; zNCK2B: long isoform of NCK2 
ortholog in zebrafish. Error bars are standard error.
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